Talat Lecture 2301: Design Of Members Example 5.2: Axial Force Resistance Of Symmetric Hollow Extrusion

  • Uploaded by: CORE Materials
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Talat Lecture 2301: Design Of Members Example 5.2: Axial Force Resistance Of Symmetric Hollow Extrusion as PDF for free.

More details

  • Words: 635
  • Pages: 4
TALAT Lecture 2301

Design of Members Axial Force Example 5.2 : Axial force resistance of symmetric hollow extrusion 4 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm

Date of Issue: 1999  EAA - European Aluminium Association TALAT 2301 – Example 5.2

1

Example 5.2 Axial force resistance of symmetric hollow extrusion Half width

b

50 . mm

fo

300 . MPa

Indent

c

10 . mm

E

70000 . MPa

18 . mm

γ M1 1.0

Half width of a flat parts Thickness

s

1.2 . mm

Length

L

1200 . mm

Nodes no., co-ordinates, thickness

0

b

1

b

a

s

2

a

3

a

b

s

4

a

b

s

6 MPa 10 . Pa

5

a

s

kN 1000 . newton

6

b

b

8

c

b

y b

9

c

b

b

7 i

s

c

a

s

c a

s

a

s

z

a

c

t

s

a

10

a

11

a

b

s

12

a

b

s

13

a b

14

b

s c

b c

s

c

s

a

s

15

b

a

s

16

b

a

s

50 0 z mm

0 0

50

Nodes

i

50

1 .. rows ( y )

1

0 y mm

5.4.5

Local buckling ε

5.4.3 (1) c)

5.4.5 (3) c) heat-treated, unwelded

βi

250 . MPa fo yi

if t i > 0 ,

ρ c if i

β ε

i

yi 1

2

zi

zi 1

ti > 22 , 32 .

TALAT 2301 – Example 5.2

ε β

220 . i

,1

2

ε β

2

, 1.0 i

2

50

Effective thickness

ρ .ct

t eff

βi Effective area of elements

t eff .

dAi

yi

i

2

yi 1

rows ( y )

zi

zi 1

2

1

Area of effective A eff cross section

A eff = 356.591 mm

dAi

2

i =1 rows ( y ) First moment of area. Gravity centre

1

Sy

dAi zi 1 . 2

zi

Sy

z gc

A eff

i =1 z gc = 0 m

Axial force resistance, no flexural buckling A eff .

N Rd

fo

t eff

i = βi =

ε

=

ρ c= i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

9.129 28.402 9.129 32.863 9.129 28.402 9.129 32.863 9.129 28.402 9.129 32.863 9.129 28.402 9.129 32.863

1 0.854 1 0.77 1 0.854 1 0.77 1 0.854 1 0.77 1 0.854 1 0.77

8.333 25.927 8.333 30 8.333 25.927 8.333 30 8.333 25.927 8.333 30 8.333 25.927 8.333 30

i

mm

1.2 1.025 1.2 0.924 1.2 1.025 1.2 0.924 1.2 1.025 1.2 0.924 1.2 1.025 1.2 0.924

N Rd = 107 kN

γ M1

50 0 z mm 0 z GC

0

mm

50 50

5.8.4

0

Second moment of area of effective cross section

I

Radius of gyration

r

Table 5.7

K

1

l

Table 5.5 and 5.6

α

0.2

λ o

See to the right

λ

rows ( y )

y , mm mm

1 zi

2

50

y GC

Flexural buckling

zi 1

zi . zi 1 .

2

ti .

i =1

yi

yi 1

2

zi

zi 1

2

3 I = 4.701 . 10 mm 5

I A eff K .L

l = 1.2 . 10 mm 3

0.1

k1

1

k2

l. 1 . f o r π E

TALAT 2301 – Example 5.2

1

λ = 0.689

3

=

4

(5.33)

φ

0.5 . 1

α . λ

λ o

λ

2

1

χ φ

5.8.3 (1)

N b.Rd

χ .k 1 .k 2 .

TALAT 2301 – Example 5.2

fo

γ M1

.A

φ

φ 2

λ

= 0.796

2

N b.Rd = 89.5 kN

eff

4

χ = 0.837

Related Documents


More Documents from "CORE Materials"