Talat Lecture 2301: Design Of Members Example 10.1: Transverse Bending Of Unsymmetrical Flange

  • Uploaded by: CORE Materials
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Talat Lecture 2301: Design Of Members Example 10.1: Transverse Bending Of Unsymmetrical Flange as PDF for free.

More details

  • Words: 742
  • Pages: 4
TALAT Lecture 2301

Design of Members Deviation of linear stress distribution Example 10.1 : Transverse bending of unsymmetrical flange 4 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm

Date of Issue: 1999  EAA - European Aluminium Association

TALAT 2301 – Example 10.1

1

Example 10.1. Transverse bending of unsymmetical flange Check transverse bending of the web due to shear force gradient in the flanges

Section height:

hw

400 . mm

Flange widths:

bo

300 . mm

bu

120 . mm

Flange thickness:

to

16 . mm

tu

16 . mm

Web thickness:

tw

6 . mm

Overall length:

L

6 .m

Load

q

10 . kN . m

O

0 . mm

1

Cross section, half profile Co-ordinates bu O y

tu

O O z

O bo

hw hw

2

t

tu tw to

400

300

200

kN 1000 . newton

100

6 MPa 10 . Pa

E 70000 . MPa

0 100

[1] ENV 1999-1-1.

0

100

Eurocode 9 - Design of aluminium structures - Part 1-1: General rules. 1997

[2] StBK-N5Regulations for cold-formed steel and aluminium structures. Svensk Byggtjänst Stockholm 1979 [3] Hetenyi, M. Beams on elastic foundation. University of Michigan, 1958

TALAT 2301 – Example 10.1

2

Nodes

1 .. rows ( y )

i

1 rows ( y )

Area of half cross section

dAi

ti .

yi

2

yi 1

zi

zi 1

2

1 dAi

A i =1

rows ( y )

First moment of area, y axis, gravity centre

Sy

Second moment of area, y axis, section modulus

Iy

1

dAi zi 1 . 2

zi i =1 rows ( y ) 1 zi i =1 rows ( y )

First moment of area, z axis

1

Sz

2

zi 1

Sy

z gc

z gc = 214.3 mm

A

dAi zi . zi 1 . 3

2

Iy Wy

dAi yi 1 . 2

yi

Lateral force

rows ( y )

2 . yi 1 . zi 1

2 . yi . zi

yi 1 . zi

dAi yi . zi 1 . 6

i =1 k h .q

Lateral force constant [2] Second moment of area of bottom flange + 0.27 . h w

I yz

b u .t u

k

E .t w

3

S y .S z

I yz

A 4

k h = 0.143

2 .I y

t u .b u

2 0.5 . b u . t u

0.27 . h

.t

I u.z

w w

3

Au

[2] Modulus of foundation [3]

I yz

7

3

Au

z gc

I yz = 5.811 . 10 mm

on bottom flange kh

Iy 5

1

I yz

2

W y = 9.493 . 10 mm

i =1 Second moment of area with respect to y and z axes

A . z gc

Iy

2

yu

2 0.5 . b u . t u

Au

3

4 .h w

k = 59.062 kN . m

3

2

(Transverse bending of top flange neglected)

1

Parameter λ [3]

Lateral deflection of the bottom flange at the middle of the span [3]

k 4 .E .I

λ

vc

Transverse bending moment and stresses m z in the web Lateral moment in bottom flange [3]

Mc

4

λ = 0.478 m

λ . L = 2.867

1

u.z

k h .q . k

L . L cos λ . 2 2 . . cosh ( λ L ) cos ( λ L )

2 . cosh λ . 1

k .v c .h w

m z = 0.527 kN

L L sinh λ . . sin λ . k h .q 2 2 . 2 cosh ( λ . L ) cos ( λ . L ) λ

v c = 22.3 mm

σ transv

m z.6 tw

2

M c = 1.56 kN . m

σ transv= 87.9 MPa

σ c

M c .y u I u.z

σ c= 17.3 MPa

TALAT 2301 – Example 10.1

3

Comment : If the web resistk h . q by itself then k h .q .h w m z.6 σ transv 2 tw mz

Main axis bending

My

q.

L

2

8

TALAT 2301 – Example 10.1

m z = 0.571 kN

σ transv= 95.2 MPa

My σ x Wy

4

vc

3 k h .q .h w

3 .E .

tw

3

v c = 24.184 mm

12

σ x = 47.4 MPa

σ x σ c = 64.7 MPa

Related Documents


More Documents from "CORE Materials"