Tajribi Math Sx (19)

  • Uploaded by: Ihsan Mokhlisse
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tajribi Math Sx (19) as PDF for free.

More details

  • Words: 629
  • Pages: 2
‫‪RM‬‬

‫اﻻﻣﺘﺤــﺎن اﻟﺘﺠﺮﻳﺒـﻲ اﻟﻤﻮﺣﺪ ﻟﻠﺒﺎآﺎﻟﻮرﻳــﺎ‬ ‫‪2006/2005‬‬ ‫اﻟﺜﺎﻧﻮﻳﺔ ‪ :‬ﺛﺎﻧﻮﻳﺔ اﻟﺰرﻗﻄﻮﻧــﻲ‬ ‫اﻟﺸﻌﺒﺔ ‪ :‬اﻟﻌﻠـــــﻮم ﺗﺠﺮﻳﺒﻴــﺔ‬ ‫ﺗﻤﺮﻳﻦ ‪1‬‬ ‫‪ (a (1‬أﺣﺴﺐ‬ ‫‪ (b‬ﺣﻞ ﻓﻲ‬

‫‪2‬‬

‫) ‪( 4i − 3‬‬

‫اﻟﻤــﺎدة ‪ :‬اﻟﺮﻳﺎﺿﻴـــﺎت‬ ‫اﻟﻤﺴﺘﻮى ‪ :‬اﻟﺜﺎﻧﻴﺔ ﺛﺎﻧﻮي‬

‫(‬

‫)‬

‫اﻟﻤﻌﺎدﻟﺔ ‪3i + 1 = 0 :‬‬

‫)‬

‫‪3 + 2i z + 3‬‬

‫(‬

‫‪z2 +‬‬

‫‪ (2‬ﻟﺘﻜﻦ ‪z1 = − 3 + i ، z2 = −3i :‬‬ ‫‪ (a‬ﺣﺪد اﻟﺸﻜﻞ اﻟﻤﺜﻠﺜﻲ ﻟــ ‪ z1‬و ‪z2‬‬ ‫‪ (b‬ﺑﻴﻦ أن ‪z13 + z23 = 35i :‬‬

‫‪ (3‬ﻟﻴﻜﻦ اﻟﻤﺴﺘﻮى ℘ ﻣﻨﺴﻮب ﻟﻤﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ) ‪ ( O, i , j‬ﻧﻌﺘﺒﺮ اﻟﻨﻘﻂ ‪:‬‬

‫) ‪A ( z1 ) ; B ( z2 ) ; C ( i‬‬ ‫‪ (a‬ﺣﺪد ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ) ‪ M ( z‬ﻣﻦ اﻟﻤﺴﺘﻮى ℘ اﻟﺘﻲ أﻟﺤﺎﻗﻬﺎ ﺗﺤﻘﻖ ‪z − z1 = z − z2‬‬

