TALAT Lecture 2301
Design of Members Axial Force Example 5.4 : Axial force resistance of channel cross section 7 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm
Date of Issue: 1999 EAA - European Aluminium Association TALAT 2301 – Example 5.4
1
Example 5.4. Axial force resistance of channel cross section Width/depth
b
80 . mm
h
100 . mm
fo
300 . MPa
Inner thickness/outstand
ti
8 . mm
c
25 . mm
E
70000 . MPa
Outer/bottom thickness
to
3.5 . mm
tu
4 . mm
Length
L
1200 . mm
Nodes no., co-ordinates, thickness
yi i = mm 0 1 2 3 4 5 6 7 8
=
25 50 50 50 0 -50 -50 -50 -25
zi mm
i
0 .. 8
k
1 .. 3
tli
to
th i
to
th 1
ti
tl8
ti
th 4
tu
tl4
tu
th 5
th 4
tl5
tl4
=
80 77.75 40 0 0 0 40 77.75 80
tli mm
=
th i mm
3.5 3.5 3.5 3.5 4 4 3.5 3.5 8
0.5 . h
yk
y0
0.5 . h
y8
y0
c
=
G
γ M1 1.0
zi
yk 4 0.5 . h y4 0 . mm
kN 1000 . newton E 2.6
6 MPa 10 . Pa
b
zk 2 0 . mm z2 0.5 . z1 z6
0.5 . z1
z1
z1
z7
z1
0.5 . ( ti
to )
3.5 8 3.5 3.5 4 4 3.5 3.5 3.5
90
65
40
Nodes
i
1 .. rows ( y )
15
1
Cross-section constants, varying thickness Sectorial co-ordinates
ω0
0 . mm
.z
1 i
Thicknesses to simplify expressions
Dti
tli
Length of elements
li
yi
A
ωi
t1 i
1
2
zi
tli
th i 2
i =1 rows ( y ) First moments of area
yi . zi 1
yi 1
rows ( y ) Area
60
30
0
30
60
2
ω 0 yi i th i
10
zi 1
t2 i
2
1
tli
Dti
2
3
ω 0 i t3 i
tli
Dti
3
4
A = 1.233 . 10 mm 3
i
2
1 yi
yi 1 . t2 i . li
i =1
TALAT 2301 – Example 5.4
i
2
.l
yi 1 . t1 i
Sz
Dti
tli
ω
2
S z = 8.47 . 10
13
mm
3
TALAT 2301 – Example 5.4
3
rows ( y )
1 zi 1 . t1 i
Sy
zi 1 . t2 i . li
zi
S y = 4.388 . 10 mm 4
3
i =1 rows ( y )
1
ω
Sω
i
1
. t1
ω
i
ω
i
i
1
. t2 . l i
S ω = 7.328 . 10 mm 6
i
4
i =1 rows ( y ) Second moments of area
1
Iz
2 yi 1 . t1 i
2 . yi 1 . yi
yi 1 . t2 i
yi
2 zi 1 . t1 i
2 . zi 1 . zi
zi 1 . t2 i
zi
2 yi 1 . t3 i . li
i =1 rows ( y )
1
Iy i =1 rows ( y )
1
ω
Iω Mixed
2 zi 1 . t3 i . li
i
1
2.
2 . ω i 1. ω i
t1 i
ω
. t2
i
ω
yi 1 . t2 i
yi
i
1
ω
i
i
1
2.
