Talat Lecture 2301: Design Of Members Example 8.1: Torsion Constants For Open Cross Section

  • Uploaded by: CORE Materials
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Talat Lecture 2301: Design Of Members Example 8.1: Torsion Constants For Open Cross Section as PDF for free.

More details

  • Words: 1,519
  • Pages: 6
TALAT Lecture 2301

Design of Members Torsion Example 8.1 : Torsion constants for open cross section 6 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm

Date of Issue: 1999  EAA - European Aluminium Association

TALAT 2301 – Example 8.1

1

Example 8.1. Torsion constants for open cross section

Comment: The following expressions are applicable to open cross sections. When there are branches, go back the same way but with thickness = 0. Example: The co-ordinates for node 7 and 8 are the same as for 5 and 4 and t = 0 for element 7 and 8.

Nodes, co-ordinates and thickness

i

0

34

0

6

1

10

0

6

2

8

9

6

3

25

9

6

4

25

3

6

5

59

0

6

6 7

59

y

59

. mm

13

z

0

. mm

15

t

0

8

25

3

0

9

25

34

6

10

0

37

6

11

0

245

6

12

62

252

6

13

62

289

10

. mm 300 0 250

200

150 z

Nodes Area of cross section elements Cross section area

i

1 .. rows ( y )

1

mm 100

dAi

ti .

yi

2

yi 1

zi

zi 1

2 50

rows ( y )

1 A = 3.199 . 10 mm 3

dAi

A

0

0

2

i =1 50

First moment of area, gravity centre

rows ( y )

zi

Sy

dAi zi 1 . 2

z gc

i =1

Second moment of Iy area of effective cross section

rows ( y )

1 zi

2

zi 1

2

dAi zi . zi 1 . 3

i =1

rows ( y ) First moment of area, gravity centre

1

Sz

0

50

Sy A

100

y mm

z gc = 117.14 mm Iy

Iy

A . z gc

2

I y = 3.596 . 10 mm 7

1 yi

dAi yi 1 . 2

y gc

i =1

TALAT 2301 – Example 8.1

50

2

Sz A

y gc = 19.073 mm

4

Second moment of area

Second moment of area

Principal axis

rows ( y )

Iz

1 2 . yi 1 . zi 1

I yz

2 . yi . zi

dAi yi . zi 1 . 6

yi 1 . zi

I yz

i =1

ω0

if I z 1. 2 1. 2

Iz

Iz

Iy

Iy

Iz

Iz

Iy

2

4 . I yz

2

4 . I yz

α.

.z

180

π

ωi

1

6

4

ω 0 i

rows ( y )

1

ω



i

1

ω

.

i

dAi

ω mean

2

Iω A

i =1

ω mean = 799.492 mm 1 2 . yi 1 . ω i 1

I yω

2 . yi . ω i

yi 1 . ω i

dAi yi . ω i 1 . I yω 6

1 2 . ω i 1 . zi 1

2 . ω i . zi

ω

.z

i

1 i

ω i . zi

dA . Ii 1 6 zω

2

ω

i

ω

dAi ω i .ω i 1 . 3

2 i

1

I yω . I yz

I y .I z I ωω

2

I yz

z sc . I yω

rows ( y )

TALAT 2301 – Example 8.1

1

I yω . I y

z sc

I y .I z

y sc . I zω

to

i

2

3

I zω . I yz 2

I yz

if t i > 0 . mm , t i , 100 . mm



I ωω

I ωω

I ωω

= 7.377 . 10

i =1

Iw

A 8

1

5

S y .I ω

I zω

I zω = 9.181 . 10 mm

I ωω

I zω . I z

A 8

I zω

y sc

S z.I ω

I yω

I yω = 2.921 . 10 mm

rows ( y )

Warping constant

4

I η = 1.983 . 10 mm

i =1

Shear centre

= 3.414 7

2

4

yi . zi 1

rows ( y )

Sectorial constant

A

I ξ = 3.608 . 10 mm

2

i =1

Sectorial constant

S y .S z

I yz

2

1 i

i

4

I yz = 2.026 . 10 mm

2 . I yz 1 4 0 . mm , 0 , . atan 2 Iz Iy

Iy

ω 0 yi i ω

2

6

Iy

0 . mm

A . y gc 6

rows ( y )

α

Iz

I z = 2.104 . 10 mm

rows ( y ) Sectorial constant

dAi yi . yi 1 . 3

2

yi 1

i =1



ωmean = mean of sectorial co-ordinates

2

yi

Iz



Sectorial co-ordinates

1

5

2

A 10

mm

y sc = 18.728 mm z sc = 120.773 mm I w = 2.129 . 10

10

mm

6

6

rows ( y ) Torsion constant

1

ti

dAi .