‫‪ (b‬ﺣﺪد ﻗﻴﺎس اﻟﺰاوﻳﺔ )‬

‫(‬

‫‪ ، CA, CB‬ﻣﺎهﻲ ﻃﺒﻴﻌﺔ اﻟﻤﺜﻠﺚ ) ‪. ( ABC‬‬

‫ﺗﻤﺮﻳﻦ ‪2‬‬ ‫ﻳﺤﺘﻮي ﺻﻨﺪوق ‪ U1‬ﻋﻠﻰ ﺛﻼث آﺮات ﺑﻴﻀﺎء وآﺮﺗﻴﻦ ﺣﻤﺮاوﻳﻦ‪ ،‬وﻳﺤﺘﻮي ﺻﻨﺪوق ‪ U 2‬ﻋﻠﻰ آﺮﺗﻴﻦ ﺑﻴﻀﺎوﻳﻦ ‪.‬‬ ‫وأرﺑﻊ آﺮات ﺣﻤﺮاء‪ .‬ﻧﺴﺤﺐ ﻋﺸﻮاﺋﻴﺎ آﺮة ﻣﻦ ‪ U1‬ﺛﻢ ﻧﻀﻌﻬﺎ ﻓﻲ ‪ U 2‬وﻧﺴﺤﺐ ﻋﺸﻮاﺋﻴﺎ وﻓﻲ ﺁن واﺣﺪ آﺮﺗﻴﻦ ﻣﻦ ‪. U 2‬‬ ‫‪ (1‬أﺣﺴﺐ اﺣﺘﻤﺎل ‪ :‬اﻟﺤﺼﻮل ﻋﻠﻰ آﺮﺗﻴﻦ ﻣﻦ ﻟﻮﻧﻴﻦ ﻣﺨﺘﻠﻔﻴﻦ ﻣﻦ ‪. U 2‬‬ ‫‪ (2‬أﺣﺴﺐ اﺣﺘﻤﺎل ‪ :‬اﻟﺤﺼﻮل ﻋﻠﻰ آﺮﺗﻴﻦ ﺣﻤﺮاوﻳﻦ ﻋﻠﻤﺎ أن اﻟﻜﺮة اﻟﻤﺴﺤﻮﺑﺔ ﻣﻦ ‪ U1‬ﺣﻤﺮاء‪.‬‬ ‫‪ (3‬ﻟﻴﻜﻦ ‪ X‬اﻟﻤﺘﻐﻴﺮ اﻟﻌﺸﻮاﺋﻲ اﻟﺬي ﻳﺤﺪد ﻋﺪد اﻟﻜﺮات اﻟﺒﻴﻀﺎء اﻟﻤﺴﺤﻮﺑﺔ ﻣﻦ ‪. U 2‬‬ ‫ﺣﺪد ﻗﺎﻧﻮن اﺣﺘﻤﺎل ‪ ، X‬و أﺣﺴﺐ اﻷﻣﻞ اﻟﺮﻳﺎﺿﻲ ﻟــ ‪. X‬‬ ‫ﺗﻤﺮﻳﻦ ‪3‬‬ ‫ﻧﻌﺘﺒﺮ اﻟﻤﺘﺘﺎﻟﻴﺔ اﻟﻌﺪدﻳﺔ اﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬ ‫‪ (a (1‬ﺑﻴﻦ ﺑﺎﻟﺘﺮﺟﻊ أن ‪; U n ≥ 1 :‬‬

‫‪⎧⎪U 0 = 1‬‬ ‫⎨‬ ‫‪2‬‬ ‫) ‪⎪⎩∀n ∈ ;U n +1 = −2 + 5 + (U n + 2‬‬ ‫∈ ‪∀n‬‬

‫‪ (b‬ﺑﻴﻦ أن ‪ (U n ) :‬ﺗﺰاﻳﺪﻳﺔ‪.‬‬

‫‪ (2‬ﻟﺘﻜﻦ ) ‪ (Vn‬اﻟﻤﺘﺘﺎﻟﻴﺔ اﻟﻌﺪدﻳﺔ اﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬

‫‪2‬‬

‫) ‪: Vn = ( 2 + U n‬‬

‫∈ ‪∀n‬‬

‫‪ (a‬ﺑﻴﻦ أن ) ‪ (Vn‬ﻣﺘﺘﺎﻟﻴﺔ ﺣﺴﺎﺑﻴﺔ ﻣﺤﺪدا أﺳﺎﺳﻬﺎ‪.‬‬ ‫‪ (b‬أﺣﺴﺐ ‪ Vn‬ﺑﺪﻻﻟﺔ ‪. n‬‬ ‫‪ (c‬اﺳﺘﻨﺘﺞ ‪ U n‬ﺑﺪﻻﻟﺔ ‪ n‬ﺛﻢ أﺣﺴﺐ‬ ‫ﺗﻤﺮﻳﻦ ‪4‬‬ ‫ﻟﺘﻜﻦ ‪ g‬داﻟﺔ ﻣﻌﺮﻓﺔ آﻤﺎ ﻳﻠﻲ ‪:‬‬ ‫‪(I‬‬

‫‪lim U n‬‬

‫∞‪n →+‬‬

‫‪ g ( x ) = ( 2 x − 1) e + 1‬ﻟﻜﻞ‬ ‫‪x2‬‬

‫‪2‬‬

‫‪ (1‬أدرس ﺗﻐﻴﺮات ‪ g‬وﺣﺪد ﺟﺪول ﺗﻐﻴﺮاﺗﻬﺎ ﺑﺪون ﺣﺴﺎب اﻟﻨﻬﺎﻳﺔ ﻋﻨﺪ ∞‪. −‬‬ ‫‪ (2‬اﺳﺘﻨﺘﺞ أن ‪ g‬ﻣﻮﺟﺒﺔ ﻋﻠﻰ ‪. −‬‬

‫‪−‬‬

‫∈‪x‬‬

‫‪RM‬‬

‫اﻻﻣﺘﺤــﺎن اﻟﺘﺠﺮﻳﺒـﻲ اﻟﻤﻮﺣﺪ ﻟﻠﺒﺎآﺎﻟﻮرﻳــﺎ‬ ‫‪2006/2005‬‬ ‫اﻟﻤــﺎدة ‪ :‬اﻟﺮﻳﺎﺿﻴـــﺎت‬ ‫اﻟﻤﺴﺘﻮى ‪ :‬اﻟﺜﺎﻧﻴﺔ ﺛﺎﻧﻮي‬

