Tajribi Math Sx (10)

  • Uploaded by: Ihsan Mokhlisse
  • 0
  • 0
  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tajribi Math Sx (10) as PDF for free.

More details

  • Words: 707
  • Pages: 2
‫اﻣﺘﺤــــﺎن ﺗﺠﺮﻳﺒـــــﻲ‪2‬‬ ‫‪2003 – 2002‬‬ ‫اﻟﻤﺴﺘﻮى ‪ :‬اﻟﺜﺎﻧﻴﺔ ﺛﺎﻧﻮي‬

‫اﻟﺸﻌﺒﺔ ‪ :‬اﻟﻌﻠﻮم اﻟﺘﺠﺮﻳﺒﻴﺔ‬

‫اﻟﺘﻤﺮﻳﻦ اﻷول‬

‫ﻧﻌﺘﺒﺮ اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ اﻟﻤﻌﺮﻓﺔ ﺑﻤﺎ ﻳﻠﻲ ‪f ( x ) = e − 2 e − 1 :‬‬ ‫‪x‬‬

‫‪x‬‬

‫‪ (1‬ﺣﺪد ‪D f‬‬

‫‪ (2‬أﺣﺴﺐ ) ‪lim f ( x‬‬

‫∞‪x →+‬‬

‫‪(3‬‬

‫أدرس اﻟﻔﺮع اﻟﻼﻧﻬﺎﺋﻲ ﻟﻠﻤﻨﺤﻨﻰ ) (‬

‫وﻣﻤﻨﻈﻢ ) ‪(O, i, j‬‬

‫‪f‬‬

‫ﻋﻨﺪ ∞‪) +‬‬

‫هﻮ اﻟﻤﻨﺤﻨﻰ اﻟﻤﻤﺜﻞ ﻟﻠﺪاﻟﺔ ‪ f‬ﻓﻲ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ‬

‫‪f‬‬

‫‪ (4‬أدرس ﻗﺎﺑﻠﻴﺔ اﺷﺘﻘﺎق ‪ f‬ﻋﻨﺪ ‪ x0 = 0‬ﻋﻠﻰ اﻟﻴﻤﻴﻦ‪.‬‬

‫‪ -a (5‬أﺣﺴﺐ ) ‪ f ' ( x‬ﻣﺸﺘﻘﺔ اﻟﺪاﻟﺔ ‪ f‬ﺛﻢ أدرس ﺗﻐﻴﺮات ‪f‬‬

‫‪-b‬‬

‫اﻋﻂ ﻣﻌﺎدﻟﺔ اﻟﻤﻤﺎس ﻟﻠﻤﻨﺤﻨﻰ ) (‬ ‫‪f‬‬

‫‪Log 10‬‬

‫‪ -a (6‬أﺣﺴﺐ اﻟﺘﻜﺎﻣﻞ ‪e x − 1dx :‬‬

‫‪(7‬‬

‫ﻓﻲ اﻟﻨﻘﻄﺔ ذات اﻷﻓﺼﻮل ‪Log 5‬‬

‫∫ = ‪ ) I‬ﻳﻤﻜﻨﻚ وﺿﻊ ‪( t = e x − 1‬‬

‫‪Log 2‬‬

‫‪ -b‬أﺣﺴﺐ ﻣﺴﺎﺣﺔ اﻟﺤﻴﺰ ∆ اﻟﻤﺤﺼﻮر ﺑﻴﻦ ‪ f‬وﻣﺤﻮر اﻷﻓﺎﺻﻴﻞ واﻟﻤﺴﺘﻘﻴﻤﺎن ) ‪( x = Log 2‬‬ ‫ﻟﺘﻜﻦ ‪ h‬ﻗﺼﻮر اﻟﺪاﻟﺔ ‪ f‬ﻋﻠﻰ اﻟﻤﺠﺎل [∞‪I = [ Log 2, +‬‬

