TALLER No. 15
ANGIE KATHERINE VARELA ORTEGA NÚMERO DE ORDEN 9157
Profesor CARLOS EDUARDO OBANDO Proyección de mercados y mercadeo
SERVICIO NACIONAL DE APRENDIZAJE SENA TECNÓLOGO EN ADMINISTRACIÓN EMPRESARIAL 28 de mayo de 2009
1) A. Tabla de datos $ PESOS 13 169 2.197 28.561 371.293 4.826.809 62.748.517 815.730.721 10.604.499.373 137.858.491.849 1.792.160.394.037 23.298.085.122.481 302.875.106.592.253 3.937.376.385.699.290 51.185.893.014.090.800 665.416.609.183.180.000 8.650.415.919.381.340.000 112.455.406.957.957.000.000 1.461.920.290.375.450.000.000 19.004.963.774.880.800.000.000
MESES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
B. Grafica de dispersión
C. Modelo lineal Y 13 169 2.197 28.561 371.293 4.826.809 62.748.517 815.730.721 10.604.499.373 137.858.491.849 1.792.160.394.037 23.298.085.122.481 302.875.106.592.253 3.937.376.385.699.290 51.185.893.014.090.800 665.416.609.183.180.000 8.650.415.919.381.340.000 112.455.406.957.957.000.000 1.461.920.290.375.450.000.000 19.004.963.774.880.800.000.000 ∑ 20.588.710.756.126.900.000.000
X -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 0
XY
X2
Y2
-130 -1.521 -17.576 -199.927 -2.227.758 -24.134.045 -250.994.068 -2.447.192.163 -21.208.998.746 -137.858.491.849 1.792.160.394.037 46.596.170.244.962 908.625.319.776.759 15.749.505.542.797.200 255.929.465.070.454.000 3.992.499.655.099.080.000 60.552.911.435.669.400.000 899.643.255.663.656.000.000 13.157.282.613.379.000.000.000
100 81 64 49 36 25 16 9 4 1 1 4 9 16 25 36 49 64 81 100 770
169 28.561 4.826.809 815.730.721 137.858.491.849 23.298.085.122.481 3.937.376.385.699.290 665.416.609.183.180.000 112.455.406.951.957.000.000 19.004.963.774.880.800.000.000 3.211.838.877.954.860.000.000.000 542.800.770.374.371.000.000.000.000 91.733.330.193.268.600.000.000.000.000 15.502.932.802.662.400.000.000.000.000.000 2.619.995.643.649.950.000.000.000.000.000.000 442.779.263.776.841.000.000.000.000.000.000.000 74.829.695.578.286.100.000.000.000.000.000.000.000 12.646.218.554.079.700.000.000.000.000.000.000.000.000 2.137.210.935.411.440.000.000.000.000.000.000.000.000.000
190.049.637.748.808.000.000.000 204.171.381.664.764.000.000.000
361.188.648.084.532.000.000.000.000.000.000.000.000.000.000 363.338.580.513.607.000.000.000.000.000.000.000.000.000.000
y = bx + c
∑ xy → b = 204.171.381.664.764.000.000.000 → b = 265.157.638.525.667.000.000 770 ∑x ∑ y → c = 20.588.710.756.126.900.000.000 → c = 1.029.435.537.806.340.000.000 c=
b=
2
n
20
y = bx + c y = 265.157.638.525.667.000.000x + 1.029.435.537.806.340.000.000 y1 = 265.157.638.525.667.000.000(11) + 1.029.435.537.806.340.000.000 y1 = 3.946.169.561.588.690.000.000 y 2 = 265.157.638.525.667.000.000(12 ) + 1.029.435.537.806.340.000.000 y 2 = 4.211.327.200.114.350.000.000 y 3 = 265.157.638.525.667.000.000(13) + 1.029.435.537.806.340.000.000 y 3 = 4.476.484.838.640.020.000.000 y 4 = 265.157.638.525.667.000.000(14 ) + 1.029.435.537.806.340.000.000 y 4 = 4.741.642.477.165.690.000.000 y 5 = 265.157.638.525.667.000.000(15) + 1.029.435.537.806.340.000.000 y 5 = 5.006.800.115.691.360.000.000 y 6 = 265.157.638.525.667.000.000(16 ) + 1.029.435.537.806.340.000.000 y 6 = 5.271.957.754.217.020.000.000 D. Coeficiente de correlación
Rx =
mSx Sy
∑ xy m= ∑x 2
Sx =
∑x n
2
Sy =
∑y n
2
−
∑y n
204.171.381.664.764.000.000.000 → m = 265.157.638.525.667.000.000 770 770 Sx = → Sx = 6 20 m=
