Tajribi Math Sx (29)

  • Uploaded by: Ihsan Mokhlisse
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tajribi Math Sx (29) as PDF for free.

More details

  • Words: 916
  • Pages: 3
‫وزارة اﻟﺘﺮﺏﻴﺔ اﻟﻮﻃﻨﻴﺔ‬ ‫واﻟﺘﻌﻠﻴﻢ اﻟﻌﺎﻟﻲ واﻟﺒﺤﺚ اﻟﻌﻠﻤﻲ‬ ‫أآﺎدیﻤﻴﺔ ﺟﻬﺔ اﻟﺪار اﻟﺒﻴﻀﺎء اﻟﻜﺒﺮى‬ ‫ﻧﻴﺎﺏﺔ ﺏﻦ ﻡﺴﻴﻚ ﻡﺪیﻮﻧﺔ‬ ‫ﺙﺎﻧﻮیﺔ اﻟﺤﺴﻦ اﻟﺜﺎﻧﻲ‬

‫‪-1-‬‬

‫اﻟﻤﻌﺎﻡﻞ ‪7‬‬ ‫اﻟﻤﺪة ‪3:‬ﺱﺎﻋﺎت‬ ‫اﻟﺸﻌﺒﺔ ‪ :‬ﻋﻠﻮم ﺕﺠﺮیﺒﻴﺔ‬ ‫اﻟﻤﺴﺘﻮى ‪:‬اﻟﺜﺎﻧﻴﺔ ﺏﻜﺎﻟﻮریﺎ‬ ‫أﺏﺮیﻞ ‪2006‬‬

‫اﻻﻡﺘﺤﺎن اﻟﺘﺠﺮیﺒﻲ اﻟﻤﻮﺡﺪ ﻟﻤﺎدة اﻟﺮیﺎﺿﻴﺎت‬

‫ﺳﻠﻢ اﻟﺘﻨﻘﻴﻂ أﺳﺌﻠﺔ) ‪ 2.5‬ﻥﻘﻂ (‬ ‫‪0.5‬‬

‫‪0.5‬‬ ‫‪0.5‬‬

‫ﺣﻞ ﻓﻲ ‪ IR‬اﻟﻤﻌﺎدﻟﺔ اﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫‪.1‬‬ ‫‪3x − 2 = 0‬‬ ‫‪GG G‬‬ ‫‪.2‬‬ ‫ﻧﻌﺘﺒﺮ ﻓﻲ اﻟﻔﻀﺎء اﻟﻤﻨﺴﻮب إﻟﻰ ﻡﻌﻠﻢ ﻡﺘﻌﺎﻡﺪ ﻡﻤﻨﻈﻢ ﻡﺒﺎﺷﺮ ‪o, i, j , k‬‬ ‫‪G‬‬ ‫‪G‬‬ ‫اﻟﻤﺎر ﻡﻦ اﻟﻨﻘﻄﺔ ‪ O‬واﻟﻤﻮﺟﻪ ﺏﺎﻟﻤﺘﺠﻬﺘﻴﻦ ) ‪ u (1,1, 2‬و )‪v ( −1,1,1‬‬

‫)‬

‫أ‪-‬‬ ‫ب‪-‬‬

‫(‬

‫اﻟﻤﺴﺘﻮى ) ‪( P‬‬

‫ﺣﺪد ﻡﺘﺠﻬﺔ ﻡﻨﻈﻤﻴﺔ ﻟﻠﻤﺴﺘﻮى ) ‪( P‬‬ ‫ﺣﺪد ﻡﻌﺎدﻟﺔ دیﻜﺎرﺕﻴﺔ ﻟﻠﻤﺴﺘﻮى ) ‪( P‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫ﻧﻀﻊ ‪ un = ln   + ln   + ln   + " + ln  n  :‬ﻟﻜﻞ ‪ n‬ﻡﻦ‬ ‫‪2‬‬ ‫‪4‬‬ ‫‪8‬‬ ‫‪2 ‬‬ ‫أآﺘﺐ ‪ un‬ﺏﺪﻻﻟﺔ ‪n‬‬

