Tajribi Math Sx (45)

  • Uploaded by: Ihsan Mokhlisse
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tajribi Math Sx (45) as PDF for free.

More details

  • Words: 670
  • Pages: 2
‫اﻻﻣﺘﺤـــﺎن اﻟﺘﺠﺮﻳﺒﻲ ﻟﻨﻴﻞ ﺷﻬﺎدة اﻟﺒﻜﺎﻟـــــــــﻮرﻳﺎ‬ ‫دورة ﻣﺎرس‪2005‬‬ ‫اﻟﻤﺎدة‪:‬اﻟﺮﻳﺎﺿﻴــــــــــــــــــــــــﺎت‬ ‫اﻟﺸﻌﺒﺔ‪ :‬اﻟﻌﻠـــــــــــﻮم اﻟﺘﺠﺮﻳﺒـــــــــــــــــــــــــــــــﻴﺔ‬ ‫اﻟﺜﺎﻧﻮﻳﺔ اﻟﺘﺄهﻴﻠﻴﺔ‪ :‬ﺛﺎﻧﻮﻳﺔ اﻟﺤﺴﻦ اﻟﺜﺎﻧﻲ أﺳﻔﻲ‬

‫اﻟﺼﻔـــــﺤﺔ‬ ‫ﻣﺪة اﻹﻧﺠﺎز‬

‫‪1/2‬‬ ‫‪ 3‬ﺳﺎﻋﺎت‬

‫اﻟﻤﻌـﺎﻣـــﻞ‬

‫‪7‬‬

‫)ﻳﺴﻤﺢ ﺑﺎﺳﺘﻌﻤﺎل اﻵﻟﺔ اﻟﺤﺎﺳﺒﺔ ﻏﻴﺮ اﻟﻤﺒﺮﻣﺠﺔ(‬ ‫اﻟﺘﻤﺮﻳﻦ اﻷول‪):‬ﻧﻘﻄﺘﺎن(‬ ‫ﻳﺤﺘﻮى آﻴﺲ ﻋﻠﻰ ‪ 4‬آﺮات ﺑﻴﻀﺎء و ‪ 6‬آﺮات ﺳﻮداء ‪.‬‬ ‫ﻧﺴﺤﺐ ﻓﻲ ﺁن واﺣﺪ ‪ 3‬آﺮات ﻣﻦ اﻟﻜﻴﺲ و ﻧﻔﺘﺮض أن ﺟﻤﻴﻊ اﻟﻜﺮات ﻟﻬﺎ ﻧﻔﺲ اﻻﺣﺘﻤﺎل ‪.‬‬ ‫‪ .1‬أﺣﺴﺐ اﺣﺘﻤﺎل اﻟﺤﺪث ‪ : A‬ﺳﺤﺐ ‪ 3‬آﺮات ﻣﻦ ﻧﻔﺲ اﻟﻠﻮن ‪.‬‬ ‫‪1‬‬ ‫‪ .2‬أﺣﺴﺐ اﺣﺘﻤﺎل اﻟﺤﺪث ‪ :B‬ﺳﺤﺐ ‪ 3‬آﺮات ﻣﺨﺘﻠﻔﺔ اﻟﻠﻮن ‪.‬‬ ‫‪1‬‬ ‫اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻧﻲ‪):‬ﺛﻼث ﻧﻘﻂ(‬ ‫ﻟﻴﻜﻦ ‪ a‬ﻋﺪدا ﻋﻘﺪﻳﺎ؛ ﻧﻌﺘﺒﺮ اﻟﻤﻌﺎدﻟﺔ ) ‪. ( E ) : z + a (a + i ) z + ia = 0 : ( E‬‬ ‫‪3‬‬