‫اﻟﺜﺎﻧﻮﻳﺔ ‪ :‬ﺛﺎﻧﻮﻳﺔ اﻟﺰرﻗﻄﻮﻧــﻲ‬ ‫اﻟﺸﻌﺒﺔ ‪ :‬اﻟﻌﻠـــــﻮم ﺗﺠﺮﻳﺒﻴــﺔ‬

‫‪0‬‬

‫‪(II‬‬

‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ‪ f‬اﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬

‫‪ (1‬أﺣﺴﺐ ) ‪lim f ( x‬‬

‫∞‪x →+‬‬

‫‪x‬‬

‫‪x≺0‬‬

‫) ‪lim f ( x‬‬

‫و‬

‫‪⎧ f ( x ) = 2 ln 3 ( x ) − 3ln 2 ( x ) + 1‬‬ ‫⎪‬ ‫‪1 x2‬‬ ‫⎪‬ ‫‪⎨ f ( x) = e −1‬‬ ‫‪x‬‬ ‫⎪‬ ‫‪⎪ f ( 0) = 0‬‬ ‫⎩‬

‫)‬

‫∞‪x →−‬‬

‫‪ (a (2‬أدرس اﺗﺼﺎل ‪ f‬ﻋﻨﺪ ‪. 0‬‬ ‫‪ (b‬أدرس اﻹﺷﺘﻘﺎق ﻋﻠﻰ ﻳﺴﺎر ‪ . 0‬ﻣﺎذا ﺗﺴﺘﻨﺘﺞ هﻨﺪﺳﻴﺎ ؟‬ ‫‪ (a (3‬ﺑﺮهﻦ أن ) ‪ f ' ( x‬ﻟﻬﺎ ﻧﻔﺲ إﺷﺎرة ‪ ⎡⎣ ln ( x ) − 1⎤⎦ ln ( x ) :‬ﻟﻜﻞ ‪0‬‬ ‫‪ (b‬أدرس ﺗﻐﻴﺮات ‪ f‬ﻋﻠﻰ‬

‫‪−‬‬

‫‪ x‬ﺛﻢ ﺣﺪد إﺷﺎرﺗﻬﺎ‪.‬‬

‫ﺛﻢ ﺣﺪد ﺟﺪول ﺗﻐﻴﺮات ‪ f‬ﻋﻠﻰ ‪. D f‬‬

‫) ‪ln n ( x‬‬ ‫‪ (a (4‬ﺑﻴﻦ أن ‪= 0‬‬ ‫∞‪x →+‬‬ ‫‪x‬‬ ‫‪ (b‬ﺣﺪد اﻟﻔﺮوع اﻟﻼﻧﻬﺎﺋﻴﺔ ﻟــ ‪. C f‬‬ ‫‪lim‬‬

‫⎞ ‪⎛ 1‬‬ ‫⎜‪f‬‬ ‫‪ (5‬أﺣﺴﺐ ⎟‬ ‫⎠‪⎝ e‬‬ ‫‪ (a (6‬ﻟﻴﻜﻦ ‪ h‬ﻗﺼﻮر ‪ f‬ﻋﻠﻰ‬

‫(‬

‫ﻟﻜﻞ‬

‫*‬

‫∈‪n‬‬

‫ﺛﻢ أﻧﺸﺊ ‪ C f‬ﻓﻲ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ‪.‬‬ ‫‪−‬‬

‫‪ (b‬أﻧﺸﺊ ‪ Ch−1‬ﻓﻲ ﻧﻔﺲ اﻟﻤﻌﻠﻢ‪.‬‬

‫‪ .‬ﺑﺮهﻦ أن ‪ h‬ﺗﻘﺎﺑﻞ ﻣﻦ‬

‫‪−‬‬

‫ﻧﺤﻮ‬

‫)‬

‫‪−‬‬

‫( ‪ h‬وﺣﺪد‬

‫)‬

‫‪−‬‬

‫(‪.h‬‬

Related Documents

Tajribi Math Sx (19)
April 2020 1
Tajribi Math Sx (67)
April 2020 0
Tajribi Math Sx (87)
April 2020 0
Tajribi Math Sx (97)
April 2020 0
Tajribi Math Sx (110)
April 2020 0
Tajribi Math Sx (22)
April 2020 1

More Documents from "Ihsan Mokhlisse"

Tajribi Math Sx (39)
April 2020 6
Solutions 1
November 2019 4
I04pm1e
November 2019 3
Tdmeca2
November 2019 2
Tdmeca4
November 2019 2
M026m1e_2
November 2019 5