Taller Calculo Integral

  • Uploaded by: LEO JMD
  • 0
  • 0
  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Taller Calculo Integral as PDF for free.

More details

  • Words: 318
  • Pages: 5
TIPO DE EJERCICIOS 1 - INTEGRALES INMEDIATAS.

Ejercicio (e.)

∫(𝑒 βˆ’2π‘₯ + 5π‘₯ )𝑑π‘₯ = ∫(𝑒 βˆ’2π‘₯ )𝑑π‘₯ + ∫(5π‘₯ )𝑑π‘₯

Solo basta resolver ∫(𝑒 βˆ’2π‘₯ )𝑑π‘₯ Sea 𝑒 = βˆ’2π‘₯, entonces 𝑑𝑒 = 𝑑(βˆ’2π‘₯) 𝑑𝑒 = βˆ’2𝑑π‘₯ 𝑑𝑒 = 𝑑π‘₯ βˆ’2 Remplazando tenemos:

∫(𝑒 βˆ’2π‘₯ )𝑑π‘₯ = ∫(𝑒 𝑒 )

𝑑𝑒 1 1 1 = βˆ’ ∫(𝑒 𝑒 )𝑑𝑒 = βˆ’ 𝑒 𝑒 + 𝐢 = βˆ’ 𝑒 βˆ’2π‘₯ + 𝐢 βˆ’2 2 2 2

Remplazando

1 5π‘₯ ∫(𝑒 βˆ’2π‘₯ + 5π‘₯ )𝑑π‘₯ = ∫(𝑒 βˆ’2π‘₯ )𝑑π‘₯ + ∫(5π‘₯ )𝑑π‘₯ = βˆ’ 𝑒 βˆ’2π‘₯ + +𝐢 2 ln(5)

Luego derivando tenemos:

𝑑 1 5π‘₯ 𝑑 1 𝑑 5π‘₯ 𝑑 (𝐢) (βˆ’ 𝑒 βˆ’2π‘₯ + + 𝐢) = (βˆ’ 𝑒 βˆ’2π‘₯ ) + ( )+ 𝑑π‘₯ 2 ln(5) 𝑑π‘₯ 2 𝑑π‘₯ ln(5) 𝑑π‘₯ 1 βˆ’2π‘₯ 5π‘₯ (ln(5)) = βˆ’2 (βˆ’ ) 𝑒 [𝑑(π‘₯)] + = 𝑒 βˆ’2π‘₯ (1) + 5π‘₯ = 𝑒 βˆ’2π‘₯ + 5π‘₯ 2 ln(5)

TIPO DE EJERCICIOS 2 – SUMAS DE RIEMANN

Ejercicio (e.)

TIPO DE EJERCICIOS 3 – TEOREMA DE INTEGRACIΓ“N.

2√π‘₯

𝑆𝑒𝑛(𝑑 2 ) 𝑑𝑑

𝐹(π‘₯) = ∫ √π‘₯

2

2

𝐹′(π‘₯) = 𝑆𝑒𝑛(𝑑 2 )]2√√π‘₯π‘₯ = 𝑆𝑒𝑛 ((2√π‘₯) ) βˆ’ 𝑆𝑒𝑛 ((√π‘₯) ) = 𝑆𝑒𝑛(4π‘₯) βˆ’ 𝑆𝑒𝑛(π‘₯)

TIPO DE EJERCICIOS 4 – INTEGRAL DEFINIDA.

πœ‹

∫ ( πœ‹ 2

π‘‡π‘Žπ‘›(π‘₯) ) 𝑑π‘₯ + πΆπ‘œπ‘ (π‘₯)

𝑆𝑒𝑛2 (π‘₯)𝑆𝑒𝑐(π‘₯)

Desarrollamos π‘‡π‘Žπ‘›(π‘₯) π‘‡π‘Žπ‘›(π‘₯) π‘‡π‘Žπ‘›(π‘₯) = = 𝑆𝑒𝑛2 (π‘₯)𝑆𝑒𝑐(π‘₯) + πΆπ‘œπ‘ (π‘₯) 𝑆𝑒𝑛2 (π‘₯) 1 + πΆπ‘œπ‘ (π‘₯) 𝑆𝑒𝑛2 (π‘₯) + πΆπ‘œπ‘  2 (π‘₯) πΆπ‘œπ‘ (π‘₯) πΆπ‘œπ‘ (π‘₯)

=

π‘‡π‘Žπ‘›(π‘₯) 𝑆𝑒𝑛(π‘₯) = π‘‡π‘Žπ‘›(π‘₯)πΆπ‘œπ‘ (π‘₯) = πΆπ‘œπ‘ (π‘₯) = 𝑆𝑒𝑛(π‘₯) 1 πΆπ‘œπ‘ (π‘₯) πΆπ‘œπ‘ (π‘₯)

Luego πœ‹ πœ‹ π‘‡π‘Žπ‘›(π‘₯) πœ‹ πœ‹ ∫ ( ) 𝑑π‘₯ = ∫ (𝑆𝑒𝑐(π‘₯)) 𝑑π‘₯ = βˆ’πΆπ‘œπ‘ (π‘₯)] = βˆ’πΆπ‘œπ‘ (πœ‹) βˆ’ (βˆ’πΆπ‘œπ‘  ( )) = βˆ’(βˆ’1) + 0 = 1 πœ‹ πœ‹ 𝑆𝑒𝑛2 (π‘₯)𝑆𝑒𝑐(π‘₯) + πΆπ‘œπ‘ (π‘₯) πœ‹ 2 2 2

2

πœ‹

Grafica de la funciΓ³n 𝑦 = 𝑆𝑒𝑛(π‘₯) y el Γ‘rea entre la regiΓ³n comprendida entre el intervalo [ 2 , πœ‹]

Related Documents

Taller Calculo Integral
October 2019 20
Calculo Integral
May 2020 9
Calculo Integral
October 2019 23
Calculo Integral
May 2020 7

More Documents from "Ulises Millan"