Talat Lecture 2301: Design Of Members Example 5.4: Axial Force Resistance Of Channel Cross Section

  • Uploaded by: CORE Materials
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Talat Lecture 2301: Design Of Members Example 5.4: Axial Force Resistance Of Channel Cross Section as PDF for free.

More details

  • Words: 2,113
  • Pages: 8
TALAT Lecture 2301

Design of Members Axial Force Example 5.4 : Axial force resistance of channel cross section 7 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm

Date of Issue: 1999  EAA - European Aluminium Association TALAT 2301 – Example 5.4

1

Example 5.4. Axial force resistance of channel cross section Width/depth

b

80 . mm

h

100 . mm

fo

300 . MPa

Inner thickness/outstand

ti

8 . mm

c

25 . mm

E

70000 . MPa

Outer/bottom thickness

to

3.5 . mm

tu

4 . mm

Length

L

1200 . mm

Nodes no., co-ordinates, thickness

yi i = mm 0 1 2 3 4 5 6 7 8

=

25 50 50 50 0 -50 -50 -50 -25

zi mm

i

0 .. 8

k

1 .. 3

tli

to

th i

to

th 1

ti

tl8

ti

th 4

tu

tl4

tu

th 5

th 4

tl5

tl4

=

80 77.75 40 0 0 0 40 77.75 80

tli mm

=

th i mm

3.5 3.5 3.5 3.5 4 4 3.5 3.5 8

0.5 . h

yk

y0

0.5 . h

y8

y0

c

=

G

γ M1 1.0

zi

yk 4 0.5 . h y4 0 . mm

kN 1000 . newton E 2.6

6 MPa 10 . Pa

b

zk 2 0 . mm z2 0.5 . z1 z6

0.5 . z1

z1

z1

z7

z1

0.5 . ( ti

to )

3.5 8 3.5 3.5 4 4 3.5 3.5 3.5

90

65

40

Nodes

i

1 .. rows ( y )

15

1

Cross-section constants, varying thickness Sectorial co-ordinates

ω0

0 . mm

.z

1 i

Thicknesses to simplify expressions

Dti

tli

Length of elements

li

yi

A

ωi

t1 i

1

2

zi

tli

th i 2

i =1 rows ( y ) First moments of area

yi . zi 1

yi 1

rows ( y ) Area

60

30

0

30

60

2

ω 0 yi i th i

10

zi 1

t2 i

2

1

tli

Dti

2

3

ω 0 i t3 i

tli

Dti

3

4

A = 1.233 . 10 mm 3

i

2

1 yi

yi 1 . t2 i . li

i =1

TALAT 2301 – Example 5.4

i

2

.l

yi 1 . t1 i

Sz

Dti

tli

ω

2

S z = 8.47 . 10

13

mm

3

TALAT 2301 – Example 5.4

3

rows ( y )

1 zi 1 . t1 i

Sy

zi 1 . t2 i . li

zi

S y = 4.388 . 10 mm 4

3

i =1 rows ( y )

1

ω



i

1

. t1

ω

i

ω

i

i

1

. t2 . l i

S ω = 7.328 . 10 mm 6

i

4

i =1 rows ( y ) Second moments of area

1

Iz

2 yi 1 . t1 i

2 . yi 1 . yi

yi 1 . t2 i

yi

2 zi 1 . t1 i

2 . zi 1 . zi

zi 1 . t2 i

zi

2 yi 1 . t3 i . li

i =1 rows ( y )

1

Iy i =1 rows ( y )

1

ω

Iω Mixed

2 zi 1 . t3 i . li

i

1

2.

