Tajribi Math Sx (101)

  • Uploaded by: Ihsan Mokhlisse
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tajribi Math Sx (101) as PDF for free.

More details

  • Words: 629
  • Pages: 2
‫‪@çb€€€€€€€€€€€€znàa‬‬

‫‪ò‹Ñïå‚@óibïä‬‬

‫‪ózÑ—Üa‬‬

‫‪@pbïšb€€€€€€î‹Üa@Zò†b€€€€€€€€€€€€€€€€€¾a‬‬

‫‪öa‹èÜa@óá€bÐ@óîíäbq‬‬

‫‪óïjî‹vnÜa@ãíÝÉÜaZójɀ€€€€€€€€€€€€€€€€“Üa‬‬ ‫‪2005O2006ZóïŽaŠ‡Üa@óåÜa‬‬

‫‪1/2‬‬

‫‪Œb−fia@ò‡à‬‬

‫‪3H‬‬

‫‪Þàbɾa‬‬

‫‪7‬‬

‫‪(ÂÕä@5)ßìÿa@æî‹ánÜa‬‬

‫‪u1 = 2‬‬ ‫‪‬‬ ‫‪‬‬ ‫ﻨﻌﺘﺒﺭ ﺍﻝﻤﺘﺘﺎﻝﻴﺔ ) ‪ (u n‬ﺍﻝﻤﻌﺭﻓﺔ ﺒﻤﺎ ﻴﻠﻲ‪:‬‬ ‫‪‬‬ ‫‪1‬‬ ‫=‬ ‫‪+‬‬ ‫‪2‬‬ ‫‪u‬‬ ‫‪u‬‬ ‫‪ n +1 3 n‬‬ ‫‪ -1 0,5‬ﺍﺤﺴﺏ ‪. u 2‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪1,5‬‬ ‫‪1‬‬

‫‪ -2‬ﺒﻴﻥ ﺃﻥ‪. ∀n ∈ ℕ ;u n ≺ 3 :‬‬ ‫*‬

‫‪ -3‬ﺃﺩﺭﺱ ﺭﺘﺎﺒﺔ ﺍﻝﻤﺘﺘﺎﻝﻴﺔ ) ‪(u n‬‬ ‫‪ -4‬ﻨﻌﺘﺒﺭ ﺍﻝﻤﺘﺘﺎﻝﻴﺔ ) ‪ (v n‬ﺒﺤﻴﺙ‪.v n = u n − 3 :‬‬ ‫ﺃ‪:‬ﺒﻴﻥ ﺃﻥ ﺍﻝﻤﺘﺘﺎﻝﻴﺔ ) ‪ (v n‬ﻫﻨﺩﺴﻴﺔ ﺜﻡ ﺃﺤﺴﺏ ‪ v n‬ﺒﺩﻻﻝﺔ ‪. n‬‬

‫ﻭﺍﺴﺘﻨﺘﺞ ﺃﻥ‪. ∀n ∈ ℕ ;u n ≥ 2 :‬‬ ‫*‬

‫ﺏ‪:‬ﺃﺤﺴﺏ ‪ s n = v 1 + v 2 + .... + v n‬ﻭﺍﺴﺘﻨﺘﺞ ‪s n‬‬

‫‪. lim‬‬

‫∞‪n →+‬‬

‫‪(óÕä@5,5@)ðäbrÜa@æî‹ánÜa‬‬

‫‪5z‬‬ ‫ﻝﻜل ﻋﺩﺩ ﻋﻘﺩﻱ ‪ z‬ﺒﺤﻴﺙ‪ z ≠ −i ) :‬ﻭ ‪( z ≠ i‬ﻨﻀﻊ‪:‬‬ ‫‪z2 +1‬‬ ‫‪2‬‬ ‫‪-1 0,5‬ﺃ‪ :‬ﺃﺤﺴﺏ ) ‪. ( −3 + 4i‬‬

‫= ) ‪. p (z‬‬

‫‪1‬‬ ‫‪1‬‬

‫ﺏ‪:‬ﺤل ﻓﻲ ‪ ℂ‬ﺍﻝﻤﻌﺎﺩﻝﺔ‪. p ( z ) = 3 + i :‬‬ ‫ﺝ‪:‬ﺃﻜﺘﺏ ﻋﻠﻰ ﺍﻝﺸﻜل ﺍﻝﻤﺜﻠﺜﻲ ﺤﻠﻲ ﺍﻝﻤﻌﺎﺩﻝﺔ ﺍﻝﺴﺎﺒﻘﺔ‪.‬‬

