TALAT Lecture 2301
Design of Members Torsion Example 8.1 : Torsion constants for open cross section 6 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm
Date of Issue: 1999 EAA - European Aluminium Association
TALAT 2301 – Example 8.1
1
Example 8.1. Torsion constants for open cross section
Comment: The following expressions are applicable to open cross sections. When there are branches, go back the same way but with thickness = 0. Example: The co-ordinates for node 7 and 8 are the same as for 5 and 4 and t = 0 for element 7 and 8.
Nodes, co-ordinates and thickness
i
0
34
0
6
1
10
0
6
2
8
9
6
3
25
9
6
4
25
3
6
5
59
0
6
6 7
59
y
59
. mm
13
z
0
. mm
15
t
0
8
25
3
0
9
25
34
6
10
0
37
6
11
0
245
6
12
62
252
6
13
62
289
10
. mm 300 0 250
200
150 z
Nodes Area of cross section elements Cross section area
i
1 .. rows ( y )
1
mm 100
dAi
ti .
yi
2
yi 1
zi
zi 1
2 50
rows ( y )
1 A = 3.199 . 10 mm 3
dAi
A
0
0
2
i =1 50
First moment of area, gravity centre
rows ( y )
zi
Sy
dAi zi 1 . 2
z gc
i =1
Second moment of Iy area of effective cross section
rows ( y )
1 zi
2
zi 1
2
dAi zi . zi 1 . 3
i =1
rows ( y ) First moment of area, gravity centre
1
Sz
0
50
Sy A
100
y mm
z gc = 117.14 mm Iy
Iy
A . z gc
2
I y = 3.596 . 10 mm 7
1 yi
dAi yi 1 . 2
y gc
i =1
TALAT 2301 – Example 8.1
50
2
Sz A
y gc = 19.073 mm
4
Second moment of area
Second moment of area
Principal axis
rows ( y )
Iz
1 2 . yi 1 . zi 1
I yz
2 . yi . zi
dAi yi . zi 1 . 6
yi 1 . zi
I yz
i =1
ω0
if I z 1. 2 1. 2
Iz
Iz
Iy
Iy
Iz
Iz
Iy
2
4 . I yz
2
4 . I yz
α.
.z
180
π
ωi
1
6
4
ω 0 i
rows ( y )
1
ω
Iω
i
1
ω
.
i
dAi
ω mean
2
Iω A
i =1
ω mean = 799.492 mm 1 2 . yi 1 . ω i 1
I yω
2 . yi . ω i
yi 1 . ω i
dAi yi . ω i 1 . I yω 6
1 2 . ω i 1 . zi 1
2 . ω i . zi
ω
.z
i
1 i
ω i . zi
dA . Ii 1 6 zω
2
ω
i
ω
dAi ω i .ω i 1 . 3
2 i
1
I yω . I yz
I y .I z I ωω
2
I yz
z sc . I yω
rows ( y )
TALAT 2301 – Example 8.1
1
I yω . I y
z sc
I y .I z
y sc . I zω
to
i
2
3
I zω . I yz 2
I yz
if t i > 0 . mm , t i , 100 . mm
Iω
I ωω
I ωω
I ωω
= 7.377 . 10
i =1
Iw
A 8
1
5
S y .I ω
I zω
I zω = 9.181 . 10 mm
I ωω
I zω . I z
A 8
I zω
y sc
S z.I ω
I yω
I yω = 2.921 . 10 mm
rows ( y )
Warping constant
4
I η = 1.983 . 10 mm
i =1
Shear centre
= 3.414 7
2
4
yi . zi 1
rows ( y )
Sectorial constant
A
I ξ = 3.608 . 10 mm
2
i =1
Sectorial constant
S y .S z
I yz
2
1 i
i
4
I yz = 2.026 . 10 mm
2 . I yz 1 4 0 . mm , 0 , . atan 2 Iz Iy
Iy
ω 0 yi i ω
2
6
Iy
0 . mm
A . y gc 6
rows ( y )
α
Iz
I z = 2.104 . 10 mm
rows ( y ) Sectorial constant
dAi yi . yi 1 . 3
2
yi 1
i =1
Iη
ωmean = mean of sectorial co-ordinates
2
yi
Iz
Iξ
Sectorial co-ordinates
1
5
2
A 10
mm
y sc = 18.728 mm z sc = 120.773 mm I w = 2.129 . 10
10
mm
6
6
rows ( y ) Torsion constant
1
ti
dAi .
