TIPO DE EJERCICIOS 1 - INTEGRALES INMEDIATAS.
Ejercicio (e.)
β«(π β2π₯ + 5π₯ )ππ₯ = β«(π β2π₯ )ππ₯ + β«(5π₯ )ππ₯
Solo basta resolver β«(π β2π₯ )ππ₯ Sea π’ = β2π₯, entonces ππ’ = π(β2π₯) ππ’ = β2ππ₯ ππ’ = ππ₯ β2 Remplazando tenemos:
β«(π β2π₯ )ππ₯ = β«(π π’ )
ππ’ 1 1 1 = β β«(π π’ )ππ’ = β π π’ + πΆ = β π β2π₯ + πΆ β2 2 2 2
Remplazando
1 5π₯ β«(π β2π₯ + 5π₯ )ππ₯ = β«(π β2π₯ )ππ₯ + β«(5π₯ )ππ₯ = β π β2π₯ + +πΆ 2 ln(5)
Luego derivando tenemos:
π 1 5π₯ π 1 π 5π₯ π (πΆ) (β π β2π₯ + + πΆ) = (β π β2π₯ ) + ( )+ ππ₯ 2 ln(5) ππ₯ 2 ππ₯ ln(5) ππ₯ 1 β2π₯ 5π₯ (ln(5)) = β2 (β ) π [π(π₯)] + = π β2π₯ (1) + 5π₯ = π β2π₯ + 5π₯ 2 ln(5)
TIPO DE EJERCICIOS 2 β SUMAS DE RIEMANN
Ejercicio (e.)
TIPO DE EJERCICIOS 3 β TEOREMA DE INTEGRACIΓN.
2βπ₯
πππ(π‘ 2 ) ππ‘
πΉ(π₯) = β« βπ₯
2
2
πΉβ²(π₯) = πππ(π‘ 2 )]2ββπ₯π₯ = πππ ((2βπ₯) ) β πππ ((βπ₯) ) = πππ(4π₯) β πππ(π₯)
TIPO DE EJERCICIOS 4 β INTEGRAL DEFINIDA.
π
β« ( π 2
πππ(π₯) ) ππ₯ + πΆππ (π₯)
πππ2 (π₯)πππ(π₯)
Desarrollamos πππ(π₯) πππ(π₯) πππ(π₯) = = πππ2 (π₯)πππ(π₯) + πΆππ (π₯) πππ2 (π₯) 1 + πΆππ (π₯) πππ2 (π₯) + πΆππ 2 (π₯) πΆππ (π₯) πΆππ (π₯)
=
πππ(π₯) πππ(π₯) = πππ(π₯)πΆππ (π₯) = πΆππ (π₯) = πππ(π₯) 1 πΆππ (π₯) πΆππ (π₯)
Luego π π πππ(π₯) π π β« ( ) ππ₯ = β« (πππ(π₯)) ππ₯ = βπΆππ (π₯)] = βπΆππ (π) β (βπΆππ ( )) = β(β1) + 0 = 1 π π πππ2 (π₯)πππ(π₯) + πΆππ (π₯) π 2 2 2
2
π
Grafica de la funciΓ³n π¦ = πππ(π₯) y el Γ‘rea entre la regiΓ³n comprendida entre el intervalo [ 2 , π]