Tajribi Math Sx (12)

  • Uploaded by: Ihsan Mokhlisse
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tajribi Math Sx (12) as PDF for free.

More details

  • Words: 898
  • Pages: 2
‫اﻣﺘــﺤـــــــــﺎن ﺗﺠــﺮﻳــﺒــــــــﻲ‬ ‫‪ 29-28-26‬ﻣﺎرس ‪2005‬‬ ‫ﺛﺎﻧﻮﻳـﺔ ‪ :‬اﻟﻘﺎﺿﻲ ﻋﻴﺎض – ﻣﺮاآﺶ اﻟﻤﻨﺎرة‬

‫اﻟﻤــﺎدة ‪ :‬اﻟﺮﻳﺎﺿﻴــــﺎت‬

‫اﻟﺸﻌﺒﺔ ‪ :‬اﻟﻌﻠــــــﻮم اﻟﺘﺠﺮﻳﺒﻴــــﺔ‬

‫اﻟﻤﺴﺘﻮى ‪ :‬اﻟﺜﺎﻧﻴﺔ ﺛﺎﻧﻮ‬

‫) ﻳﺴﻤﺢ ﺑﺎﺳﺘﻌﻤﺎل اﻵﻟﺔ اﻟﺤﺎﺳﺒﺔ ﻏﻴﺮاﻟﻘﺎﺑﻠﺔ ﻟﻠﺒﺮﻣﺠﺔ ( ‪rm‬‬ ‫اﻟﺘﻤﺮﻳﻦ اﻷول‬ ‫ﻧﻌﺘﺒﺮ ﻓﻲ اﻟﻔﻀﺎء اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ﻣﺒﺎﺷﺮ ‪ O, i, j , k‬اﻟﻨﻘﻂ ‪:‬‬

‫(‬

‫)‬

‫) ‪B ( −1, 2,1) ; A ( −2, 0, 4 ) ; Ω ( −1, 0, 2‬‬ ‫‪ (1‬ﺑﻴﻦ أن ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ ) ‪ ( S‬اﻟﺘﻲ ﻣﺮآﺰهﺎ ‪ Ω‬واﻟﻤﺎر ﻣﻦ ‪ A‬هﻲ ‪x + y + z + 2 x − 4 z = 0 :‬‬ ‫‪2‬‬

‫‪ (2‬ﻟﻴﻜﻦ اﻟﻤﺴﺘﻘﻴﻢ ) ‪ ( D‬اﻟﻤﻌﺮف ﺑﺎﻟﺘﻤﺜﻴﻞ اﻟﺒﺎراﻣﺘﺮي اﻟﺘﺎﻟﻲ ‪:‬‬

‫‪2‬‬

‫‪2‬‬

‫‪⎧x = k‬‬ ‫⎪‬ ‫‪⎨ y = −2k‬‬ ‫‪⎪ z = −3 − 4 k‬‬ ‫⎩‬

‫) ∈ ‪(k‬‬

‫أ‪ -‬اﺣﺴﺐ ) ) ‪ d ( Ω, ( D‬ﺛﻢ اﺳﺘﻨﺘﺞ أن اﻟﻤﺴﺘﻘﻴﻢ ) ‪ ( D‬ﻣﻤﺎس ﻟﻠﻔﻠﻜﺔ ) ‪. ( S‬‬ ‫ب‪-‬‬ ‫ج‪-‬‬

‫ﺑﻴﻦ أن ) ‪ B ∈ ( D‬وأن ) ‪( ΩB ) ⊥ ( D‬‬ ‫اﺳﺘﻨﺘﺞ ﻧﻘﻄﺔ ﺗﻤﺎس اﻟﻤﺴﺘﻘﻴﻢ ) ‪ ( D‬واﻟﻔﻠﻜﺔ ) ‪. ( S‬‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻧﻲ‬ ‫ﻧﻌﺘﺒﺮ اﻟﻤﺘﺘﺎﻟﻴﺔ اﻟﻌﺪدﻳﺔ‬

‫‪ ( un )n≥0‬اﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ ‪ u0 = 0 :‬و‬

