TALLER No. 8
1
x5 5x 4
2
=x =3
3 1
2
( x)2
1
2
3 1 t3 t 3 (0 ) −1(3t 2 )
(t ) 3
2
t 3 −3t 2 t6
4
4 u4 u 4 ( 0 ) −4(4u 3 )
(u ) 4
2
u 4 −16u 3 u8 1 5u 5 5u 5 (0 ) −1(25 u 4 )
5
(5u ) 5
2
−25 u 4 5u 10
6 x7 7 7(7 x 6 ) −x 7 ( 0 ) 72 49 x 6 49
7
1 3
x
x 2
3
2
=
1 x
2
3
− (0 ) −1 2 3 x 3 1
x
2
2
3
−1 −1 0 −1 −2 2 3 x 3 x 3 3 = 4 4 3 3 x x
8 2 x −x 3 2 −3 x 2
9 4 x 3 −3 x 2 +7 12 x 2 −6 x
10 5 −2 x 2 + x 4 −4 x +4 x 3
11 3 x 4 −7 x 3 +5 x 2 +8 12 x 3 −21x 2 +10 x
12
1 x ( x 0 ) −1(1) + } x2
4 x 3 +2 + 12 x 2
0 −1 12 x 2 + 2 x −1 12 x 2 + 2 x
13
3 u2 u 2 (0 ) −3( 2u ) 6u + (u 2 )2
3u 2 +
−6u 6u + 4 u
14 x 6
6 + 6 6 x 6 6 x 5 − x 6 (0 ) x 6 ( 0 ) −6 6 x 5 + 2 62 x6
(
)
( )
36 x −0 0 −36 x + 36 x 12 −36 x 5 36 x 5 + x 12 36 5
15
(
5
1 x 0,6 x 0 , 6 (0 ) −1(0,6 x −0 , 4 ) 1,2 x 0 , 2 + ( x 0 , 6 )2 x 1, 2 +
0 −1,6 x −0 , 4 x 1, 2 1,6 x −0 , 4 + x 1, 2
1,2 x 0 , 2 + 1,2 x 0 , 2
)
16 x 0, 4 − x −0, 4
0,4 x −0, 6 −(−0,4 x −1, 4 )
17
x +
2 2x x
18
1
−1
2
=2 x
x
1
2
+
+2 x 2 =2 x 3 − + x 2 −1
2
2
2 x 1
1
2
2
+2 x
−1
2
1 7 +7 x + +7 x x7 7 x ( 0 ) −1(7 x 6 ) x (0 ) −7(1) 7 x 6 + +7 + 7 2 x2 (x ) 6 0 −7 x 0 −7 7 x 6 + +7 + 2 49 x x x7 +
−7 x 6 −7 7 x 6 + 49 +7 + 2 x x
19 2 x 3 + 2 3 2 x 2
2x 3x
20
3 1
2 t 2t
1
1
−1
2
2
−5 + −3 x 2
2
2
−3
+2 x
2
t −3
2
1t
3 2 = 2 x 2 + 3 x 2 x 3 − +2 x 2 3
2
3
=2
t
3
− t
1
−1
−3t
3
t −3
= 2 t
3
1
t 2
−1 −3 t 3
3
−4 − −1t 3
21 2 x 5 2 +4 x 5 4 3x
22
3
x x 1
1
2
+5 x
x −3 1
1
3
3
3
−
1
1 x 1
x
−x x
−2
4
3
1
3
−1
=x
1
3
−1 x
−1
3
−4 3 − − 1 3 x
3
23 3 x 4 +( 2 x −1) 2
12 x 3 +2( 2 x −1)( 2 ) 12 x 3 +4( 2 x −1)
24 ( y −2 )( 2 y −3)
( y −2 )( 2 ) +( 2 y −3)(1) ( 2 y −4) +( 2 y −3)
25
26
( x −7 )( 2 x −9 ) ( x −7 )( 2 ) +( 2 x −9 )(1) ( 2 x −14 )( 2 x −9 ) 2
1 x + x 1 x ( 0 ) −1(1) 2x + 1 + x x2 1 0 −1 2x + 1 + x x2 1 −1 2x + 1 + 2 x x
27 (u +1)( 2u +1)
(u +1)( 2 ) +( 2u +1)(1) ( 2u +2 )( 2u +1)
28
2
x +
1 x
12 1 x + 1 x 2
2
2 1 −1 2 = x 2 +1 x 2
x 1 2 + x −1 2 2 x
1
2 x
1
2
2
(
1 x −3 2 + − 1 x 2 2 −1 +x 2 +x
−1
2
29
(t +1)(3t −1) 2 (t +1)2(3t −1)(3) +(3t −1) 2 (1) (t +1)6(3t −1) +(3t −1) 2 (t +1)(18t −6 ) +(3t −1) 2
30
(u −2) 3 2 3(u −2 ) (1) 2 3(u −2 )
)
−3
2
31
( x +2 ) 3 2 3( x +2 ) (1) 2 3( x +2 )
32 ( x +1)( x −1) 2
( x +1)2( x −1)(1) +( x −1) 2 (1) ( x +1)2( x −1) +( x −1) 2 ( x +1)( 2 x −2 ) +( x −1) 2
33 x +1 3
x
x +1 x (1) −( x +1)(1) 3 x2 x 2
x +1 x −( x +1) 3 x2 x 2
34 2t −1 3 2t
2t −1 2t ( 2 ) −( 2t −1)( 2 ) 3 2t 2 2t 2