‫و‬

‫) ‪( x = Log10‬‬

‫‪ -a‬ﺑﻴﻦ أن ‪ h‬ﺗﻘﺎﺑﻞ ﻣﻦ ‪ I‬ﻧﺤﻮ ﻣﺠﺎل ‪ J‬ﻳﺠﺐ ﺗﺤﺪﻳﺪﻩ‬ ‫‪ -b‬أﺣﺴﺐ ) ‪ h −1 ( x‬ﻟﻜﻞ ‪ x‬ﻣﻦ ‪. J‬‬ ‫‪ -c‬اﻋﻂ ﺟﺪول ﺗﻐﻴﺮات ‪h −1‬‬ ‫‪ (8‬ﻟﺘﻜﻦ ‪ g‬اﻟﺪاﻟﺔ اﻟﻌﺪدﻳﺔ اﻟﻤﻌﺮﻓﺔ ب ‪:‬‬

‫) ) ‪g ( x ) = log ( f ( x‬‬

‫‪ -a‬ﺣﺪد ‪ Dg‬ﺣﻴﺰ ﺗﻌﺮﻳﻒ اﻟﺪاﻟﺔ ‪g‬‬

‫‪ -b‬أﺣﺴﺐ ﻧﻬﺎﻳﺎت ‪ g‬ﻋﻨﺪ ﻣﺤﺪات ‪Dg‬‬

‫‪ -c‬هﻞ ‪ g‬ﻗﺎﺑﻠﺔ ﻟﻼﺷﺘﻘﺎق ﻋﻨﺪ ‪ 0‬ﻋﻠﻰ اﻟﻴﻤﻴﻦ‬ ‫‪ -d‬أﺣﺴﺐ ) ‪ g ' ( x‬اﻟﺪاﻟﺔ اﻟﻤﺸﺘﻘﺔ ﻟﻠﺪاﻟﺔ ‪ g‬ﺛﻢ أدرس ﺗﻐﻴﺮات ‪g‬‬

‫‪-e‬‬ ‫‪-f‬‬

‫ﺣﺪد ﺗﻘﺎﻃﻊ ) (‬ ‫‪g‬‬

‫وﻣﺤﻮر اﻷﻓﺎﺻﻴﻞ‬

‫اﻋﻂ ﻣﻌﺎدﻟﺔ اﻟﻤﻤﺎس ل ) (‬ ‫‪g‬‬

‫ﻋﻨﺪ اﻟﻨﻘﻄﺔ ذات اﻷﻓﺼﻮل ‪Log 5‬‬

‫(‪.‬‬

‫‪ -g‬أدرس اﻟﻔﺮوع اﻟﻼﻧﻬﺎﺋﻴﺔ ﻟﻠﻤﻨﺤﻨﻰ )‬ ‫أﻧﺸﺊ ) ( ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻤﻨﺴﻮب إﻟﻰ ﻣﻌﻠﻢ ﻣﺘﻌﺎﻣﺪ ﻣﻤﻨﻈﻢ ) ‪. ( O, i, j‬‬ ‫‪g‬‬

‫‪(9‬‬

‫‪g‬‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻧﻲ‬ ‫ﻧﻌﺘﺒﺮ اﻟﺤﺪودﻳﺔ ‪ P‬اﻟﻤﻌﺮﻓﺔ ب ‪, P ( z ) = z − 11z + 43z − 65 :‬‬ ‫‪2‬‬