‫‪ (1‬ﺑﻴﻦ أﻧﻪ ﻟﻜﻞ ‪ n‬ﻣﻦ‬

‫‪n‬‬

‫‪un +1 = 3un − 2‬‬

‫) ∈ ‪( ∀n‬‬

‫‪un ≤ 0 :‬‬

‫‪ (2‬ﺑﻴﻦ أن اﻟﻤﺘﺘﺎﻟﻴﺔ ‪ ( un )n≥0‬ﺗﻨﺎﻗﺼﻴﺔ‪.‬‬

‫‪ (3‬ﻟﺘﻜﻦ اﻟﻤﺘﺘﺎﻟﻴﺔ اﻟﻌﺪدﻳﺔ ‪ ( vn )n≥0‬ﺣﻴﺚ‬

‫‪vn = 2 n − un‬‬

‫) ∈ ‪( ∀n‬‬

‫أ‪ -‬ﺑﻴﻦ أن ‪ ( vn )n≥0‬ﻣﺘﺘﺎﻟﻴﺔ هﻨﺪﺳﻴﺔ أﺳﺎﺳﻬﺎ ‪3‬‬

‫ب‪ -‬اﺣﺴﺐ ‪ vn‬ﺛﻢ ‪ un‬ﺑﺪﻻﻟﺔ ‪n‬‬ ‫ج‪ -‬اﺣﺴﺐ ‪lim un‬‬ ‫∞‪n →+‬‬

‫‪ (4‬ﻧﻀﻊ ‪S n = u0 + u1 + u2 + .........un −1 :‬‬ ‫ﺑﻴﻦ أن ‪:‬‬

‫‪1 + 3n‬‬ ‫‪2‬‬

‫‪Sn = 2n −‬‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻟﺚ‬ ‫‪ (1‬اآﺘﺐ ﻋﻠﻰ اﻟﺸﻜﻞ اﻟﺠﺒﺮي اﻟﻌﺪد اﻟﻌﻘﺪي‬ ‫‪(2‬‬

‫ﺣﻴﺚ ‪n ≥ 1‬‬

‫) ‪(3 + i‬‬ ‫ﻧﻌﺘﺒﺮ ﻓﻲ ﻣﺠﻤﻮﻋﺔ اﻷﻋﺪاد اﻟﻌﻘﺪﻳﺔ‬ ‫اﻟﻤﻌﺎدﻟﺔ ) ‪: ( E‬‬ ‫وﻟﻴﻜﻦ ‪ z1‬و ‪ z2‬ﺣﻠﻲ اﻟﻤﻌﺎدﻟﺔ ) ‪ ( E‬ﺣﻴﺚ ‪ℜe ( z1 ) ≺ 0‬‬ ‫أ‪ -‬ﺣﻞ اﻟﻤﻌﺎدﻟﺔ ) ‪( E‬‬ ‫‪2‬‬

‫‪z 2 − (1 + 3i ) z − 4 = 0‬‬

‫ب‪ -‬اآﺘﺐ آﻼ ﻣﻦ ‪ z1‬و ‪ z2‬ﻋﻠﻰ اﻟﺸﻜﻞ اﻟﻤﺜﻠﺜﻲ‬ ‫ج‪ -‬ﺑﻴﻦ أن ‪:‬‬

‫‪z13 = z2‬‬

‫)‬

‫(‬

‫‪ (3‬ﻧﻌﺘﺒﺮ ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻌﻘﺪي اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ‪ O, e1 , e2‬اﻟﻨﻘﻂ ‪ I‬و ‪ M‬و ‪ N‬اﻟﺘﻲ أﻟﺤﺎﻗﻬﺎ ﻋﻠﻰ‬ ‫اﻟﺘﻮاﻟﻲ ‪ i‬و ‪ α‬و ‪ 2α‬ﺣﻴﺚ ‪ α‬ﻋﺪد ﻋﻘﺪي ﻟﻴﺲ ﺗﺨﻴﻠﻴﺎ ﺻﺮﻓﺎ‪.‬‬ ‫‪α −i‬‬ ‫) ﻧﺬآﺮ أن ‪ α‬هﻮ ﻣﺮاﻓﻖ اﻟﻌﺪد اﻟﻌﻘﺪي ‪( α‬‬ ‫أ‪ -‬ﺑﻴﻦ أن ‪⇔ α + α = 0 :‬‬ ‫∈‬ ‫‪2α − i‬‬ ‫ب‪ -‬اﺳﺘﻨﺘﺞ أن اﻟﻨﻘﻂ ‪ I‬و ‪ M‬و ‪ N‬ﻏﻴﺮ ﻣﺴﺘﻘﻴﻤﻴﺔ‪.‬‬