‫‪1‬‬

‫‪-2‬ﺃ‪:‬ﺒﻴﻥ ﺃﻥ ﻝﻜل ‪ z‬ﻤﻥ } ‪− 1 = 0 : ℂ / {−i , i‬‬

‫‪1‬‬

‫ﺏ‪:‬ﺤﺩﺩ ﻓﻲ ﺍﻝﻤﺴﺘﻭﻯ ﺍﻝﻌﻘﺩﻱ ) ‪ ( p‬ﺍﻝﻤﻨﺴﻭﺏ ﺇﻝﻰ ﻤﻌﻠﻡ ﻤﺘﻌﺎﻤﺩ ﻤﻤﻨﻅﻡ ) ‪ (O , e 1 , e 2‬ﻤﺠﻤﻭﻋﺔ ﺍﻝﻨﻘﻁ ) ‪ M ( z‬ﺒﺤﻴﺙ ﻴﻜﻭﻥ ) ‪p ( z‬‬

‫)‬

‫‪2‬‬

‫‪(z − z )( z‬‬

‫⇔ ‪. p (z ) ∈ ℝ‬‬

‫ ‬

‫ﺤﻘﻴﻘﻴﺎ‪.‬‬

‫‪1‬‬

‫‪‬‬ ‫‪ -3‬ﻨﻌﺘﺒﺭ ﻓﻲ ) ‪ ( p‬ﺍﻝﻨﻘﻁﺘﻴﻥ‪ A (1 − i ) :‬ﻭ ‪‬‬ ‫‪‬‬ ‫‪  OB‬‬ ‫ﻭ ‪. OA ,OB‬‬ ‫ﺃﺤﺴﺏ‬

‫‪OA‬‬

‫)‬

‫‪1+ i‬‬ ‫‪ 2‬‬

‫‪.B ‬‬

‫(‬

‫‪(ÂÕä 9,5 @)óÜdà‬‬ ‫ﺍﻝﺠﺯﺀ‪:A‬‬

‫ﻨﻌﺘﺒﺭﺍﻝﺩﺍﻝﺔ ﺍﻝﻌﺩﺩﻴﺔ ‪ g‬ﺍﻝﻤﻌﺭﻓﺔ ﻋﻠﻰ ﺍﻝﻤﺠﺎل [∞‪ ]0, +‬ﺒﻤﺎ ﻴﻠﻲ‪+ 1 + ln ( x ) :‬‬ ‫‪ -1 0,5‬ﺃﺤﺴﺏ ) ‪ g ′ ( x‬ﻝﻜل ‪ x‬ﻤﻥ [∞‪. ]0, +‬‬ ‫‪ -2‬ﺃﺩﺭﺱ ﺘﻐﻴﺭﺍﺕ ﺍﻝﺩﺍﻝﺔ ‪ g‬ﺜﻡ ﺍﺴﺘﻨﺘﺞ ﺇﺸﺎﺭﺓ ) ‪ g ( x‬ﻋﻠﻰ ﺍﻝﻤﺠﺎل [∞‪. ]0, +‬‬ ‫‪1‬‬ ‫ﺍﻝﺠﺯﺀ‪:B‬‬

‫ﻨﻌﺘﺒﺭﺍﻝﺩﺍﻝﺔ ﺍﻝﻌﺩﺩﻴﺔ ‪ f‬ﺍﻝﻤﻌﺭﻓﺔ ﺒﻤﺎﻴﻠﻲ‪− 2 x :‬‬ ‫‪0,5‬‬

‫‪ -1‬ﺃﺤﺴﺏ ) ‪( x‬‬

‫‪. lim+ f‬‬ ‫‪x →0‬‬

‫‪2‬‬

‫) ) ‪( x ) = (1 + ln ( x‬‬

‫‪.f‬‬

‫‪( x ) = −x‬‬

‫‪.g‬‬

‫ﻋﺩﺩﺍ‬

‫‪2O2ózÑ—Üa‬‬ ‫‪2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪-2 0,5‬ﺃ‪ :‬ﺘﺤﻘﻕ ﻤﻥ ﺃﻥ‪ − 2  :‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 0,5‬ﺏ‪:‬ﺍﺤﺴﺏ ) ‪. lim f ( x‬‬

‫) (‬

‫‪‬‬ ‫‪ ln x‬‬ ‫) ‪ln ( x‬‬ ‫‪1‬‬ ‫‪‬‬ ‫‪. ∀x ≻ 0 : f ( x ) = x‬‬ ‫‪+2‬‬ ‫‪+ 4‬‬ ‫‪x‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪‬‬ ‫‪‬‬