363.338.580.513.607.000.000.000.000.000.000.000.000.000.000 20.588.710.756.126.900.000.000 − 20 20 Sy = 4.262.268.061.218.160.000.000
Sy =
mSx 265.157.638.525.667.000.000 * 6 → Rx = → Rx = 38,60% Sy 4.262.268.061.218.160.000.000 2) A. Tabla de datos Rx =
Pantalones 1500 1550 1500 1560 1570 1700 1700 1650 1550 1500 1550 1600
MESES 1 2 3 4 5 6 7 8 9 10 11 12
B. Grafica de dispersión
C. Modelo Lineal
Y 1500 1550 1500 1560 1570 1700 1700 1650 1550 1500 1550 1600 18930
∑
X -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 0
XY -9000 -7750 -6000 -4680 -3140 -1700 1700 3300 4650 6000 7750 9600 730
y = bx + c
∑ xy → b = 730 → b = 4,01 182 ∑x ∑ y → c = 18930 → c = 1577,50 c=
b=
2
n
12
y = bx + c y = 4,01x + 1577,50 y 1 = 4,01( 7 ) + 1577,50 y 1 = 1605,58 y 2 = 4,01( 8) + 1577,50 y 2 = 1609,59 y 3 = 4,01( 9 ) + 1577,50 y 3 = 1613,60
X2
Y2
36 25 16 9 4 1 1 4 9 16 25 36 182
2250000 2402500 2250000 2433600 2464900 2890000 2890000 2722500 2402500 2250000 2402500 2560000 29918500
y 4 = 4,01(10) + 1577,50 y 4 = 1617,61 y 5 = 4,01(11) + 1577,50 y 5 = 1621,62 y 6 = 4,01(12) + 1577,50 y 6 = 1625,63 y 7 = 4,01(13) + 1577,50 y 7 = 1629,64 y 8 = 4,01(14) + 1577,50 y 8 = 1633,65 y 9 = 4,01(15) + 1577,50 y 9 = 1637,66 y10 = 4,01(16) + 1577,50 y10 = 1641,68 y11 = 4,01(16) + 1577,50 y11 = 1645,69 y12 = 4,01(16) + 1577,50 y12 = 1649,70
D. Coeficiente de correlación
Rx =
mSx Sy
∑ xy m= ∑x 2
Sx =
∑x n
2
Sy =
∑y n
2
−
∑y n
730 → m = 4,01 182 182 Sx = → Sx = 15,16 → Sx = 3,89 12 m=
Sy =
Rx =
29918500 18930 − → Sy = 1.578,49 12 12 4,01 * 3,89 → Rx = 0,009896 → Rx = 0,009896 * 100 → Rx = 98,96% 1.578,49
3) A. Tabla de datos VENTAS 9.000.000,00 7.166.667,00 5.666.667,00 4.500.000,00 3.666.667,00 3.166.667,00 3.000.000,00 3.166.667,00 3.666.667,00 4.500.000,00 5.666.667,00 7.166.667,00 9.000.000,00 11.166.667,00 13.666.667,00 16.500.000,00 19.666.667,00 23.166.667,00 27.000.000,00 31.166.667,00 35.666.667,00
MESES enero febrero marzo abril mayo junio julio agosto septiembre octubre noviembre diciembre enero febrero marzo abril mayo junio julio agosto septiembre
B. Grafica de dispersión
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
C. Modelo exponencial
Y 9.000.000,00 7.166.667,00 5.666.667,00 4.500.000,00 3.666.667,00 3.166.667,00 3.000.000,00 3.166.667,00 3.666.667,00 4.500.000,00 5.666.667,00 7.166.667,00 9.000.000,00 11.166.667,00 13.666.667,00 16.500.000,00 19.666.667,00 23.166.667,00
X -19 -17 -15 -13 -11 -9 -7 -5 -3 -1 0 1 3 5 7 9 11 13
log y 6,95 6,86 6,75 6,65 6,56 6,50 6,48 6,50 6,56 6,65 6,75 6,86 6,95 7,05 7,14 7,22 7,29 7,36
X2 361 289 225 169 121 81 49 25 9 1 0 1 9 25 49 81 121 169
x log y -132,13 -116,54 -101,30 -86,49 -72,21 -58,51 -45,34 -32,50 -19,69 -6,65 0,00 6,86 20,86 35,24 49,95 64,96 80,23 95,74
27.000.000,00 31.166.667,00 35.666.667,00
15 17 19 0
∑
7,43 7,49 7,55 145,58
225 289 361 2660
111,47 127,39 143,49 64,83
y = ab x ∑ log y → a = ant log 145,58 → a = ant log( 6,93) → a = 8554465,03 a = ant log n 21 ∑ x log y → b = ant log 64,83 → b = ant log( 0,02 ) → b = 1,06 b = ant log ∑ x2 2660 y = ab x y = 8554465,03(1,06)
x
y1 = 8554465,03(1,06 )
21
y1 = 27.798.255,81 y 2 = 8554465,03(1,06)
23
y 2 = 31.100.169,49 y 3 = 8554465,03(1,06 )
25
y 3 = 34.794.288,85 y 4 = 8554465,03(1,06)
27
y 4 = 38.927.200,62 y 5 = 8554465,03(1,06 )
29
y 5 = 43.551.025,12 y 6 = 8554465,03(1,06 )
31
y 6 = 48.724.073,62 y 7 = 8554465,03(1,06)
33
y 7 = 54.511.583,69 y 8 = 8554465,03(1,06 )
35
y 8 = 60.986.541,88 y 9 = 8554465,03(1,06 ) y 9 = 68.230.604,18
37