JWBK063-APP-A
JWBK063-Ibrahim
December 22, 2005
19:58
Char Count= 0
Appendix A Table of z-Transforms f (kT ) δ(t) 1 kT (kT )2 (kT )3 e−akT kT e−akT ak 1 − e−akT sin akT cos akT e−akT sin bkT e−akT cos bkT
F(z) 1 z z−1 Tz (z − 1)2 T 2 z(z + 1) 2(z − 1)3 T 3 z(z 2 + 4z + 1) (z − 1)4 z z − e−aT T ze−aT (z − e−aT )2 z z−a z(1 − e−aT ) (z − 1)(z − e−aT ) z sin aT 2 z − 2z cos aT + 1 z(z − cos aT ) z 2 − 2z cos aT + 1 e−aT z sin bT z 2 − 2e−aT z cos bT + e−2aT z 2 − e−aT z cos bT 2 z − 2e−aT z cos bT + e−2aT
Microcontroller Based Applied Digital Control D. Ibrahim C 2006 John Wiley & Sons, Ltd. ISBN: 0-470-86335-8
JWBK063-APP-A
284
JWBK063-Ibrahim
December 22, 2005
19:58
Char Count= 0
APPENDIX A TABLE OF Z-TRANSFORMS
Laplace transform 1 s 1 s2 1 s3 1 s+a 1 (s + a)2 a s(s + a) b−a (s + a)(s + b) (b − a)s (s + a)(s + b) a s2 + a2 s 2 s + a2 s (s + a)2
Corresponding z-transform z z−1 Tz (z − 1)2 T 2 z(z + 1) 2(z − 1)3 z z − e−aT T ze−aT (z − e−aT )2 z(1 − e−aT ) (z − 1)(z − e−aT ) z(e−aT − e−bT ) (z − e−aT )(z − e−bT ) (b − a)z 2 − (be−aT − ae−bT )z (z − e−aT )(z − e−bT ) z sin aT z 2 − 2z cos aT + 1 z 2 − z cos aT z 2 − 2z cos aT + 1 z[z − e−aT (1 + aT )] (z − e−aT )2