It
i
i
2
It
Wt
3
I t = 5.856 . 10 mm
4
W t = 9.76 . 10 mm
3
4
min t o
i =1
3
Sectorial i 0 .. rows ( y ) 1 co-ordinate with respect ω s ω i ω mean i to shear centre
ω max
i
z sc . yi
y gc
y sc . zi
if ω mi > ω ma , ω mi , ω ma
A = 3.199 . 10 mm 3
z gc
ω mi min ω s
ω max= 7.804 . 10 mm 3
2
ω ma Ww i
2
y gc = 19.073 mm z gc = 117.14 mm
250
z sc = 120.773 mm I y = 3.596 . 10 mm 7
I z = 2.104 . 10 mm 6
4
6
Torsion constants
I t = 5.856 . 10 mm
4
W t = 9.76 . 10 mm
3
4 3
Warping constants
I w = 2.129 . 10
10
200
4
I yz = 2.026 . 10 mm
4
mm
150
100
6 50
6 4 W w = 2.729 . 10 mm
ω max= 7.804 . 10 mm 3
2 0
α = 3.414 deg I ξ = 3.608 . 10 mm 7
4
I η = 1.983 . 10 mm 6
50 4
Comment: If the load is acting below the shear centre (the point) there is no torsional moment acting on the beam.
TALAT 2301 – Example 8.1
4
50
0
50
ω max
1 .. rows ( y )
300
y sc = 18.728 mm
max ω s Iw
100
1
Sectorial co-ordinate with respect to shear centre
300
250
i
0 .. rows ( y )
1
ω s i
200
2 mm . 1000
i= 0
-7.804
1
-4.906
2
-4.743
3
-0.46
4
0.065
5
3.938
6
2.927
7
3.938
8
0.065
9
1.42
10
-0.618
11
3.278
12
-4.293
13
-1.307
= 150
100
50
0
50
100
100
50
0
50
100
150
sectorial co-ordinate cross section kN 1000 . N
Biaxial bending Moment My
Principal axis bending
R
Torsion
mt
Bi-moment
B3
St Venants torsion
Tw
Warping stress
σ w i
q q.
L
5 . kN . m
2
Mz
8 sin( α )
Mξ
sin( α ) cos ( α )
Mη
cos ( α )
0 . kN
m t .L
L
R.
My
Mξ
Mz
Mη
B3
2
T w = 0 kN . m
2 .ω
TALAT 2301 – Example 8.1
si
5
6 MPa 10 . Pa
Mz
2
B 3 = 0 kN . m
4.8 . m
My
0 . kN . m
m t = 0 kN
8 m t .L
Iw
1
14.4
=
0
=
kN . m
14.374 0.857
kN . m
Rotation of co-ordinate system
i
0 .. rows ( y ) M ξ . yi
σ ξ i
Bending stresses
yi
1
zi y gc
σ η
Iξ
Sum of stresses
σ
σ ξ
Max stresses
σ max
R.
σ η
σ w
yi
y gc
zi
z gc
M η . zi
y gc
R.
z gc
z gc
Iη
i
σ mi
min ( σ ) σ ma
max ( σ )
if σ mi > σ ma , σ mi , σ ma
σ max= 74.1 MPa
Principal axis 300
250
σ w i i=
200
150
100
50
0
0
50
0
50
MPa
=
σ η i MPa
=
σi MPa
=
ti mm
0
-8.78
51.3
42.52
6
2
0
-7.78
55.133
47.36
6
3
0
5.35
54.283
59.63
6
4
0
5.07
49.105
54.17
6
5
0
18.66
49.524
68.18
6
6
0
18.97
55.134
74.1
15
7
0
18.66
49.524
0
0
8
0
5.07
49.105
0
0
9
0
4.33
35.727
40.06
6
10
0
-5.68
35.076
29.39
6
11
0
-10.62
-54.687
-65.31
6
12
0
13.87
-59.304
-45.43
6
13
0
13
-75.271
-62.27
10
100
Cross section Axial stress
TALAT 2301 – Example 8.1
σ ξ i
1
50
100
MPa
=
6
=