Tabla De Integrales

  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Tabla De Integrales as PDF for free.

More details

  • Words: 2,007
  • Pages: 12
INTEGRALES POLINÓMICAS

1.∫ k . f (u ) du = k ∫ f (u ) du 2.∫ ( f (u ) + g (u ) + ...)du = ∫ f (u ) du + ∫ g (u ) du + ...

3.∫ u.dv = u.v + ∫ vdu … (Integral por partes)

4.∫ du = u + c

5.∫ kdu = ∫ k .u + c

INTEGRALES EXPONENCIALES Y LOGARÍTMICAS

u n +1 6.∫ u du = +c n +1

1 7.∫ u −1du = ∫ du = ln u + c u

8.∫ e du = e + c

au 9.∫ a du = +c ln u

n

u

u

u

10.∫ u.eu du = eu (u − 1) + c

11.∫ u n .eu du = u n .eu − n ∫ u n −1.eu du 1 (u n .a u − n ∫ u n −1.a u du ) ln a eu 1 eu eu 13.∫ n du = ( n −1 + ∫ n −1 du ) u n −1 u u

12.∫ u n .a u du =

au −1 a u au 14.∫ n du = ( − ln a ∫ n −1 du ) u n − 1 u n −1 u

15.∫ ln udu = u (ln u − 1) + c EDICIONES CHARITA

Página 1

n +1 u 16.∫ u u .ln udu = ( n + 1)lnu − 1] + c 2 [ ( n + 1) 1 17.∫ du = ln ln u + c u ln u

INTEGRALES TRIGONOMÉTRICAS

18.∫ senudu = − cos u + c 19.∫ cos udu = senu + c 20.∫ tgudu = ln sec u + c 21.∫ ctgudu = ln senu + c 22.∫ sec udu = ln sec u + tgu + c 23.∫ csc udu = ln csc u − ctgu + c u sen 2 u − +c 2 4 u sen 2 u 25.∫ cos 2 udu = + +c 2 4

24.∫ sen 2 udu =

EDICIONES CHARITA

Página 2

26.∫ tg 2udu = tgu − u + c 27.∫ ctg 2udu = −(ctgu + u ) + c

28.∫ sec 2 udu = tgu + c 29.∫ csc2 udu = −ctgu + c − cos u (2 + sen 2u ) 30.∫ sen udu = +c 3 3

senu (2 + cos 2 u ) 31.∫ cos udu = +c 3 2 tg u + ln cos u + c 32.∫ tg 3udu = 2 3

−ctg 2u 33.∫ ctg udu = − ln senu + c 2 1 34.∫ sec3 udu = sec u.tgu + ln sec u + tgu  + c 2 1 35.∫ csc3 udu =  csc u.ctgu + ln csc u − ctgu  + c 2 3

EDICIONES CHARITA

Página 3

36.∫ sec u.tgudu = sec u + c 37.∫ csc u.ctgudu = − csc u + c INTEGRAL EXPONENCIAL-TRIGONOMÉTRICA

eau (asenbu − n cos bu ) 38.∫ e sen(bu )du = +c a2 + b2 e au (a cos bu + nsenbu ) au 39.∫ e cos(bu )du = +c a 2 + b2 − sen n −1u.cos u n − 1 n 40.∫ sen udu = + sen n − 2udu ∫ n n cos n −1 u.senu n − 1 n 41.∫ cos udu = + cos n − 2 udu ∫ n n tg n −1u n 42.∫ tg udu = − ∫ tg n − 2udu n −1 au

−ctg n −1u 43.∫ ctg udu = − ∫ ctg n − 2udu n −1 sec n − 2 u.tgu n − 2 n n−2 44.∫ sec udu = + sec udu n −1 n −1 ∫ − csc n − 2 u.ctgu n − 2 n 45.∫ csc udu = + csc n −2 udu ∫ n −1 n −1 n