‫‪0.5‬‬

‫‪2‬‬

‫‪ .1‬ﺣﻞ ﻓﻲ اﻟﻤﺠﻤﻮﻋﺔ ^ اﻟﻤﻌﺎدﻟﺔ ) ‪ ( E‬ﻓﻲ اﻟﺤﺎﻟﺔ ‪. a = 0‬‬

‫ﻧﻔﺘﺮض ﻓﻲ ﻣﺎ ﻳﻠﻲ أن ‪ a ≠ 0‬وﻧﻀﻊ ] ‪ a = [α ; β‬ﺑﺤﻴﺚ ) \ ∈ ‪ ( β‬و )‬

‫‪+‬‬

‫\ ∈ ‪. (α‬‬

‫‪ .2‬ﺣﻞ ﻓﻲ اﻟﻤﺠﻤﻮﻋﺔ ^ اﻟﻤﻌﺎدﻟﺔ ) ‪. ( E‬‬

‫‪1‬‬ ‫‪1‬‬

‫‪ .3‬أآﺘﺐ ﺣﻠﻴﻦ اﻟﻤﻌﺎدﻟﺔ ) ‪ ( E‬ﻋﻠﻰ اﻟﺸﻜﻞ اﻟﻤﺜﻠﺜﻲ ) ﺑﺪﻻﻟﺔ ﻣﻌﻴﺎر وﻋﻤﺪة ‪. ( a‬‬

‫‪1‬‬

‫‪ .4‬ﺣﺪد ﻗﻴﻢ ‪ a‬ﻟﻜﻲ ﻳﻜﻮن ﻟﻠﻤﻌﺎدﻟﺔ ﺣﻠﻴﻦ ﻣﺘﺮاﻓﻘﻴﻦ‪.‬‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻟﺚ‪):‬ﺛﻼث ﻧﻘﻂ وﻧﺼﻒ(‬ ‫‪GG G‬‬ ‫اﻟﻔﻀﺎء ﻣﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ﻣﺒﺎﺷﺮ ) ‪(o, i, j , k‬‬ ‫ﻧﻌﺘﺒﺮ اﻟﻨﻘﻂ )‪ A(1, 0,1‬و )‪ B (0, 2,1‬و )‪. C (2,1,3‬‬ ‫‪2‬‬ ‫ﻟﺘﻜﻦ ) ‪ ( S‬اﻟﻔﻠﻜﺔ اﻟﻤﻌﺮﻓﺔ ب ‪. x + y2 + z2 − 4x = 0 :‬‬ ‫‪JJJG JJJG‬‬ ‫‪ .1‬اﺣﺴﺐ ‪ AB ∧ AC‬و اﺳﺘﻨﺘﺞ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى ) ‪. ( ABC‬‬ ‫‪1‬‬ ‫‪ .2 0.5‬ﺑﻴﻦ أن ﺷﻌﺎع اﻟﻔﻠﻜﺔ ) ‪ ( S‬ﻳﺴﺎوي ‪ 2‬وﻣﺮآﺰهﺎ اﻟﻨﻘﻄﺔ ) ‪. Ω ( 2, 0, 0‬‬ ‫‪1‬‬ ‫‪1‬‬

‫‪.3‬‬

‫ادرس اﻟﻮﺿﻊ اﻟﻨﺴﺒﻲ ﻟﻠﻔﻠﻜﺔ ) ‪ ( S‬واﻟﻤﺴﺘﻮى ) ‪. ( ABC‬‬

‫‪y = 2‬‬ ‫‪‬‬ ‫‪ ( D ) : ‬ﻳﻘﻄﻊ اﻟﻔﻠﻜﺔ ) ‪ ( S‬وﻓـﻖ ﻧﻘﻄﺘـﻴﻦ ﻳﺠـﺐ‬ ‫‪ .4‬ﺑﻴﻦ أن اﻟﻤﺴﺘﻘﻴﻢ اﻟﻤﻌﺮف ب ‪z + 1 :‬‬ ‫‪x‬‬ ‫‪−‬‬ ‫‪1‬‬ ‫=‬ ‫‪‬‬ ‫‪‬‬ ‫‪2‬‬ ‫ﺗﺤﺪﻳﺪهﻤﺎ‪.‬‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺮاﺑﻊ‪):‬ﺛﻼث ﻧﻘﻂ وﻧﺼﻒ(‬ ‫ﻧﻌﺘﺒﺮ ‪ (U n ) n>0‬و ‪ (Vn ) n>0‬اﻟﻤﺘﺘﺎﻟﻴﺘﻴﻦ اﻟﻌﺪدﻳﺘﻴﻦ اﻟﻤﻌﺮﻓﺘﻴﻦ ﺑﻤﺎ ﻳﻠﻲ‪:‬‬ ‫‪U1 = 1‬‬ ‫و ‪Vn = ln(U n ) − ln 4‬‬ ‫‪‬‬ ‫∗` ∈ ‪U n+1 = 4U n ; n‬‬ ‫‪‬‬ ‫‪ .1‬أﺣﺴﺐ ‪ U 2‬و ‪.U 3‬‬ ‫‪0.5‬‬ ‫‪ .2‬ﺑﻴﻦ أن ‪ (Vn )n>0‬ﻣﺘﺘﺎﻟﻴﺔ هﻨﺪﺳﻴﺔ و ﺣﺪد أﺳﺎﺳﻬﺎ و ﺣﺪهﺎ اﻷول‪.‬‬ ‫‪1‬‬ ‫‪ .3‬أآﺘﺐ ‪ Vn‬ﺛﻢ ‪ U n‬ﺑﺪﻻﻟﺔ ‪. n‬‬ ‫‪1‬‬ ‫‪ .4‬اﺳﺘﻨﺘﺞ ﻧﻬﺎﻳﺔ ) ‪. (U n‬‬ ‫‪1‬‬ ‫‪envoyé par sidi mohamed lairani de Safi‬‬

‫‪http://arabmaths.ift.fr‬‬

‫اﻟﺼﻔﺤﺔ ‪2/2‬‬ ‫اﻟﺘﻤﺮﻳﻦ اﻟﺨﺎﻣﺲ‪ 8):‬ﻧﻘﻂ(‬ ‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ‬

