TALAT Lecture 2301
Design of Members Deviation of linear stress distribution Example 10.1 : Transverse bending of unsymmetrical flange 4 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm
Date of Issue: 1999 EAA - European Aluminium Association
TALAT 2301 – Example 10.1
1
Example 10.1. Transverse bending of unsymmetical flange Check transverse bending of the web due to shear force gradient in the flanges
Section height:
hw
400 . mm
Flange widths:
bo
300 . mm
bu
120 . mm
Flange thickness:
to
16 . mm
tu
16 . mm
Web thickness:
tw
6 . mm
Overall length:
L
6 .m
Load
q
10 . kN . m
O
0 . mm
1
Cross section, half profile Co-ordinates bu O y
tu
O O z
O bo
hw hw
2
t
tu tw to
400
300
200
kN 1000 . newton
100
6 MPa 10 . Pa
E 70000 . MPa
0 100
[1] ENV 1999-1-1.
0
100
Eurocode 9 - Design of aluminium structures - Part 1-1: General rules. 1997
[2] StBK-N5Regulations for cold-formed steel and aluminium structures. Svensk Byggtjänst Stockholm 1979 [3] Hetenyi, M. Beams on elastic foundation. University of Michigan, 1958
TALAT 2301 – Example 10.1
2
Nodes
1 .. rows ( y )
i
1 rows ( y )
Area of half cross section
dAi
ti .
yi
2
yi 1
zi
zi 1
2
1 dAi
A i =1
rows ( y )
First moment of area, y axis, gravity centre
Sy
Second moment of area, y axis, section modulus
Iy
1
dAi zi 1 . 2
zi i =1 rows ( y ) 1 zi i =1 rows ( y )
First moment of area, z axis
1
Sz
2
zi 1
Sy
z gc
z gc = 214.3 mm
A
dAi zi . zi 1 . 3
2
Iy Wy
dAi yi 1 . 2
yi
Lateral force
rows ( y )
2 . yi 1 . zi 1
2 . yi . zi
yi 1 . zi
dAi yi . zi 1 . 6
i =1 k h .q
Lateral force constant [2] Second moment of area of bottom flange + 0.27 . h w
I yz
b u .t u
k
E .t w
3
S y .S z
I yz
A 4
k h = 0.143
2 .I y
t u .b u
2 0.5 . b u . t u
0.27 . h
.t
I u.z
w w
3
Au
[2] Modulus of foundation [3]
I yz
7
3
Au
z gc
I yz = 5.811 . 10 mm
on bottom flange kh
Iy 5
1
I yz
2
W y = 9.493 . 10 mm
i =1 Second moment of area with respect to y and z axes
A . z gc
Iy
2
yu
2 0.5 . b u . t u
Au
3
4 .h w
k = 59.062 kN . m
3
2
(Transverse bending of top flange neglected)
1
Parameter λ [3]
Lateral deflection of the bottom flange at the middle of the span [3]
k 4 .E .I
λ
vc
Transverse bending moment and stresses m z in the web Lateral moment in bottom flange [3]
Mc
4
λ = 0.478 m
λ . L = 2.867
1
u.z
k h .q . k
L . L cos λ . 2 2 . . cosh ( λ L ) cos ( λ L )
2 . cosh λ . 1
k .v c .h w
m z = 0.527 kN
L L sinh λ . . sin λ . k h .q 2 2 . 2 cosh ( λ . L ) cos ( λ . L ) λ
v c = 22.3 mm
σ transv
m z.6 tw
2
M c = 1.56 kN . m
σ transv= 87.9 MPa
σ c
M c .y u I u.z
σ c= 17.3 MPa
TALAT 2301 – Example 10.1
3
Comment : If the web resistk h . q by itself then k h .q .h w m z.6 σ transv 2 tw mz
Main axis bending
My
q.
L
2
8
TALAT 2301 – Example 10.1
m z = 0.571 kN
σ transv= 95.2 MPa
My σ x Wy
4
vc
3 k h .q .h w
3 .E .
tw
3
v c = 24.184 mm
12
σ x = 47.4 MPa
σ x σ c = 64.7 MPa