It

i

i

2

It

Wt

3

I t = 5.856 . 10 mm

4

W t = 9.76 . 10 mm

3

4

min t o

i =1

3

Sectorial i 0 .. rows ( y ) 1 co-ordinate with respect ω s ω i ω mean i to shear centre

ω max

i

z sc . yi

y gc

y sc . zi

if ω mi > ω ma , ω mi , ω ma

A = 3.199 . 10 mm 3

z gc

ω mi min ω s

ω max= 7.804 . 10 mm 3

2

ω ma Ww i

2

y gc = 19.073 mm z gc = 117.14 mm

250

z sc = 120.773 mm I y = 3.596 . 10 mm 7

I z = 2.104 . 10 mm 6

4

6

Torsion constants

I t = 5.856 . 10 mm

4

W t = 9.76 . 10 mm

3

4 3

Warping constants

I w = 2.129 . 10

10

200

4

I yz = 2.026 . 10 mm

4

mm

150

100

6 50

6 4 W w = 2.729 . 10 mm

ω max= 7.804 . 10 mm 3

2 0

α = 3.414 deg I ξ = 3.608 . 10 mm 7

4

I η = 1.983 . 10 mm 6

50 4

Comment: If the load is acting below the shear centre (the point) there is no torsional moment acting on the beam.

TALAT 2301 – Example 8.1

4

50

0

50

ω max

1 .. rows ( y )

300

y sc = 18.728 mm

max ω s Iw

100

1

Sectorial co-ordinate with respect to shear centre

300

250

i

0 .. rows ( y )

1

ω s i

200

2 mm . 1000

i= 0

-7.804

1

-4.906

2

-4.743

3

-0.46

4

0.065

5

3.938

6

2.927

7

3.938

8

0.065

9

1.42

10

-0.618

11

3.278

12

-4.293

13

-1.307

= 150

100

50

0

50

100

100

50

0

50

100

150

sectorial co-ordinate cross section kN 1000 . N

Biaxial bending Moment My

Principal axis bending

R

Torsion

mt

Bi-moment

B3

St Venants torsion

Tw

Warping stress

σ w i

q q.

L

5 . kN . m

2

Mz

8 sin( α )



sin( α ) cos ( α )



cos ( α )

0 . kN

m t .L

L

R.

My



Mz



B3

2

T w = 0 kN . m

2 .ω

TALAT 2301 – Example 8.1

si

5

6 MPa 10 . Pa

Mz

2

B 3 = 0 kN . m

4.8 . m

My

0 . kN . m

m t = 0 kN

8 m t .L

Iw

1

14.4

=

0

=

kN . m

14.374 0.857

kN . m

Rotation of co-ordinate system

i

0 .. rows ( y ) M ξ . yi

σ ξ i

Bending stresses

yi

1

zi y gc

σ η



Sum of stresses

σ

σ ξ

Max stresses

σ max

R.

σ η

σ w

yi

y gc

zi

z gc

M η . zi

y gc

R.

z gc

z gc



i

σ mi

min ( σ ) σ ma

max ( σ )

if σ mi > σ ma , σ mi , σ ma

σ max= 74.1 MPa

Principal axis 300

250

σ w i i=

200

150

100

50

0

0

50

0

50

MPa

=

σ η i MPa

=

σi MPa

=

ti mm

0

-8.78

51.3

42.52

6

2

0

-7.78

55.133

47.36

6

3

0

5.35

54.283

59.63

6

4

0

5.07

49.105

54.17

6

5

0

18.66

49.524

68.18

6

6

0

18.97

55.134

74.1

15

7

0

18.66

49.524

0

0

8

0

5.07

49.105

0

0

9

0

4.33

35.727

40.06

6

10

0

-5.68

35.076

29.39

6

11

0

-10.62

-54.687

-65.31

6

12

0

13.87

-59.304

-45.43

6

13

0

13

-75.271

-62.27

10

100

Cross section Axial stress

TALAT 2301 – Example 8.1

σ ξ i

1

50

100

MPa

=

6

=

Related Documents


More Documents from "CORE Materials"