t3 i . li
i =1 rows ( y )
1 yi 1 . zi 1 . t1 i
I yz i =1 rows ( y )
yi 1 . zi
zi 1 . yi
zi 1
yi 1 . zi
zi 1 . t3 i . li
1
I yω
yi 1 . ω i 1 . t1 i
yi 1 . ω i
ω
i
1
ω
i
1
. y i
yi 1 . t2 i
zi 1 . ω i 1 . t1 i
zi 1 . ω i
ω
i
1
ω
i
1
. z i
zi 1 . t2 i
yi
yi 1 . ω i
ω
i
1
. t3 . l i i
i =1 rows ( y )
1
I zω
zi
zi 1 . ω i
ω
i
1
. t3 . l i i
i =1
Influence of thickness
Iai
2 th i . tli
tli
th i
2
rows ( y )
l . i 48
I yz
1
I yz
Iai . yi
li
i =1 rows ( y ) Iz
1
Iz
tli
rows ( y )
2
zi 1 li
i =1 rows ( y ) 1 It
Iai . zi
Iy
2
yi 1 . zi
Iy
1
zi 1
2
Iai . yi li
i =1
2 th i . tli
th i
2
l . i . 1.05 12
yi 1 2
I t = 8.425 . 10 mm 3
2
4
i =1 z gc y gc
Sy A Sz A
I yz
I yz
Iω
Iω
S y .S z A Sω A
TALAT 2301 – Example 5.4
z gc = 35.593 mm
Iy
Iy
A . z gc
2
I y = 1.325 . 10 mm
y gc = 0 mm
Iz
Iz
A . y gc
2
I z = 2.151 . 10 mm
I yz = 1.816 . 10
10
mm
4
I yω
I yω
I zω
I zω
2
I ω = 9.438 . 10 mm 9
4
6
6
6
S z.S ω A S y .S ω A
4
4
I yω = 1.057 . 10 mm 8
I zω = 5.294 . 10
8
5
mm
y 5
Shear centre
y sc
Warping constant
Iw
I zω . I z
I yω . I yz
I y .I z
2
I yz
z sc . I yω
Iω
I yω . I y
z sc
I zω . I yz
I y .I z
y sc = 4.668 . 10
2
I yz
14
mm
z sc = 49.159 mm
y sc . I zω
I w = 4.24 . 10 mm 9
6
Polar radius gyration 0
ip
Iy
Iz A
50
y sc
y gc
2
z sc
z gc
2
i p = 100 mm
0 0
50
50
0
50
Buckling of stiffened flanges 5.4.5
Local buckling, internal elements 250 . MPa
ε
5.4.5 (3) c) heat-treated unwelded
ε = 0.913
fo
ρ c if i
β
i
ε
22 , 1.0 ,
32
β
βi 220
β
i
ε
3 , 5 .. 7
i
2 i
ε
t efl
i
t efl
i
yi
ρ c. tli i ρ c. tli i
1
yi 2
t efh
i
t efh
i
2
zi
2 2 zi 2 . tli 1 th i
ρ c. th i i 1
ρ c. th i i βi =
ρ c= i
t efl
i
mm
=
t efh mm
i
=
22.214 0.943 3.302 3.302 25 0.875 3.501 3.501 22.214 0.943 3.302 3.302
5.4.5
Local buckling, outstand elements 1
t fic
i
if tli > th i ,
TALAT 2301 – Example 5.4
3 tli . th i
4
1 , 8 .. 8
i
1
,
3 th i . tli
5
4
βi
yi
yi 1
2
zi
2 1 zi 1 . t fic i
β
ρ c if i
5.4.5 (3) c) heat-treated unwelded
i
10
6 , 1.0 ,
ε
β
24
β
i
ε
ρ c. tli i
t efl
2
i
t efh
ρ c. th i i
i
i
ρ c= i
βi =
ε
3.858 3.858
1 1
t fic
i
mm
=
6.506 6.506
t efl t efh i i = = mm mm 3.5 8
8 3.5
Reference: Pekoz, T., Flanges of nonuniform thickness. Aluminium Design Workshop, Cornell University Oct. 1997
Buckling of edge stiffener t efh
Effective area
t1 i
Length of elements
li
Area
t efl
t efl
i
t efl
i
yi
yi 1
2
t efl
Ar
2
zi t efh
i
2
zi 1 i.