‫‪.3‬‬ ‫‪0.5‬‬

‫أ‪-‬‬

‫‪0.5‬‬

‫ب‪-‬‬

‫`‬

‫أﺣﺴﺐ ‪lim un‬‬ ‫∞‪n →+‬‬

‫اﻟﺘﻤﺮیﻦ اﻷول) ‪ 2.5‬ﻥﻘﻂ (‬ ‫‪GG G‬‬

‫ﻧﻌﺘﺒﺮ ﻓﻲ اﻟﻔﻀﺎء اﻟﻤﻨﺴﻮب إﻟﻰ ﻡﻌﻠﻢ ﻡﺘﻌﺎﻡﺪ ﻡﻤﻨﻈﻢ ﻡﺒﺎﺷﺮ ) ‪( o, i, j, k‬‬ ‫اﻟﻨﻘﻂ )‪ A ( 0, −2,1‬و )‪ B (1, −1,1‬و )‪C (1, 0,3‬‬ ‫‪0.5‬‬

‫‪.1‬‬

‫أﺣﺴﺐ ) ) ‪d ( C , ( AB‬‬

‫‪.2‬‬

‫ﻟﺘﻜﻦ )‪ (S‬اﻟﻔﻠﻜﺔ اﻟﺘﻲ ﻡﺮآﺰهﺎ ‪ C‬و ﻡﻤﺎﺱﺔ ﻟﻠﻤﺴﺘﻘﻴﻢ ) ‪( AB‬‬

‫‪1‬‬

‫أ‪-‬‬

‫‪0.5‬‬

‫ب‪-‬‬ ‫‪.3‬‬

‫‪1‬‬

‫‪11‬‬ ‫ﺏﻴﻦ أن ﻡﻌﺎدﻟﺔ )‪ (S‬هﻲ ‪= 0‬‬ ‫‪2‬‬

‫‪x2 + y 2 + z 2 − 2 x − 6 z +‬‬

‫ﺣﺪد ﻧﻘﻄﺔ ﺕﻤﺎس )‪ (S‬واﻟﻤﺴﺘﻘﻴﻢ ) ‪( AB‬‬ ‫ﺣﺪد ﻡﻌﺎدﻟﺔ دیﻜﺎرﺕﻴﺔ ﻟﻤﺴﺘﻮى ) ‪ ( Q‬اﻟﺬي یﺘﻀﻤﻦ اﻟﻤﺴﺘﻘﻴﻢ ) ‪ ( AB‬و ﻡﻤﺎس ﻟﻠﻔﻠﻜﺔ )‪(S‬‬

‫اﻟﺘﻤﺮیﻦ اﻟﺜﺎﻥﻲ) ‪ 2.5‬ﻥﻘﻂ (‬ ‫ﻧﻀﻊ ﻟﻜﻞ ‪ z‬ﻡﻦ *^‬ ‫‪0.5‬‬

‫‪.1‬‬

‫‪z 2 + 4i‬‬ ‫‪z‬‬

‫= )‪f ( z‬‬

‫أآﺘﺐ ) ‪ f (1 + i 3‬ﻋﻠﻰ اﻟﺸﻜﻞ اﻟﻤﺜﻠﺜﻲ‬ ‫‪http://arabmaths.ift.fr‬‬

‫‪-2‬‬‫ﻧﻌﺘﺒﺮ ﻓﻲ *^ اﻟﻤﻌﺎدﻟﺔ ‪:‬‬

‫‪.2‬‬

‫‪0.25‬‬

‫‪f (z) = 2 3‬‬

‫)‪(E‬‬

‫أ‪-‬‬

‫ﺏﻴﻦ أن ‪ 2 − i‬ﺟﺬر ﻡﺮﺏﻊ ل ‪3 − 4i‬‬

‫ب‪-‬‬

‫ﻟﻴﻜﻦ ‪ z1‬و ‪ z2‬ﺣﻠﻲ اﻟﻤﻌﺎدﻟﺔ )‪ (E‬ﺏﺤﻴﺚ ) ‪. Re ( z1 ) > Re ( z2‬‬

‫ﺣﺪد ‪ z1‬و ‪z2‬‬ ‫‪0.5‬‬ ‫‪0.75‬‬

‫‪207‬‬

‫ﺏﻴﻦ أن‬

‫ت‪-‬‬

‫‪ z +2‬‬ ‫‪  2‬ﻋﺪد ﺣﻘﻴﻘﻲ‬ ‫‪‬‬ ‫‪ z1 − 2 ‬‬

‫ﻧﻌﺘﺒﺮ ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻌﻘﺪي ﻡﻨﺴﻮب إﻟﻰ ﻡﻌﻠﻢ ﻡﺘﻌﺎﻡﺪ ﻡﻤﻨﻈﻢ ﻡﺒﺎﺷﺮ ‪ (o, u ,v) :‬اﻟﻨﻘﻂ‬

