Tallerbasica1-adm 2008-2 2p

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tallerbasica1-adm 2008-2 2p as PDF for free.

More details

  • Words: 442
  • Pages: 2
Segundo Taller de Matemática Básica (ADMINISTRACION)

(1) Resolver la ecuación 2 C3$

3$x K1 = 3$x C5 2

3$x C1 = x C1 2 3$x C1 3$x C1 De donde: = x C1 ó =K x C1 2 2 Entonces: 3$x C1 = 2$ x C1 ó 3$x C1 =K2$ x C1 Entonces: x = 1 ó 5$x =K3 3 Por tanto, c.s. 1,K 5 Entonces:

(2) 3$x K1 K x C2 = 3 1 K2, 3 KN,K2

K2,

2 3

2 ,CN 3

K x C2

C x C2

C x C2

K 3$x K1

K 3$x K1

C 3$x K1

(a) KN,K2 K 3$x K1 K K x C2 = 3 0K2 x C3 = 3 0 x = 0 entonces, c.s.:Φ 2 (b) K2, 3 K 3$x K1 K x C2 = 3 0K4 x K1 = 3 0 x =K1 entonces, c.s.:x =K1 2 (c) ,CN 3 C 3$x K1 K x C2 = 3 0 2$x K3 = 3 0 x = 3 entonces, c.s.:x = 3 Por tanto la solución es: K1, 3

(3) Resolver: x K3 C2$ x O 6. Los puntos críticos son: 0, 3 KN, 0 K x K3 Kx

0, 3 K x K3 Cx

3,CN C x K3 Cx

(a) KN, 0 K x K3 C2$ Kx O 6 0K3$x C3 O 6 0 x !K1 entonces, c.s.: KN,K1 (b) 0, 3 K x K3 C2$ x O 6 0 x C3 O 6 0 x O 3 entonces, c.s.:Φ (c) 3,CN x K3 C2$ x O 6 0 3$ x K3 O 6 0 3 x O 9 0 x O 3 entonces, c.s.: 3,CN Por tanto la solución es: KN,K1 W 3,CN

(4) Determinar las fracciones parciales de:

x2 C5 x C12 x2 K9 $ x C3

SOLUCION: x2 C5 x C12 x2 C5 x C12 x2 C5 x C12 = = x K3 $ x C3 $ x C3 x2 K9 $ x C3 x K3 $ x C3 De donde: x2 C5 x C12 A B C = C C 2 2 x K3 x C3 x K3 $ x C3 x C3 Entonces: x2 C5 x C12 = A x C3 2 CB x K3 CC x K3 x C3 Por variación de parámetros: 1) Evaluaando en x = 3 : 32 C5$3 C12 = A$62 0 A = 1 2) Evaluaando en x =K3 : K3 2 C5$ K3 C12 = B$ K6 0 B =K1 3) Evaluaando en x = 0 : 12 = A$ 9 CB K3 CC K9 0 C = 0 Finalmente:

K1 1 C x K3 x C3

2

2

Related Documents

2p
October 2019 94
2p
April 2020 33
Manual 20082
October 2019 42
Bac 20082
May 2020 24
Interfaces 2p
June 2020 10
Margin 20082
November 2019 39