t efh
i
t2 i
2
i
i
2
1 .. 2 t efl
i
z2 = 40 mm
i
3
2
A r = 269 mm
li
2
i =1 2 Centre of gravity
zi 1 . t1 i
zr
zi
i =1
Second moment of area Dti Length of elements
li
i th i
tli
yi
yi 1 2
Area
t1 i
A r1
2
tli
th i 2
1 .. 2 tli
zi
1 zi 1 . t2 i . li . Ar
z2
z1
Dti
t2 i
2
zi 1
z r = 69.528 mm
15 . tl2
th 2 . 0.5
tli
Dti
2
3
t3 i
z6
z2
tli
Dti
3
4
2
.l
A r1 = 328.1 mm
i
i =1 2 Centre of gravity
yi 1 . t1 i
yr i =1
TALAT 2301 – Example 5.4
yi
1 yi 1 . t2 i . li . A r1
6
y r = 45.218 mm
2
z2 = 25.25 mm
Second moments of area
2 2 yi 1 . t1 i
Ir z2
i =1 z1 . 0.5
z6
z2
2 . yi 1 . yi
yi 1 . t2 i
2 yi 1 . t3 i . li
yi
2 y r . A r1
I r = 1.668 . 10 mm 4
6 .. 8
k
i
0 .. 2
j
0 .. 8 yr
zr
mm
mm
4
Left: Cross section for second moment of areaIr based on t Right: Effective cross section areaAr based on t ef
s1
y3
y5
b1
3 b1 . 1
Table 5.5 and 5.8
α
0.2
(5.37)
φ
0.5 . 1
b 1 = 69.528 mm
3 I r . th 3
1.05 . E .
N r.cr
zr
λ 1 α . λ c
s 1 = 100 mm
1.5 . s 1 . th 4 b 1 . th 3
3
N r.cr = 52.195 kN
3
f o .A r
λ c
0.6 2
λ 1
λ c
1
χ r φ
i
1 .. 2
t efl
i
7 .. 8
t efl
χ .rt efl i χ .rt efl
i i
i
t efh
i
t efh
i
λ c= 1.243
N r.cr
φ
2
li
yi
yi 1 8
Area
2
zi t efh
t efl
i
A eff
2
zi 1 i.
TALAT 2301 – Example 5.4
φ = 1.337
1 .. 8 t efl
i
2
mm A eff = 904.9 mm
li
Axial force resistance, flexural-torsional buckling L
λ c
χ r= 0.547
i
i =1
Buckling length l
if χ r > 1 , 1 , χ r
χ .rt efh i χ .rt efh i
Length of elements
χ r 2
l = 1200 mm
7
2
=
1.913 1.805 3.302 3.501 3.501 3.302 1.805 4.372
t efh mm
i
=
4.372 1.805 3.302 3.501 3.501 3.302 1.805 1.913
li mm
=
25.101 38.875 38.875 50 50 38.875 38.875 25.101
Reference buckling loads
2 π .E .I y
N Ey
N Ez
2
l
Solution
N Ey
N . N Ez
N cr
l
3
N . NT
2 N .i p
z sc
G .I t
NT
2
N Ez = 1.03 . 10 kN
N Ey = 635.91 kN Given
2 π .E .I z
2 π .E .I ω
l
N T = 475.37 kN
2 2 z gc . N . N Ey
. 1
2
N
ip
2
Guess:
y sc
N
2 2 y gc . N . N Ez
0.2 . N Ez N
0
N cr = 348.11 kN
minerr( N )
General cross-section Table 5.5 and 5.8
λ c λ bar (5.37)
α
0.4
k2
f o . A eff
λ c φ
λ 1
0.35
λ c= 0.883
N cr
0.5 . 1
1
α . λ c
1
2
λ 1
λ c χ φ
Table 5.5
ψ
min z
z gc
max z
z gc
min z
z gc
max z
z gc 2
Table 5.5
k1
1
λ c
2 2.4 . ψ .
1
5.8.3 (1)
N b.Rd
χ .k 1 .k 2 .
TALAT 2301 – Example 5.4
2 λ c . 1
fo
γ M1
λ c
.A
2
φ
2
φ
= 0.974
χ = 0.721
2
λ c
min z
z gc = 35.6 mm
max z
z gc = 44.4 mm
ψ = 0.11
k 1 = 0.996
N b.Rd = 265.8 kN
8