Tajribi Math Sx (87)

  • Uploaded by: Ihsan Mokhlisse
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tajribi Math Sx (87) as PDF for free.

More details

  • Words: 734
  • Pages: 2
‫وزارة اﻟﺘﺮﺑﻴﺔ اﻟﻮﻃﻨﻴﺔ‬ ‫واﻟﺘﻌﻠﻴﻢ اﻟﻌﺎﻟﻲ وﺕﻜﻮیﻦ اﻷﻃﺮ واﻟﺒﺤﺚ اﻟﻌﻠﻤﻲ‬ ‫اﻷآﺎدیﻤﻴﺔ اﻟﺠﻬﻮیﺔ ﻟﻤﺮاآﺶ ﺕﺎﻥﺴﻴﻔﺖ اﻟﺤﻮز‬ ‫ﺛﺎﻥﻮیـــــــــــﺔ ﺱﺤﻨـــــــــــــﻮن‬ ‫ﻡﺮاآــــــــــﺶ اﻟﻤـــــــــــﻨﺎرة‬

‫اﻟﺘﻤﺮﻳﻦ اﻷول‬

‫اﻻﻡﺘﺤـــﺎن اﻟﺘﺠﺮیﺒـــــﻲ ﻡـــــــــﺎرس ‪2005‬‬ ‫اﻟﻤــــــــﺎدة ‪ :‬اﻟﺮیـــــــﺎﺿﻴـــــــــــــــــــﺎت‬ ‫اﻟﺸﻌﺒــــــﺔ ‪ :‬اﻟﻌﻠـــــﻮم اﻟﺘﺠﺮیﺒﻴــــــــــــــﺔ‬ ‫اﻟﻤﺴﺘـﻮى ‪ :‬اﻟﺜﺎﻥﻴـــــــﺔ ﺑﻜﺎﻟﻮریــــــــــــﺎ‬

‫‪1‬‬ ‫‪2‬‬ ‫ﻡﺪة اﻹﻥﺠﺎز‬

‫‪3h‬‬

‫اﻟﻤﻌﺎﻡﻞ‬

‫‪7‬‬

‫)‪3‬ن(‬

‫ﻧﻌﺘﺒﺮ اﻟﻤﺘﺘﺎﻟﻴﺔ اﻟﻌﺪدﻳﺔ ) ‪ (u n‬اﻟﻤﻌﺮﻓﺔ ﺑﺤﻴﺚ ‪:‬‬

‫‪u0 = 1 ; u1 = 2‬‬ ‫‪‬‬ ‫‪ ، ‬ﻧﻀﻊ ‪∀n ∈ `,v n = 3 u n‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪un +1 = 3 un − 9 un −1‬‬ ‫‪n‬‬

‫‪ (1‬ﺑﻴﻦ ﺑﺎﻟﺘﺮﺟﻊ أﻧﻪ ‪ :‬ﻟﻜﻞ ∗` ∈ ‪v n − v n −1 = 5 ، n‬‬ ‫‪ (2‬اﺣﺴﺐ ‪ v n‬ﺑﺪﻻﻟﺔ ‪ n‬ﺛﻢ ‪ u n‬ﺑﺪﻻﻟﺔ ‪. n‬‬ ‫‪ (3‬ﻧﻀﻊ ‪ S = v 0 + v 1 + ... + v n‬اﺣﺴﺐ ‪ S‬ﺑﺪﻻﻟﺔ ‪n‬‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻧﻲ )‪3‬ن(‬ ‫‪G JG G‬‬ ‫اﻟﻔﻀﺎء ) ‪ ( E‬ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ) ‪ (O, i, j;k‬ﻧﻌﺘﺒﺮ اﻟﻨﻘﻂ اﻵﺗﻴﺔ‪:‬‬ ‫)‪. C(0,-2,1) ، B(1,-1,3) ، A(2,0,2‬‬ ‫‪JJJG JJJJK‬‬ ‫‪ (1‬اﺣﺴﺐ ‪AB ∧ AC‬‬ ‫‪ (2‬ﺣﺪد ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى ‪ABC‬‬ ‫‪ (3‬أﻋﻂ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ ) ‪ (S‬اﻟﺘﻲ ﻣﺮآﺰهﺎ ‪ A‬وﺗﻘﻄﻊ ‪ ABC‬ﺣﺴﺐ اﻟﺪاﺋﺮة اﻟﺘﻲ ﻣﺮآﺰهﺎ ‪B‬‬ ‫وﺷﻌﺎﻋﻬﺎ ‪. 2‬‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻟﺚ )‪4‬ن(‬ ‫‪ (1‬اﺣﺴﺐ ‪ (2 + i ) 2‬ﺛﻢ اﺳﺘﻨﺞ اﻟﺠﺬرﻳﻦ اﻟﻤﺮﺑﻌﻴﻦ ﻟﻠﻌﺪد اﻟﻌﻘﺪي ‪∆ = 12 + 16i‬‬