2t −1 4t −( 4t −2 ) 3 2t 2 2t 2
3 35 y +2 3 y −2 + y y
y +2 y (1) −( y +2 )(1) y −2 y (1) −( y −2 )(1) 3 +3 2 y y y y2 2
2
y +2 y −( y +2 ) y −2 y −( y −2 ) 3 +3 2 y y y y2 2
36 2 y 2 +3 y −7 y
y ( 4 y +3) −(2 y 2 +3 y −7 )(1) y2
(4 y
2
+3 y ) −(2 y 2 +3 y −7 ) y2
4 y 2 +3 y −2 y 2 −3 y +7 y2 2 y 2 +7 y2
2
37
( x +1) 2 x 2 x[2( x +1)(1)] −( x +1) (1) x2 2 x[2( x +1)] −( x +1) x2 2 2 x ( x +1) −( x +1) 2 x
2 2 38 x −3 x +1 = x −3 x +1 1
x
x
1
2
( 2 x −3) −( x
x
2
2
[
−3 x +1) 1
( x ) − 2 (1) 1
2
]
2
1 x 2
[
1 1 −1 2 2 x 2 −3 x 2 −( x −3 x +1) 1 2 ( x ) 2
]
2
1 x 2
39
3 3 t+ −1 t = t = t +3 t 2 1 t t x 2 t ( 0 ) −3(1) 1 (t ) −3 2 (1) t + − 2 2 t t+
[
]
[
0 −3 −3 t + 2 − 1 ( t ) 2 2 t 3 −3 1 t + 2 − (t ) − 2 2 t
[
]
]
2 ( x −1) 2 40 ( x +1) + 2
x 2 2 x 2 [2( x +1) +2( x −1)] −( x +1) +( x −1) ( 2 x ) 4 x x 2 [( 2 x +2 ) +( 2 x −2 )] −(2 x 2 +2 x ) +( x −1) x4 2
41
( 2t
−( 2t −3) 4t 2 2 4t [2( 2t +3)( 2 ) +2( 2t −3)( 2 )] −( 2t +3) −( 2t −3) ( 4 ) 2 4t 2 2 4t [4( 2t +3) +4( 2t −3)] −(8t +12 ) −( 2t −3) 2 4t 2 2 4t [(8t +12 ) +(8t −12 )] −(8t +12 ) −( 2t −3) 2 4t 2 2 32t 2 +48t +(8t −12 ) −(8t +12 ) −( 2t −3) 4t 2
(
+3)
2
2
2
)
42
x 1, 6 x 2,3 x 2 , 3 (1,6 x 0 , 6 ) −x 1, 6 (2,3 x 1, 3 ) − ( x 2 , 3 )2
x3 − 3x 2
1,6 x 2 ,9 −2,3 x 1, 9 3x 2 − x 4,6
2 y +(3 y )
43
1
2y y y y
−1
+(3 y )
2
−1
[
−1
2
+ −1(3 y )
−1
2
+( −3 y )
−2
−1
2
+( −9 y )
−2
−2
](3)
(3)
44 (8 y ) 2 3 +(8 y ) −2 3
[
]
(8 y ) 3 (8) + −2 3 (8 y ) 3 (8) 3 16 (8 y ) −13 + −16 (8 y ) −5 3 3 3 −1
2
45
[
]
(16t ) 4 −(16t ) − 4 3 (16t ) −1 4 (16 ) − − 3 (16t ) −−7 4 (16 ) 4 4 3
48 46
−5
3
3
(16t ) −
1
4
27 t 2 −
27 t 27 t 18t 18t
47 dy
2
2
3
3
−1
3
−1
3
[
[
− −48
4
(15t ) −
7
4
4
]
1 3
27 t 2 2 1 −2 − = 27 t 3 −1 27 t 3 2 27 t 3 −27 t
−2
3
[ 3 (27t ) ](27 ) ] −[−18( 27 t ) −5
− −2
−5
3
3
1 x3 x 3 (0 ) −1(3 x 2 ) dy =3 x 2 + dx ( x 3 )2 2 dy 0 −3 x =3 x 2 + 6 dx x dx
=x3 +
−3 x 2 dy =3 x 2 + x6 dx
48 du dx du dx du dx du dx
]
5 x x ( 0 ) −5(1) = 2 x −7 + x2 = x 2 −7 x +
0 −5 = 2 x −7 + 2 x −5 = 2 x −7 + 2 x
49 dy =u 3 −5u 2 + 7 2 du
dy =3u 2 du
3u 3u 2 ( 0 ) −7( 6u ) −10 u + 3u 4
dy 0 −42 u =3u 2 −10 u + 4 du 3u dy −42 u =3u 2 −10 u + 4 du 3u
50
(t 3 −5t 2 +7t −1) dx = dt t2 2 2 dx t (3t −10t +7 ) −(t 3 −5t 2 +7t −1)( 2t ) = dt (t 2 )2
(3t 4 −10t 3 +7t 2 ) −(2t 4 −10t 3 +14t 2 −2t ) dx = dt t4 4 3 2 dx 3t −10t +7t −2t 4 +10t 3 −14t 2 +2t = dt t4 dx 14 −7t 2 −2t = dt t4