‫‪3‬‬

‫‪ (1‬ﺗﺤﻘﻖ أن ‪, P ( z ) = ( z − 5 ) ( z 2 − 6 z + 13) :‬‬ ‫‪ (2‬ﺣﻞ ﻓﻲ‬

‫اﻟﻤﻌﺎدﻟﺔ ‪, P ( z ) = 0 :‬‬

‫∈‪z‬‬

‫∈ ‪∀z‬‬

‫∈‪z‬‬

‫‪ (3‬ﻧﻌﺘﻴﺮ ﻓﻲ اﻟﻤﺴﺘﻮى اﻟﻌﻘﺪي اﻟﻨﻘﻂ ‪ A‬و ‪ B‬و ‪ C‬ذات اﻷﻟﺤﺎق ‪ 3 + 2i‬و ‪ 3 − 2i‬و ‪. 5‬‬ ‫ﺣﺪد ﻃﺒﻴﻌﺔ اﻟﻤﺜﻠﺚ ‪ABC‬‬ ‫‪ (4‬ﻟﻴﻜﻦ ) ( اﻟﺪاﺋﺮة اﻟﻤﺤﻴﻄﺔ ﺑﺎﻟﻤﺜﻠﺚ ‪ABC‬‬

‫ﺣﺪد اﻟﻌﺪد اﻟﻌﻘﺪي ‪ a‬واﻟﻌﺪد اﻟﺤﻘﻴﻘﻲ ‪ r‬ﻟﻜﻲ ﺗﻜﻮن ﻣﺠﻤﻮﻋﺔ اﻟﻨﻘﻂ ) ‪ M ( z‬ﺣﻴﺚ » ‪z − a = r‬‬

‫« هﻲ اﻟﺪاﺋﺮة ) (‬

‫اﻣﺘﺤــــﺎن ﺗﺠﺮﻳﺒـــــﻲ‪2‬‬ ‫‪2003 – 2002‬‬ ‫اﻟﻤﺴﺘﻮى ‪ :‬اﻟﺜﺎﻧﻴﺔ ﺛﺎﻧﻮي‬

‫اﻟﺸﻌﺒﺔ ‪ :‬اﻟﻌﻠﻮم اﻟﺘﺠﺮﻳﺒﻴﺔ‬

‫اﻟﺘﻤﺮﻳﻦ اﻟﺜﺎﻟﺚ‬ ‫ﻣﺠﻤﻮﻋﺔ ﻣﻜﻮﻧﺔ ﻣﻦ ‪ 20‬ﺷﺨﺺ اﺗﻔﻘﻮا ﻋﻠﻰ أن ﻳﺬهﺒﻮا إﻟﻰ اﻟﺴﻴﻨﻤﺎ ﻳﻮﻣﻴﻦ ﻣﺘﺘﺎﻟﻴﻴﻦ اﻟﺴﺒﺖ واﻷﺣﺪ ﻟﻴﺸﺎهﺪوا " ﻓﻴﻠﻤﻴﻦ "‬ ‫‪ A‬و‪B‬‬ ‫ﻓﻲ ﻳﻮم اﻟﺴﺒﺖ ‪ 8‬أﺷﺨﺎص ﺷﺎهﺪوا اﻟﻔﻴﻠﻢ ‪A‬‬ ‫واﻟﺒﺎﻗﻲ ذهﺒﻮا ﻟﻴﺸﺎهﺪوا اﻟﻔﻴﻠﻢ ‪B‬‬ ‫وﻓﻲ ﻳﻮم اﻷﺣﺪ أرﺑﻌﺔ أﻋﺎدوا ﻣﺸﺎهﺪة اﻟﻔﻴﻠﻢ ‪B‬‬ ‫واﻟﺒﺎﻗﻲ ذهﺒﻮا ﻟﻤﺸﺎهﺪة اﻟﻔﻴﻠﻢ اﻟﺬي ﻟﻢ ﻳﺴﺒﻖ ﻟﻬﻢ أن ﺷﺎهﺪوﻩ‪.‬‬ ‫وﻓﻲ ﻳﻮم اﻻﺛﻨﻴﻦ ﺗﻢ اﺧﺘﻴﺎر ﺷﺨﺺ ﻣﻦ اﻟﻤﺠﻤﻮﻋﺔ‪.‬‬ ‫ﻧﻌﺘﺒﺮ اﻷﺣﺪاث اﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫‪ » A1‬اﻟﺸﺨﺺ اﻟﺬي ﺗﻢ اﺧﺘﻴﺎرﻩ ﺷﺎهﺪ اﻟﻔﻴﻠﻢ ‪ A‬ﻳﻮم اﻟﺴﺒﺖ «‬ ‫‪ » A2‬اﻟﺸﺨﺺ اﻟﺬي ﺗﻢ اﺧﺘﻴﺎرﻩ ﺷﺎهﺪ اﻟﻔﻴﻠﻢ ‪ A‬ﻳﻮم اﻷﺣﺪ «‬ ‫‪ » B1‬اﻟﺸﺨﺺ اﻟﺬي ﺗﻢ اﺧﺘﻴﺎرﻩ ﺷﺎهﺪ اﻟﻔﻴﻠﻢ ‪ B‬ﻳﻮم اﻟﺴﺒﺖ «‬ ‫‪ » B2‬اﻟﺸﺨﺺ اﻟﺬي ﺗﻢ اﺧﺘﻴﺎرﻩ ﺷﺎهﺪ اﻟﻔﻴﻠﻢ ‪ B‬ﻳﻮم اﻷﺣﺪ «‬