‫‪ (2‬ﺑﻴﻦ أن اﻟﻤﻌﺎدﻟﺔ ‪ (E ) z ∈ ^, z 3 − (4 + 4i ) z 2 − (2 − 8i ) z + 12 = 0 :‬ﺗﻘﺒﻞ ﺣﻼ ﺣﻘﻴﻘﻴﺎ ﻳﺠﺐ ﺗﺤﺪﻳﺪﻩ‪.‬‬ ‫‪ (3‬ﺣﻞ اﻟﻤﻌﺎدﻟﺔ ) ‪(E‬‬ ‫‪ (4‬ﻧﻀﻊ ‪z0 = 2, z1 = −1 + i, z2 = 3 + 3i :‬‬ ‫أ( اآﺘﺐ ﻋﻠﻰ اﻟﺸﻜﻞ اﻟﻤﺜﻠﺜﻲ ‪z 2 , z 1 , z 0‬‬ ‫‪z0 − z2‬‬ ‫ب( ﺑﻴﻦ أﻧﻪ ‪= − i :‬‬ ‫‪z 0 − z1‬‬ ‫‪ (5‬ﻟﺘﻜﻦ ‪ M 2 , M 1 , M 0‬ﺻﻮر ‪ z 2 , z 1 , z 0‬ﻋﻠﻰ اﻟﺘﻮاﻟﻲ ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻌﻘﺪي ‪ ،‬ﺑﻴﻦ أن اﻟﻤﺜﻠﺚ ‪M 0 M 1M 2‬‬

‫ﻣﺘﺴﺎوي اﻟﺴﺎﻗﻴﻦ وﻗﺎﺋﻢ اﻟﺰاوﻳﺔ‪.‬‬

‫‪Envoyé par Ellaji Abdelaziz Marrakech‬‬

‫‪http://arabmaths.site.voila.fr‬‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺮاﺑﻊ )‪ 10‬ن(‬

‫‪2‬‬

‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ ‪ f‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ اﻟﻤﺠﺎل [∞‪ [ 0, +‬ﺣﻴﺚ‪:‬‬

‫‪2‬‬

‫‪1‬‬ ‫)‬ ‫‪x2‬‬ ‫‪G JG‬‬ ‫ﻧﺮﻣﺰ ب ) ‪ (C‬ﻟﻠﺘﻤﺜﻴﻞ اﻟﻤﺒﻴﺎﻧﻲ ﻟﻠﺪاﻟﺔ ‪ f‬ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ‪O , i , j‬‬

‫‪ f (x ) = x ln(1 +‬إذا آﺎن ‪ x > 0‬و ‪f (0) = 0‬‬

‫)‬

‫) اﻟﻮﺣﺪة ‪( 5cm‬‬ ‫)‪ 4‬ن(‬ ‫اﻟﺠﺰء ‪A‬‬ ‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ ‪ g‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ اﻟﻤﺠﺎل‬

‫‪1‬‬ ‫‪2‬‬ ‫‪)− 2‬‬ ‫‪2‬‬ ‫‪x‬‬ ‫‪x +1‬‬ ‫‪-1‬‬ ‫‪-2‬‬ ‫‪-3‬‬ ‫‪-4‬‬

‫(‬

‫[∞‪ ]0, +‬ﺣﻴﺚ ‪:‬‬

‫‪g (x ) = ln(1 +‬‬

‫)‪2(x 2 − 1‬‬ ‫‪ (a‬ﺑﻴﻦ أن‬ ‫‪x (x 2 + 1) 2‬‬ ‫‪ (b‬ادرس إﺷﺎرة ) ‪ g ' (x‬ﺣﺴﺐ ﻗﻴﻢ ‪x‬‬ ‫ادرس ﻧﻬﺎﻳﺘﻲ ‪ g‬ﻋﻨﺪ ‪ 0‬وﻋﻨﺪ ∞‪+‬‬ ‫‪ (a‬أﻧﺸﺊ ﺟﺪول ﺗﻐﻴﺮات ‪g‬‬ ‫‪ (b‬اﺳﺘﻨﺘﺞ أن اﻟﻤﻌﺎدﻟﺔ ‪ g(x)=0‬ﺗﻘﺒﻞ ﺣﻼ وﺣﻴﺪا ‪ α‬ﺣﻴﺚ ‪0,5 < α < 0, 6‬‬ ‫اﺳﺘﻨﺘﺞ إﺷﺎرة )‪ g(x‬ﻋﻠﻰ اﻟﻤﺠﺎل [∞‪]0, +‬‬

‫= ) ‪ g ' (x‬ﻟﻜﻞ [∞‪x ∈ ]0, +‬‬

‫اﻟﺠﺰء ‪ 4) B‬ن(‬ ‫‪ -1‬ﺑﻴﻦ أﻧﻪ ﻟﻜﻞ [∞‪ x∈ ]0, +‬ﻟﺪﻳﻨﺎ ) ‪ f (x ) = g (x‬ﺛﻢ اﺳﺘﻨﺘﺞ ﺗﻐﻴﺮات ‪ f‬ﻋﻠﻰ [∞‪]0, +‬‬ ‫'‬