‫اﻣﺘــﺤـــــــــﺎن ﺗﺠــﺮﻳــﺒــــــــﻲ‬ ‫‪ 29-28-26‬ﻣﺎرس ‪2005‬‬ ‫اﻟﻤــﺎدة ‪ :‬اﻟﺮﻳﺎﺿﻴــــﺎت‬

‫ﺛﺎﻧﻮﻳـﺔ ‪ :‬اﻟﻘﺎﺿﻲ ﻋﻴﺎض – ﻣﺮاآﺶ اﻟﻤﻨﺎرة‬ ‫اﻟﺸﻌﺒﺔ ‪ :‬اﻟﻌﻠــــــﻮم اﻟﺘﺠﺮﻳﺒﻴــــﺔ‬

‫‪rm‬‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺮاﺑﻊ‬ ‫‪(I‬‬ ‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ‪ g‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ‬

‫ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬

‫‪x‬‬

‫اﻟﻤﺴﺘﻮى ‪ :‬اﻟﺜﺎﻧﻴﺔ ﺛﺎﻧﻮي‬

‫‪g ( x ) = 1 + ( x − 1) e‬‬

‫‪ (1‬اﺣﺴﺐ ) ‪ lim g ( x‬و ) ‪lim g ( x‬‬ ‫∞‪x →+‬‬

‫‪ (2‬اﺣﺴﺐ ) ‪ g ' ( x‬ﻟﻜﻞ ‪ x‬ﻣﻦ‬

‫‪ (3‬اﺳﺘﻨﺘﺞ أن ‪0 :‬‬ ‫‪(II‬‬

‫)‬

‫∞‪x →−‬‬

‫ﺛﻢ اﻋﻂ ﺟﺪول ﺗﻐﻴﺮات اﻟﺪاﻟﺔ ‪. g‬‬

‫) ‪( ∀x ∈ ]−∞, 0[ ) g ( x‬‬

‫ﻟﺘﻜﻦ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ ‪ f‬اﻟﻤﻌﺮﻓﺔ ﻋﻠﻰ‬

‫ﺑﻤﺎ ﻳﻠﻲ ‪:‬‬

‫‪2‬‬ ‫⎧‬ ‫‪− ln ( x + 1) ; x ≥ 0‬‬ ‫‪⎪ f ( x) = 2 −‬‬ ‫‪x +1‬‬ ‫⎨‬ ‫‪⎪ f ( x ) = x + 2 + ( x − 2) ex ; x ≺ 0‬‬ ‫⎩‬

‫(‬

‫)‬

‫‪ ( C f‬هﻮ اﻟﻤﻨﺤﻨﻰ اﻟﻤﻤﺜﻞ ﻟﻠﺪاﻟﺔ ‪ f‬ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ‪ ) O, i, j‬وﺣﺪة اﻟﻘﻴﺎس ‪( 2cm‬‬

‫‪ (1‬أ‪ -‬اﺣﺴﺐ ) ‪ lim f ( x‬و ) ‪lim f ( x‬‬

‫∞‪x →−‬‬

‫∞‪x →+‬‬

‫ب‪ -‬ﺑﻴﻦ أن اﻟﺪاﻟﺔ ‪ f‬ﻣﺘﺼﻠﺔ ﻓﻲ اﻟﻨﻘﻄﺔ ‪. 0‬‬ ‫)‪f ( x‬‬ ‫)‪f ( x‬‬ ‫‪ lim‬وأول اﻟﻨﺘﻴﺠﺘﻴﻦ هﻨﺪﺳﻴﺎ‪.‬‬ ‫‪ lim‬وأن ‪= 0‬‬ ‫‪ (2‬ﺑﻴﻦ أن ‪= 1 :‬‬ ‫‪x →0‬‬ ‫‪x →0‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪x≺ 0‬‬ ‫‪x 0‬‬ ‫‪(3‬‬