‫‪ (1‬أﺣﺴﺐ اﻻﺣﺘﻤﺎﻻت اﻟﺘﺎﻟﻴﺔ ‪ P ( A1 ) :‬و ) ‪P ( A2‬‬

‫‪A‬‬ ‫‪A‬‬ ‫‪ (2‬أﺣﺴﺐ اﻻﺣﺘﻤﺎﻻت اﻟﺘﺎﻟﻴﺔ ‪ P ⎛⎜ 2 ⎞⎟ :‬و ⎟⎞ ‪ P ⎛⎜ 2‬و ) ‪P ( A1 ∩ A2‬‬ ‫‪B‬‬ ‫⎝‬ ‫⎠ ‪⎝ A1‬‬ ‫⎠‪1‬‬ ‫اﻟﺘﻤﺮﻳﻦ اﻟﺮاﺑﻊ‬ ‫اﻟﻔﻀﺎء ) ‪ (ξ‬ﻣﻨﺴﻮب إﻟﻰ م م م م ‪ ، O, i, j , k‬ﻧﻌﺘﺒﺮ اﻟﻨﻘﻂ ) ‪ A ( −3, 0, 0‬و )‪ B ( −1, 0, −1‬و ) ‪C ( −1,1, 0‬‬

‫)‬

‫(‬

‫و ) ‪. Ω (1, −1, 0‬‬

‫‪ -a (1‬أﺣﺴﺐ ‪AB ∧ AC‬‬ ‫‪ -b‬اﺳﺘﻨﺘﺞ أن ‪ x − 2 y + 2 z + 3 = 0 :‬هﻲ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻤﺴﺘﻮى ) ‪( ABC‬‬ ‫‪ -a (2‬اﻋﻂ ﻣﻌﺎدﻟﺔ دﻳﻜﺎرﺗﻴﺔ ﻟﻠﻔﻠﻜﺔ ) ‪ ( S‬اﻟﺘﻲ ﻣﺮآﺰهﺎ ‪ Ω‬وﺷﻌﺎﻋﻬﺎ ‪2‬‬ ‫‪ -b‬ﺑﻴﻦ أن اﻟﻤﺴﺘﻮى ) ‪ ( ABC‬ﻣﻤﺎس ﻟﻠﻔﻠﻜﺔ ) ‪. ( S‬‬

Related Documents

Tajribi Math Sx (10)
April 2020 3
Tajribi Math Sx (67)
April 2020 0
Tajribi Math Sx (87)
April 2020 0
Tajribi Math Sx (97)
April 2020 0
Tajribi Math Sx (110)
April 2020 0
Tajribi Math Sx (19)
April 2020 1

More Documents from "Ihsan Mokhlisse"

Tajribi Math Sx (39)
April 2020 6
Solutions 1
November 2019 4
I04pm1e
November 2019 3
Tdmeca2
November 2019 2
Tdmeca4
November 2019 2
M026m1e_2
November 2019 5