2 . ω i 1. ω i

t1 i

ω

. t2

i

ω

yi 1 . t2 i

yi

i

1

ω

i

i

1

2.

t3 i . li

i =1 rows ( y )

1 yi 1 . zi 1 . t1 i

I yz i =1 rows ( y )

yi 1 . zi

zi 1 . yi

zi 1

yi 1 . zi

zi 1 . t3 i . li

1

I yω

yi 1 . ω i 1 . t1 i

yi 1 . ω i

ω

i

1

ω

i

1

. y i

yi 1 . t2 i

zi 1 . ω i 1 . t1 i

zi 1 . ω i

ω

i

1

ω

i

1

. z i

zi 1 . t2 i

yi

yi 1 . ω i

ω

i

1

. t3 . l i i

i =1 rows ( y )

1

I zω

zi

zi 1 . ω i

ω

i

1

. t3 . l i i

i =1

Influence of thickness

Iai

2 th i . tli

tli

th i

2

rows ( y )

l . i 48

I yz

1

I yz

Iai . yi

li

i =1 rows ( y ) Iz

1

Iz

tli

rows ( y )

2

zi 1 li

i =1 rows ( y ) 1 It

Iai . zi

Iy

2

yi 1 . zi

Iy

1

zi 1

2

Iai . yi li

i =1

2 th i . tli

th i

2

l . i . 1.05 12

yi 1 2

I t = 8.425 . 10 mm 3

2

4

i =1 z gc y gc

Sy A Sz A

I yz

I yz





S y .S z A Sω A

TALAT 2301 – Example 5.4

z gc = 35.593 mm

Iy

Iy

A . z gc

2

I y = 1.325 . 10 mm

y gc = 0 mm

Iz

Iz

A . y gc

2

I z = 2.151 . 10 mm

I yz = 1.816 . 10

10

mm

4

I yω

I yω

I zω

I zω

2

I ω = 9.438 . 10 mm 9

4

6

6

6

S z.S ω A S y .S ω A

4

4

I yω = 1.057 . 10 mm 8

I zω = 5.294 . 10

8

5

mm

y 5

Shear centre

y sc

Warping constant

Iw

I zω . I z

I yω . I yz

I y .I z

2

I yz

z sc . I yω



I yω . I y

z sc

I zω . I yz

I y .I z

y sc = 4.668 . 10

2

I yz

14

mm

z sc = 49.159 mm

y sc . I zω

I w = 4.24 . 10 mm 9

6

Polar radius gyration 0

ip

Iy

Iz A

50

y sc

y gc

2

z sc

z gc

2

i p = 100 mm

0 0

50

50

0

50

Buckling of stiffened flanges 5.4.5

Local buckling, internal elements 250 . MPa

ε

5.4.5 (3) c) heat-treated unwelded

ε = 0.913

fo

ρ c if i

β

i

ε

22 , 1.0 ,

32

β

βi 220

β

i

ε

3 , 5 .. 7

i

2 i

ε

t efl

i

t efl

i

yi

ρ c. tli i ρ c. tli i

1

yi 2

t efh

i

t efh

i

2

zi

2 2 zi 2 . tli 1 th i

ρ c. th i i 1

ρ c. th i i βi =

ρ c= i

t efl

i

mm

=

t efh mm

i

=

22.214 0.943 3.302 3.302 25 0.875 3.501 3.501 22.214 0.943 3.302 3.302

5.4.5

Local buckling, outstand elements 1

t fic

i

if tli > th i ,

TALAT 2301 – Example 5.4

3 tli . th i

4

1 , 8 .. 8

i

1

,

3 th i . tli

5

4

βi

yi

yi 1

2

zi

2 1 zi 1 . t fic i

β

ρ c if i

5.4.5 (3) c) heat-treated unwelded

i

10

6 , 1.0 ,

ε

β

24

β

i

ε

ρ c. tli i

t efl

2

i

t efh

ρ c. th i i

i

i

ρ c= i

βi =

ε

3.858 3.858

1 1

t fic

i

mm

=

6.506 6.506

t efl t efh i i = = mm mm 3.5 8

8 3.5

Reference: Pekoz, T., Flanges of nonuniform thickness. Aluminium Design Workshop, Cornell University Oct. 1997

Buckling of edge stiffener t efh

Effective area

t1 i

Length of elements

li

Area

t efl

t efl

i

t efl

i

yi

yi 1

2

t efl

Ar

2

zi t efh

i

2

zi 1 i.