INTEGRAL FUNCIÓN-TRIGONOMÉTRICA EDICIONES CHARITA

Página 4

46.∫ u.senudu = senu − u.cos u + c 47.∫ u.cos udu = cos u − u.senu + c 48.∫ u 2 .senudu = 2u.senu + ( 2 − u 2 ) cos u + c 49.∫ u 2 .cos udu = 2u.cos u + ( u 2 −2 ) senu + c

50.∫ u n .senudu = −u n .cos u + n ∫ u n −1 cos u + c 51.∫ u n .cos udu = u n .senu − n ∫ u n −1senu + c INTEGRAL PRODUCTO TRIGONOMÉTRICA

sen(a + b)u cos(a − b)u + +c 2(a + b) 2(a − b) cos(a + b)u cos(a − b)u 53.∫ sen(au).cos(bu)du =− − +c 2(a + b) 2(a − b) sen(a + b)u sen(a − b)u 54.∫ cos(au).cos(bu)du = + +c 2(a + b) 2(a − b) 52.∫ sen(au).sen(bu)du =−

sena−1u.cosb+1 a −1 a−2 b + sen u .cos udu + c 55.∫ sen u.cos udu =− (a + b) a +b ∫ a

b

INTEGRAL TRIGONOMÉTRICA INVERSA

EDICIONES CHARITA

Página 5

56.∫ arcsenudu =u.arcsenu + 1 − u 2 + c 57.∫ arccos udu =u.arccos u − 1 − u 2 + c 58.∫ arctgudu =u.arctgu − ln 1 + u 2 + c 59.∫ arcctgudu =u.arcctgu + ln 1 + u 2 + c 60.∫ arc sec udu =u.arc sec u − ln u + u 2 − 1 + c 61.∫ arc csc udu =u.arc csc u + ln u + u 2 − 1 + c 2u 2 − 1 u 1− u2 62.∫ u .arcsenudu = .arc csc u + +c 4 4 u 1− u2 2u 2 − 1 +c 63.∫ u .arccos udu = .arccos u − 4 4 u2 +1 u 64.∫ u .arctgudu = .arctgu − + c 2 2  1  n +1 u n +1 n 65.∫ u .arcsenudu = u arcsenu − du  ∫ 1 − u 2  n +1   1  n +1 u n +1 n 66.∫ u .arccos udu = arccos u u + du  ∫ 1 − u 2  n +1  EDICIONES CHARITA

Página 6

 1  n +1 u n +1 67.∫ u .arctgudu = u arctgu − du ∫ u 2 + 1  n + 1  n

INTEGRAL HIPERBÓLICA

68.∫ senhudu = cosh u + c 69.∫ cos hudu = sen h u + c 70.∫ tghudu = ln cosh u + c 71.∫ ctghudu = ln sen h u + c 72.∫ sec hudu = arctg ( senhu ) + c 73.∫ csc hudu = ln csc hu + ctghu + c 74.∫ sec h 2udu = tghu + c 75.∫ c sc h 2udu = −ctghu + c

EDICIONES CHARITA

Página 7

76.∫ sec hu.tghudu = − sec hu + c 77.∫ csc hu.ctghudu = − csc hu + c senh 2u u − +c 78.∫ senh udu = 4 2 2

senh 2u u + +c 4 2 80.∫ tgh 2udu = u − tghu + c 79.∫ cos h 2udu =

81.∫ ctgh 2udu = u − ctghu + c 82.∫ u.senhudu = u cosh u − senhu + c 83.∫ u.cos hudu = usen h u − cos hu + c e au 84.∫ e .senh(bu )du = 2 [ asenh(bu ) − b cosh(bu )] + c a + b2 e au au 85.∫ e .cos h(bu )du = 2 2 [ a cos h(bu ) − bsen h(bu ) ] + c a −b u 1 86.∫ du = 2 a + bu − a ln a + bu  + c a + bu b  u2 1  (a + bu)2 87.∫ du = 3  − 2a(a + bu) + a2 ln a + bu  + c a + bu b  2  au