‫‪ f‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ \ ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬

‫‪;x < 0‬‬ ‫‪;x ≥ 0‬‬

‫‪GG‬‬

‫‪‬‬ ‫‪3 1‬‬ ‫‪ f ( x) = (3 − + 2 )e‬‬ ‫‪x x‬‬ ‫‪‬‬ ‫‪ f ( x) = 2 x 2 − 2 x x 2 + 1‬‬ ‫‪‬‬ ‫‪1‬‬ ‫‪x‬‬

‫و ) ‪ (C‬ﻣﻨﺤﻨﻰ اﻟﺪاﻟﺔ ‪ f‬ﻓﻲ ﻣﻌﻠﻢ ) ‪. (o, i, j‬‬ ‫‪0.5‬‬ ‫‪0.5‬‬ ‫‪0.5‬‬ ‫‪1‬‬

‫‪1 1x‬‬ ‫‪ .1‬ﺑﻴﻦ أن ‪. lim 2 e = 0 :‬‬ ‫‪x →0 x‬‬ ‫‪x <0‬‬ ‫‪.2‬‬ ‫‪.3‬‬

‫اﺳﺘﻨﺘﺞ أن اﻟﺪاﻟﺔ ‪ f‬ﻣﺘﺼﻠﺔ ﻓﻲ اﻟﺼﻔﺮ‪.‬‬ ‫اﺣﺴﺐ اﻟﻨﻬﺎﻳﺎت ﻋﻨﺪ ﻣﺤﺪات ﻣﺠﻤﻮﻋﺔ اﻟﺘﻌﺮﻳﻒ‪.‬‬

‫)‪f ( x‬‬ ‫)‪f ( x‬‬ ‫‪. lim‬واﺣﺴﺐ‬ ‫‪ .4‬ﺑﻴﻦ أن ‪= 0 :‬‬ ‫‪x →0‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪x<0‬‬ ‫‪2‬‬

‫‪.5‬‬ ‫‪0.75‬‬ ‫‪0.75‬‬ ‫‪1‬‬ ‫‪0.5‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪0.5‬‬

‫أ(‬

‫ﺑﻴﻦ أن ‪:‬‬

‫)‬

‫‪x2 + 1 − x‬‬

‫(‬

‫‪ lim‬وأول اﻟﻨﺘﻴﺠﺘﻴﻦ اﻟﻤﺤﺼﻞ ﻋﻠﻴﻬﻤﺎ‪.‬‬ ‫‪x →0‬‬ ‫‪x >0‬‬

‫‪. ( ∀x > 0 ) : f '( x ) = −2‬‬

‫‪x2 + 1‬‬ ‫‪x − 1 1x‬‬ ‫ب( ﺑﻴﻦ أن‪. ( ∀x < 0 ) : f '( x ) = 4 e :‬‬ ‫‪x‬‬ ‫‪ .6‬ﺿﻊ ﺟﺪول ﺗﻐﻴﺮات اﻟﺪاﻟﺔ ‪. f‬‬ ‫‪ .7‬ﺣﺪد اﻟﻔﺮوع اﻟﻼﻧﻬﺎﺋﻴﺔ ﻟﻤﻨﺤﻨﻰ اﻟﺪاﻟﺔ ‪. f‬‬ ‫‪ .8‬أﻧﺸﺊ ﻣﻨﺤﻨﻰ اﻟﺪاﻟﺔ ‪. f‬‬ ‫‪ .9‬ﺑﻴﻦ أن اﻟﺪاﻟﺔ ‪ f‬ﺗﻘﺎﺑﻞ ﻣﻦ \ ﻧﺤﻮ ﻣﺠﺎل ﻳﺠﺐ ﺗﺤﺪﻳﺪﻩ‪.‬‬ ‫‪ .10‬أﻧﺸﺊ ﻣﻨﺤﻨﻰ اﻟﺪاﻟﺔ‬

‫‪−1‬‬

‫‪ f‬ﻓﻲ ﻧﻔﺲ اﻟﻤﻌﻠﻢ ‪.‬‬

‫‪envoyé par sidi mohamed lairani de Safi‬‬

‫‪http://arabmaths.ift.fr‬‬

Related Documents

Tajribi Math Sx (45)
April 2020 6
Tajribi Math Sx (67)
April 2020 0
Tajribi Math Sx (87)
April 2020 0
Tajribi Math Sx (97)
April 2020 0
Tajribi Math Sx (110)
April 2020 0
Tajribi Math Sx (19)
April 2020 1

More Documents from "Ihsan Mokhlisse"

Tajribi Math Sx (39)
April 2020 6
Solutions 1
November 2019 4
I04pm1e
November 2019 3
Tdmeca2
November 2019 2
Tdmeca4
November 2019 2
M026m1e_2
November 2019 5