‫)‬

‫‪3 −2+i‬‬

‫‪0.5‬‬

‫(‬

‫‪ π‬‬ ‫‪ A‬و ) ‪ . B ( −2‬ﺣﺪد ﻡﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ) ‪ M ( z‬اﻟﺘﻲ ﺕﺤﻘﻖ ] ‪ = [π‬‬ ‫‪ 2‬‬

‫‪‬‬ ‫‪z‬‬ ‫‪arg ‬‬ ‫‪ z A − zB‬‬

‫اﻟﺘﻤﺮیﻦ اﻟﺜﺎﻟﺚ) ‪ 2.5‬ﻥﻘﻂ (‬

‫‪0.5‬‬ ‫‪0.5‬‬

‫‪1‬‬ ‫‪0.5‬‬

‫یﺤﺘﻮي ﺻﻨﺪوق ﻋﻠﻰ أرﺏﻊ آﺮات ﺏﻴﻀﺎء ﺕﺤﻤﻞ اﻷرﻗﺎم ‪ 1‬و ‪ 1‬و‪ 1‬و ‪ 2‬وﺙﻼث آﺮات ﺣﻤﺮاء‬ ‫ﺕﺤﻤﻞ اﻷرﻗﺎم ‪ 1‬و‪ 1‬و ‪. 2‬ﻻ یﻤﻜﻦ اﻟﺘﻤﻴﻴﺰ ﺏﻴﻨﻬﺎ ﺏﺎﻟﻠﻤﺲ‬ ‫ﻧﺴﺤﺐ ﻋﺸﻮاﺋﻴﺎ ﺏﺎﻟﺘﺘﺎﺏﻊ وﺏﺪون إﺣﻼل‪ 3‬آﺮات ‪.‬اﺣﺴﺐ اﺣﺘﻤﺎل اﻟﺤﺪﺙﻴﻦ اﻟﺘﺎﻟﻴﻴﻦ‬ ‫‪.1‬‬ ‫‪ " A‬اﻟﻜﺮات اﻟﺜﻼث ﻟﻬﺎ ﻧﻔﺲ اﻟﻠﻮن "‬ ‫‪ " B‬ﻡﻦ ﺏﻴﻦ اﻟﻜﺮات اﻟﺜﻼث اﻟﻤﺴﺤﻮﺏﺔ ﺕﻮﺟﺪ آﺮﺕﻴﻦ ﺏﺎﻟﻀﺒﻂ ﻟﻮﻧﻬﻤﺎ أﺏﻴﺾ وﺕﺤﻤﻼن اﻟﺮﻗﻢ‪" 1‬‬ ‫ﻧﺴﺤﺐ آﺮة ﻡﻦ اﻟﺼﻨﺪوق إذا آﺎﻧﺖ ﺣﻤﺮاء ﻧﻌﻴﺪهﺎ إﻟﻰ اﻟﺼﻨﺪوق و ﻧﺴﺤﺐ آﺮة ﺙﺎﻧﻴﺔ‬ ‫‪.2‬‬ ‫وأﺧﻴﺮة وإذا آﺎﻧﺖ ﺏﻴﻀﺎء ﻧﻀﻌﻬﺎ ﺟﺎﻧﺒﺎ وﻧﻀﻊ ﺏﺪﻟﻬﺎ ﻓﻲ اﻟﺼﻨﺪوق آﺮﺕﻴﻦ ﺧﻀﺮاویﺘﻴﻦ ﺕﺤﻤﻼن‬ ‫اﻟﺮﻗﻤﻴﻦ ‪ 2‬و‪ 1‬ﺙﻢ ﻧﺴﺤﺐ ﺏﺎﻟﺘﺘﺎﺏﻊ و ﺏﺪون إﺣﻼل آﺮﺕﻴﻦ‬ ‫أ‪-‬‬ ‫اﺣﺴﺐ اﺣﺘﻤﺎل اﻟﺤﺪث ‪ " C‬ﻡﻦ ﺏﻴﻦ اﻟﻜﺮات اﻟﺜﻼث اﻟﻤﺴﺤﻮﺏﺔ ﺕﻮﺟﺪ آﺮة واﺣﺪة ﺏﺎﻟﻀﺒﻂ‬ ‫ﺕﺤﻤﻞ اﻟﺮﻗﻢ ‪"2‬‬ ‫ﻋﻠﻤﺎ أﻧﻨﺎ ﺣﺼﻠﻨﺎ ﻋﻠﻰ آﺮة واﺣﺪة ﺕﺤﻤﻞ اﻟﺮﻗﻢ ‪. 2‬اﺣﺴﺐ اﺣﺘﻤﺎل أن ﺕﻜﻮن ﺏﻴﻀﺎء‬ ‫اﻟﺘﻤﺮیﻦ اﻟﺮاﺏﻊ) ‪ 2‬ﻥﻘﻂ (‬ ‫ﻟﺘﻜﻦ ‪ ( un )n‬ﻡﺘﺘﺎﻟﻴﺔ ﻋﺪدیﺔ ﻡﻌﺮﻓﺔ ﺏﻤﺎیﻠﻲ‬