‫‪1‬‬ ‫‪ (a -2‬اﺣﺴﺐ ﻧﻬﺎﻳﺔ ) ‪ xf (x‬ﻋﻨﺪﻣﺎ ﺗﺆول ‪ x‬إﻟﻰ ∞‪ ) +‬ﻳﻤﻜﻦ وﺿﻊ‬ ‫‪x2‬‬ ‫‪ ( b‬اﺳﺘﻨﺘﺞ أن ) ‪ f ( x‬ﺗﺆول إﻟﻰ ‪ 0‬ﻋﻨﺪﻣﺎ ﻳﺆول ‪ x‬إﻟﻰ ∞‪+‬‬ ‫‪1‬‬ ‫‪ (a -3‬ﺑﻴﻦ أن )‬ ‫‪x2‬‬

‫=‪(t‬‬

‫‪ x ln(1 +‬ﺗﺆول إﻟﻰ ‪ 0‬ﻋﻨﺪﻣﺎ ﻳﺆول ‪ x‬إﻟﻰ ‪ ) 0+‬ﻳﻤﻜﻦ‬

‫‪1‬‬ ‫آﺘﺎﺑﺔ ‪) = x ln(x 2 + 1) − 2x ln x‬‬ ‫‪2‬‬ ‫‪x‬‬ ‫‪ (b‬ادرس ﻗﺎﺑﻠﻴﺔ اﺷﺘﻘﺎق ‪ f‬ﻓﻲ ‪ 0‬ﺛﻢ أول اﻟﻨﺘﻴﺠﺔ اﻟﻤﺤﺼﻞ ﻋﻠﻴﻬﺎ هﻨﺪﺳﻴﺎ‪.‬‬ ‫‪ -4‬أﻧﺸﺊ ﺟﺪول ﺗﻐﻴﺮات ‪f‬‬ ‫‪G JG‬‬ ‫‪ -5‬ارﺳﻢ ) ‪ (C‬ﻓﻲ اﻟﻤﻌﻠﻢ ‪ ) . O , i , j‬ﻧﻘﺒﻞ أن ‪( f (α )  f (0,5)  0,80‬‬ ‫‪( x ln(1 +‬‬

‫)‬

‫(‬

‫اﻟﺠﺰء ‪ 2) C‬ن(‬ ‫ﻟﻴﻜﻦ ‪ λ‬ﻋﺪدا ﺣﻘﻴﻘﻴﺎ ﻣﻦ اﻟﻤﺠﺎل ]‪]0,1‬‬ ‫‪1‬‬

‫‪ -1‬ﺑﺎﺳﺘﻌﻤﺎل اﻟﻤﻜﺎﻣﻠﺔ ﺑﺎﻷﺟﺰاء ‪ ،‬اﺣﺴﺐ ‪ j λ = ∫ f (x )dx‬ﺛﻢ ﺑﻴﻦ أن ‪lim j λ = ln 2‬‬ ‫‪λ‬‬

‫‪λ →0‬‬

‫‪ -2‬ﻧﻘﺒﻞ أن هﺬﻩ اﻟﻨﻬﺎﻳﺔ هﻲ ﻣﺴﺎﺣﺔ ﺟﺰء اﻟﻤﺴﺘﻮى اﻟﻤﻜﻮن ﻣﻦ ﻣﺠﻤﻮﻋﺔ اﻟـﻨﻘﻂ ذات اﻹﺣـﺪاﺛﻴﺘﻴﻦ‬

‫) ‪(x , y‬‬

‫‪0 ≤ x ≤ 1‬‬ ‫‪ ، ‬اﺳﺘﻨﺘﺞ ﻗﻴﻤﺔ هﺬﻩ اﻟﻤﺴﺎﺣﺔ ب ‪cm 2‬‬ ‫واﻟﺘﻲ ﺗﺤﻘﻖ‪:‬‬ ‫) ‪0 ≤ x ≤ f ( x‬‬

‫‪http://arabmaths.site.voila.fr‬‬ ‫‪Envoyé par Ellaji Abdelaziz Marrakech‬‬

Related Documents

Tajribi Math Sx (87)
April 2020 0
Tajribi Math Sx (67)
April 2020 0
Tajribi Math Sx (97)
April 2020 0
Tajribi Math Sx (110)
April 2020 0
Tajribi Math Sx (19)
April 2020 1
Tajribi Math Sx (22)
April 2020 1

More Documents from "Ihsan Mokhlisse"

Tajribi Math Sx (39)
April 2020 6
Solutions 1
November 2019 4
I04pm1e
November 2019 3
Tdmeca2
November 2019 2
Tdmeca4
November 2019 2
M026m1e_2
November 2019 5