‫أ‪ -‬ﺑﻴﻦ أﻧﻪ ﻟﻜﻞ ‪ x‬ﻣﻦ [‪]−∞, 0‬‬ ‫ب‪ -‬ﺑﻴﻦ أن إﺷﺎرة ) ‪ f ' ( x‬ﻋﻠﻰ [∞‪]0, +‬‬

‫)‪f '( x) = g ( x‬‬

‫هﻲ إﺷﺎرة ‪1− x‬‬

‫ج‪ -‬أﻋﻂ ﺟﺪول ﺗﻐﻴﺮات اﻟﺪاﻟﺔ ‪f‬‬

‫‪ (4‬أ ‪-‬‬

‫ﺑﻴﻦ أن اﻟﻤﺴﺘﻘﻴﻢ ) ∆ ( اﻟﺬي ﻣﻌﺎدﻟﺘﻪ ‪y = x + 2‬‬

‫⎞ ‪ln ( x + 1) ln x 1 ⎛ 1‬‬ ‫=‬ ‫ب‪ -‬ﺑﻴﻦ أن ‪+ ln ⎜1 + ⎟ :‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫⎠‪x ⎝ x‬‬

‫ﻣﻘﺎرب ﻟﻠﻤﻨﺤﻨﻰ )‬

‫‪ ( C f‬ﺑﺠﻮار ∞‪−‬‬

‫) [∞‪( ∀x ∈ ]0, +‬‬

‫ﺛﻢ ادرس اﻟﻔﺮع اﻟﻼﻧﻬﺎﺋﻲ‬

‫ﻟﻠﻤﻨﺤﻨﻰ ) ‪ ( C f‬ﺑﺠﻮار ∞‪+‬‬

‫‪ (5‬ﺑﻴﻦ أن اﻟﻤﻌﺎدﻟﺔ‬ ‫‪(6‬‬

‫ارﺳﻢ ) ‪( C‬‬ ‫‪f‬‬

‫‪ f ( x ) = 0‬ﺗﻘﺒﻞ ﺣﻼ وﺣﻴﺪا ‪ β‬ﻓﻲ اﻟﻤﺠﺎل ]‪[3, 4‬‬ ‫) ﻧﺄﺧﺬ ‪ f ( 3) = 0,12‬و ‪( f ( 4 ) = −0, 01‬‬ ‫) ﻧﻘﺒﻞ أن ) )‪ ω ( 3, f ( 3‬هﻲ ﻧﻘﻄﺔ اﻧﻌﻄﺎف ﻟﻠﻤﻨﺤﻨﻰ ) ‪( ( C f‬‬

‫‪ (III‬ﻟﺘﻜﻦ ‪ h‬ﻗﺼﻮر اﻟﺪاﻟﺔ ‪ f‬ﻋﻠﻰ اﻟﻤﺠﺎل‬

‫[∞‪[1, +‬‬

‫‪ (1‬ﺑﻴﻦ أن ‪ h‬ﺗﻘﺎﺑﻞ ﻣﻦ [∞‪ [1, +‬ﻧﺤﻮ ﻣﺠﺎل ‪ J‬ﻳﺠﺐ ﺗﺤﺪﻳﺪﻩ‬ ‫‪2‬‬

‫‪ (2‬ﺑﻴﻦ أن ‪:‬‬

‫) ‪(1 + β‬‬ ‫=‬ ‫‪1− β‬‬

‫)‪( h ) ' ( 0‬‬ ‫‪−1‬‬

‫) وﻧﺄﺧﺬ ‪( ln 2 = 0, 7‬‬

Related Documents

Tajribi Math Sx (12)
April 2020 1
Tajribi Math Sx (67)
April 2020 0
Tajribi Math Sx (87)
April 2020 0
Tajribi Math Sx (97)
April 2020 0
Tajribi Math Sx (110)
April 2020 0
Tajribi Math Sx (19)
April 2020 1

More Documents from "Ihsan Mokhlisse"

Tajribi Math Sx (39)
April 2020 6
Solutions 1
November 2019 4
I04pm1e
November 2019 3
Tdmeca2
November 2019 2
Tdmeca4
November 2019 2
M026m1e_2
November 2019 5