‫‪0.5‬‬ ‫‪0.5‬‬ ‫‪1‬‬

‫‪.1‬‬

‫ﺏﻴﻦ أن ‪un ≥ 1‬‬

‫‪.2‬‬

‫ادرس رﺕﺎﺏﺔ اﻟﻤﺘﺘﺎﻟﻴﺔ ‪( un )n‬‬

‫‪n≥0‬‬

‫‪u0 = 2‬‬ ‫‪‬‬ ‫‪un 2‬‬ ‫‪‬‬ ‫‪u‬‬ ‫=‬ ‫‪ n +1 2u − 1‬‬ ‫‪n‬‬ ‫‪‬‬

‫` ∈ ‪∀n‬‬

‫اﺱﺘﻨﺘﺞ أن ‪ ( un )n‬ﻡﺘﻘﺎرﺏﺔ ﺙﻢ أﺣﺴﺐ ‪lim un‬‬ ‫∞‪n →+‬‬

‫‪http://arabmaths.ift.fr‬‬

‫‪-3-‬‬

‫ﻡﺴﺄﻟﺔ ) ‪ 8‬ﻥﻘﻂ (‬ ‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدیﺔ ‪ f‬ﻟﻠﻤﺘﻐﻴﺮ اﻟﺤﻘﻴﻘﻲ ‪ x‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ ‪ IR‬ﺏﻤﺎ یﻠﻲ‪:‬‬ ‫‪x>0‬‬

‫)‬

‫‪x<0‬‬

‫و‬ ‫‪0.5‬‬ ‫‪1‬‬ ‫‪1‬‬

‫‪.1‬‬

‫)‬

‫‪ ( C f‬اﻟﻤﻨﺤﻨﻰ اﻟﻤﻤﺜﻞ ﻟﻠﺪاﻟﺔ ‪ f‬ﻓﻲ ﻡﻌﻠﻢ ﻡﺘﻌﺎﻡﺪ ﻡﻤﻨﻈﻢ‬

‫‪0.5‬‬ ‫‪0.5‬‬ ‫‪0.5‬‬

‫) ‪(O, i, j‬‬

‫ﺏﻴﻦ أن ‪ f‬ﻡﺘﺼﻠﺔ ﻓﻲ اﻟﻨﻘﻄﺔ ‪0‬‬

‫ب – ادرس اﻟﻔﺮوع اﻟﻼﻧﻬﺎﺋﻴﺔ ل ) ‪( C‬‬ ‫‪f‬‬

‫‪x >0‬‬

‫‪0.5‬‬ ‫‪0.5‬‬

‫(‬

‫‪.2‬‬ ‫ادرس ﻗﺎﺏﻠﻴﺔ اﺷﺘﻘﺎق ﻋﻠﻰ اﻟﻴﻤﻴﻦ وﻋﻠﻰ اﻟﻴﺴﺎر ﻓﻲ ‪ .0‬ﺙﻢ اﻋﻂ ﺕﺄویﻼ هﻨﺪﺱﻴﺎ‬ ‫ﻟﻠﻨﺘﻴﺠﺘﻴﻦ اﻟﻤﺤﺼﻞ ﻋﻠﻴﻬﻤﺎ‬ ‫أ‪ -‬أﺣﺴﺐ ) ‪ lim f ( x‬و ) ‪lim f ( x‬‬ ‫‪.3‬‬ ‫∞‪x →−‬‬ ‫∞‪x →+‬‬