EDICIONES CHARITA

Página 8

88.∫

u 1  a  du = + ln a + bu  +c ( a + bu ) 2 b 2  a + bu

 u2 1  a2 89.∫ 2 ln du = a + bu − − a a + bu  +c ( a + bu ) 2 b3  a + bu  90.∫

1 u du = ( a + bu )3 b2

 1  a −  2( a + bu ) 2 a + bu  +c  

91.∫

1 1 u +c du = ln u (a + bu ) a a + bu

92.∫

1 u b a + bu = − + +c ln du 2 2 u (a + bu ) au a u

u 1 1 u du = + ln +c 2 2 u (a + bu ) a(a + bu ) a a + bu 1 1 1 du = arctg 94.∫ 2 ( ) +c 2 a +u a a u+a 1 1 du = +c 95.∫ 2 ln a − u2 2a u − a

93.∫

96.∫

u−a 1 1 du = ln +c 2 2 u −a 2a u + a

EDICIONES CHARITA

Página 9

u 2 2 a2 u 97.∫ a − u du = a − u + arcsen( ) + c 2 2 a u 2 a2 2 2 2 98.∫ u ± a du = u ± a ± ln u + u 2 ± a 2 +c 2 2 u a4 u 2 2 2 2 2 2 2 99.∫ u a − u du = (2u − a ) a − u + arcsen( ) + c 8 8 a 2

100.∫ u 101.∫

2

2

u a4 2 2 2 2 u ± a du = (2u ± a ) u ± a − ln u + u 2 ± a2 +c 8 8 2

2

u 2 + a2 −a + u 2 + a 2 2 2 du = u + a + a ln +c u u

102.∫

a2 − u 2 a − u2 + a2 2 2 du = a − u + a ln +c u u

103.∫

u2 − a2 u du = u 2 − a 2 − a.arc sec +c u a

104.∫

u2 ± a2 u2 ± a2 2 2 du = − + ln u + u ± a +c 2 u u

105.∫

a2 − u 2 a2 − u2 u du = − − arcsen ( ) +c u2 u a

EDICIONES CHARITA

Página 10

1 a + u2 + a2 106.∫ du = − ln +c 2 2 a u u u +a 1

107.∫

1 u du = arc sec( ) + c a a u u2 − a2

108.∫

u2 ± a2 du = ∓ +c 2 2 2 a .u u ±a

109.∫ 110.∫

111.∫ 112.∫ 113.∫

1

1

u2 1

u du =arcsen( ) + c a a2 − u2 u2 u 2 a2 2 du = − u ± a ∓ ln u + u 2 ± a 2 +c 2 2 u2 ± a2

u2

u 2 2 a2 u du = − a − u ∓ arcsen( ) +c 2 2 a a2 − u 2 1 du = ln u + u 2 ± a2 +c u 2 ± a2 a2 − u 2 du = − +c 2 2 2 a .u a −u 1

u2

EDICIONES CHARITA

Página 11

1 a + a2 − u 2 1 a 114.∫ du = − ln +c = − arccos h( ) + c a u a u u a2 − u2 1

115.∫ ( a − u 2

116.∫

3 2 2

)

u 3a 4 u 2 2 2 2 du = − (2u − 5a ) a − u + arcsen( ) + c 8 8 a

1 (u ± a ) 1 2

117.∫

3 2 2

3 2 2

(a 2 − u )

EDICIONES CHARITA

du = ±

u a2 u2 ± a2 u

du = a

2

a −u 2

2

+c

+c

Página 12

Related Documents

Tabla De Integrales
May 2020 10
Tabla De Integrales
November 2019 11
Tabla De Integrales
June 2020 14
Tabla De Integrales
June 2020 11
Tabla De Integrales 2.pdf
December 2019 12