t efh

i

t2 i

2

i

i

2

1 .. 2 t efl

i

z2 = 40 mm

i

3

2

A r = 269 mm

li

2

i =1 2 Centre of gravity

zi 1 . t1 i

zr

zi

i =1

Second moment of area Dti Length of elements

li

i th i

tli

yi

yi 1 2

Area

t1 i

A r1

2

tli

th i 2

1 .. 2 tli

zi

1 zi 1 . t2 i . li . Ar

z2

z1

Dti

t2 i

2

zi 1

z r = 69.528 mm

15 . tl2

th 2 . 0.5

tli

Dti

2

3

t3 i

z6

z2

tli

Dti

3

4

2

.l

A r1 = 328.1 mm

i

i =1 2 Centre of gravity

yi 1 . t1 i

yr i =1

TALAT 2301 – Example 5.4

yi

1 yi 1 . t2 i . li . A r1

6

y r = 45.218 mm

2

z2 = 25.25 mm

Second moments of area

2 2 yi 1 . t1 i

Ir z2

i =1 z1 . 0.5

z6

z2

2 . yi 1 . yi

yi 1 . t2 i

2 yi 1 . t3 i . li

yi

2 y r . A r1

I r = 1.668 . 10 mm 4

6 .. 8

k

i

0 .. 2

j

0 .. 8 yr

zr

mm

mm

4

Left: Cross section for second moment of areaIr based on t Right: Effective cross section areaAr based on t ef

s1

y3

y5

b1

3 b1 . 1

Table 5.5 and 5.8

α

0.2

(5.37)

φ

0.5 . 1

b 1 = 69.528 mm

3 I r . th 3

1.05 . E .

N r.cr

zr

λ 1 α . λ c

s 1 = 100 mm

1.5 . s 1 . th 4 b 1 . th 3

3

N r.cr = 52.195 kN

3

f o .A r

λ c

0.6 2

λ 1

λ c

1

χ r φ

i

1 .. 2

t efl

i

7 .. 8

t efl

χ .rt efl i χ .rt efl

i i

i

t efh

i

t efh

i

λ c= 1.243

N r.cr

φ

2

li

yi

yi 1 8

Area

2

zi t efh

t efl

i

A eff

2

zi 1 i.

TALAT 2301 – Example 5.4

φ = 1.337

1 .. 8 t efl

i

2

mm A eff = 904.9 mm

li

Axial force resistance, flexural-torsional buckling L

λ c

χ r= 0.547

i

i =1

Buckling length l

if χ r > 1 , 1 , χ r

χ .rt efh i χ .rt efh i

Length of elements

χ r 2

l = 1200 mm

7

2

=

1.913 1.805 3.302 3.501 3.501 3.302 1.805 4.372

t efh mm

i

=

4.372 1.805 3.302 3.501 3.501 3.302 1.805 1.913

li mm

=

25.101 38.875 38.875 50 50 38.875 38.875 25.101

Reference buckling loads

2 π .E .I y

N Ey

N Ez

2

l

Solution

N Ey

N . N Ez

N cr

l

3

N . NT

2 N .i p

z sc

G .I t

NT

2

N Ez = 1.03 . 10 kN

N Ey = 635.91 kN Given

2 π .E .I z

2 π .E .I ω

l

N T = 475.37 kN

2 2 z gc . N . N Ey

. 1

2

N

ip

2

Guess:

y sc

N

2 2 y gc . N . N Ez

0.2 . N Ez N

0

N cr = 348.11 kN

minerr( N )

General cross-section Table 5.5 and 5.8

λ c λ bar (5.37)

α

0.4

k2

f o . A eff

λ c φ

λ 1

0.35

λ c= 0.883

N cr

0.5 . 1

1

α . λ c

1

2

λ 1

λ c χ φ

Table 5.5

ψ

min z

z gc

max z

z gc

min z

z gc

max z

z gc 2

Table 5.5

k1

1

λ c

2 2.4 . ψ .

1

5.8.3 (1)

N b.Rd

χ .k 1 .k 2 .

TALAT 2301 – Example 5.4

2 λ c . 1

fo

γ M1

λ c

.A

2

φ

2

φ

= 0.974

χ = 0.721

2

λ c

min z

z gc = 35.6 mm

max z

z gc = 44.4 mm

ψ = 0.11

k 1 = 0.996

N b.Rd = 265.8 kN

8

Related Documents


More Documents from "CORE Materials"