‫‪0.5‬‬

‫‪1‬‬

‫‪‬‬ ‫‪ f ( x ) = 2 x − x ln x‬‬ ‫‪‬‬ ‫‪ f ( 0) = 0‬‬ ‫‪‬‬ ‫‪ f ( x ) = − 1 x 2 + x 1 − e− x‬‬ ‫‪2‬‬ ‫‪‬‬

‫‪.4‬‬

‫ب‪-‬‬

‫أ‪ -‬ﺏﻴﻦ أن‬

‫‪x <0‬‬

‫‪‬‬ ‫‪1 − x − x ln x‬‬ ‫= ) ‪f ′ ( x‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪f ′ ( x ) = ( x − 1) e − x − 1‬‬ ‫‪‬‬

‫)‬

‫(‬

‫ﺏﻴﻦ أن اﻟﺪاﻟﺔ ‪ f‬ﺕﺰایﺪیﺔ ﻋﻠﻰ اﻟﻤﺠﺎل ]‪ ]0,1‬و أن‬

‫‪ f‬ﺕﻨﺎﻗﺼﻴﺔ ﻋﻠﻰ [∞‪[1, +‬‬

‫ادرس إﺷﺎرة ) ‪ f ′ ( x‬ﻋﻠﻰ اﻟﻤﺠﺎل [‪]−∞, 0‬‬

‫ت‪-‬‬ ‫ج ‪-‬اﻋﻂ ﺟﺪول ﺕﻐﻴﺮات اﻟﺪاﻟﺔ ‪f‬‬

‫) (‬

‫‪ C f‬یﻘﻄﻊ ﻡﺤﻮر اﻷﻓﺎﺻﻴﻞ ﻓﻲ ﻧﻘﻄﺔ أﻓﺼﻮﻟﻬﺎ ‪ α‬ﺣﻴﺚ ‪3 < α < 4‬‬

‫‪.5‬‬

‫ﺏﻴﻦ أن‬

‫‪.6‬‬

‫أ‪ -‬ﺏﻴﻦ أن ‪ f‬ﺕﻘﺎﺏﻞ ﻡﻦ اﻟﻤﺠﺎل [∞‪ [1, +‬ﻧﺤﻮ ﻡﺠﺎل ‪ J‬یﺠﺐ ﺕﺤﺪیﺪﻩ‬ ‫‪− α‬‬ ‫‪α +1‬‬

‫‪0.5‬‬

‫ب‪ -‬ﺏﻴﻦ أن‬

‫‪1‬‬

‫أﻧﺸﺊ اﻟﻤﻨﺤﻨﻰ ) ‪ (C‬و ) ‪(C‬‬ ‫‪f‬‬

‫= ) ‪( f )′ ( 0‬‬ ‫‪−1‬‬

‫‪f −1‬‬

‫ﺏﻌﺜﻪ اﻻﺱﺘﺎد ﺏﻦ ﻧﻐﻤﻮش‬

‫‪http://arabmaths.ift.fr‬‬

Related Documents

Tajribi Math Sx (29)
April 2020 3
Tajribi Math Sx (67)
April 2020 0
Tajribi Math Sx (87)
April 2020 0
Tajribi Math Sx (97)
April 2020 0
Tajribi Math Sx (110)
April 2020 0
Tajribi Math Sx (19)
April 2020 1

More Documents from "Ihsan Mokhlisse"

Tajribi Math Sx (39)
April 2020 6
Solutions 1
November 2019 4
I04pm1e
November 2019 3
Tdmeca2
November 2019 2
Tdmeca4
November 2019 2
M026m1e_2
November 2019 5