‫∞‪x →+‬‬

‫‪1‬‬

‫‪:3‬ﺃﺩﺭﺱ ﺍﻝﻔﺭﻭﻉ ﺍﻝﻼﻨﻬﺎﺌﻴﺔ ﻝﻠﻤﻨﺤﻨﻰ ) ‪. (C f‬‬

‫ﻭﺍﻝﻤﺴﺘﻘﻴﻡ ﺍﻝﺫﻱ ﻤﻌﺎﺩﻝﺘﻪ ‪. ( D ) : y = −2 x‬‬

‫‪ -4 0,5‬ﺃﺩﺭﺱ ﻭﻀﻊ ﻭﺘﻘﺎﻁﻊ ﻤﻨﺤﻨﻰ ﺍﻝﺩﺍﻝﺔ ‪f‬‬ ‫) ‪g (x‬‬ ‫‪. ∀x ≻ 0 : f ′ ( x ) = 2‬‬ ‫‪-5‬ﺃ‪ :‬ﺒﻴﻥ ﺃﻥ‪:‬‬ ‫‪1‬‬ ‫‪x‬‬ ‫‪ 0,5‬ﺏ‪:‬ﺍﺴﺘﻨﺘﺞ ﺇﺸﺎﺭﺓ ) ‪ f ′ ( x‬ﺜﻡ ﻀﻊ ﺠﺩﻭل ﺘﻐﻴﺭﺍﺕ ﺍﻝﺩﺍﻝﺔ ‪. f‬‬ ‫‪-6 0,5‬ﺃ‪:‬ﺒﻴﻥ ﺃﻥ ﺍﻝﻤﺴﺘﻘﻴﻡ ) ‪ ( D‬ﻤﻤﺎﺱ ﻝﻤﻨﺤﻨﻰ ﺍﻝﺩﺍﻝﺔ ‪f‬‬

‫ﻓﻲ ﺍﻝﻨﻘﻁﺔ ﺫﺍﺕ ﺍﻷﻓﺼﻭل‬

‫‪ 0,5‬ﺏ‪:‬ﺒﻴﻥ ﺃﻥ ﺍﻝﻨﻘﻁﺔ )‪ I (1, −1‬ﻫﻲ ﻨﻘﻁﺔ ﺍﻨﻌﻁﺎﻑ ل ) ‪. (C f‬‬

‫‪ 1 1‬‬ ‫‪ -7 0,5‬ﺒﻴﻥ ﺃﻨﻪ ﻴﻭﺠﺩ ﻋﺩﺩ ﻭﺤﻴﺩ ‪α‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ -8 0,5‬ﻝﺘﻜﻥ ‪ h‬ﻗﺼﻭﺭ ﺍﻝﺩﺍﻝﺔ ‪ f‬ﻋﻠﻰ ﺍﻝﻤﺠﺎل [‪. I = ]0,1‬‬ ‫ﻤﻥ ‪  2 , ‬ﺒﺤﻴﺙ‬ ‫‪e e‬‬

‫ﺒﻴﻥ ﺃﻥ ‪ h‬ﺘﻘﺎﺒل ﻤﻥ ﺍﻝﻤﺠﺎل ‪ I‬ﻨﺤﻭ ﻤﺠﺎل ‪J‬‬

‫‪(α ) = 0‬‬

‫ﻴﻨﺒﻐﻲ ﺘﺤﺩﻴﺩﻩ‪.‬‬

‫‪1‬‬

‫‪e‬‬

‫= ‪.x0‬‬

‫‪.f‬‬

‫ ‬ ‫‪ -9 1.5‬ﺃﻨﺸﺊ ) ‪ ( D‬ﻭ ) ‪ (C f‬ﻭ ) ‪ (C h −1‬ﻓﻲ ﻨﻔﺱ ﺍﻝﻤﻌﻠﻡ ﺍﻝﻤﺘﻌﺎﻤﺩ ﺍﻝﻤﻤﻨﻅﻡ ‪. O , i , j‬‬

‫)ﺍﻝﻭﺤﺩﺓ‪. 2cm:‬ﻨﺄﺨﺫ‪≃ 0, 2 :‬‬

‫‪1‬‬

‫‪e2‬‬

‫ﻭ ‪≃ 0, 4‬‬

‫‪1‬‬

‫‪e‬‬

‫)‬

‫(‬

‫(‪.‬‬ ‫‪[email protected]‬‬

Related Documents

Tajribi Math Sx (101)
April 2020 0
Tajribi Math Sx (67)
April 2020 0
Tajribi Math Sx (87)
April 2020 0
Tajribi Math Sx (97)
April 2020 0
Tajribi Math Sx (110)
April 2020 0
Tajribi Math Sx (19)
April 2020 1

More Documents from "Ihsan Mokhlisse"

Tajribi Math Sx (39)
April 2020 6
Solutions 1
November 2019 4
I04pm1e
November 2019 3
Tdmeca2
November 2019 2
Tdmeca4
November 2019 2
M026m1e_2
November 2019 5