T TA AB BL LA AD DE ED DE ER RIIV VA AD DA AS S FUNCIÓN
FUNCIÓN DERIVADA
FUNCIÓN
FUNCIÓN DERIVADA
a
0
sen x
cos x
x
1
sen u
u' cos u
x2
2x
cos x
− senx
xm
m ⋅ x m−1
cos u
− u' senu
f ( x ) + g( x )
f ' ( x ) + g' ( x )
tgx
k.f(x)
k.f' (x)
tgu
f ( x ) ⋅ g( x )
f ' ( x ) ⋅ g( x ) + f ( x ) ⋅ g' ( x )
cot gx
f (x) g( x ) 1 f(x)
f ' ( x ) ⋅ g( x ) − f ( x ) ⋅ g' ( x ) g2 ( x ) − f ' (x) f 2 (x)
(f o g)( x ) um
ln x ln u
sec x
tg x ⋅ sec x
f ' (g(x )) ⋅ g' (x )
sec u
u' ⋅ tg u ⋅ sec u
m ⋅ um−1 ⋅ u'
cos ec x
− cot g x ⋅ cos ec x
1 x u' u
cos ec u
− u'⋅ cot g u ⋅ cos ec u
arc sen x
lga u
1 x ln a u' u ln a
ex
ex
arc cos u
eu
u' e u
arc tg x
ax
a x . ln a
arc tg u
au
a u .ln a u'
arc ctg x
uv
v.u' ⎞ ⎛ u v ⎜ v' ln u + ⎟ u ⎠ ⎝
arc ctg u
lga x =
ln x ln a
cot g u
1 = 1 + tg 2 x 2 cos x u' cos 2 u −1 = −(1 + cot g 2 x ) 2 sen x − u' = −(1 + cot g 2u) ⋅ u' 2 sen u
a,k ,m son constantes
arc sen u
arc cos x
1 1− x 2 u' 1− u2 −1 1− x 2 − u' 1− u2 1 1+ x 2 u' 1+ u2 −1 1+ x 2 − u' 1+ u2
u,v,f,g,son funciones de la variable x
__________________________________________________________________________________________ Profesor: Edis Alberto Flores
F FÓ ÓR RM MU UL LA AS SD DE ET TR RIIG GO ON NO OM ME ET TR RIIA A senα =
cat. opuesto hipotenusa 1 cos ecα = sen α
cos α =
cat. adyacente hipotenusa 1 sec α = cos α
sen 2 α + cos 2 α = 1
1 + tg 2 α = sec 2 α
sen(α + β) = senα ⋅ cos β + cos α ⋅ senβ sen(α − β ) = senα ⋅ cos β − cos α ⋅ senβ
cos(α + β ) = cos α ⋅ cos β − senα ⋅ senβ cos(α − β ) = cos α ⋅ cos β + senα ⋅ senβ tgα + tgβ tg(α + β) = 1 − tgα ⋅ tgβ
cat. opuesto sen α = cat. adyacente cos α 1 tgα = cot g α
tgα =
1 + cot g2 α = cos ec 2 α
sen 2α = 2 ⋅ sen α ⋅ cos α cos 2α = cos 2 α − sen 2 α 2tgα 1 − tg 2 α
sen
α 1 − cos α =± 2 2
cos
α 1 + cos α =± 2 2
α 1 − cos α =± 2 1 + cos α A +B A −B A +B A −B senA + senB = 2 ⋅ sen ⋅ cos cos A + cos B = 2 ⋅ cos ⋅ cos 2 2 2 2 A +B A −B A +B A −B senA − senB = 2 ⋅ cos ⋅ sen cos A − cos B = −2 ⋅ sen ⋅ sen 2 2 2 2 (R=radio de la a b c circunferencia circunscrita Teorema de los senos: senA = senB = senC = 2R al triángulo ABC)
tg2α =
tg
Teorema del coseno: a 2 = b 2 + c 2 − 2 ⋅ b ⋅ c ⋅ cos A Área de un triángulo ABC: Fórmula de Herón: (p es el semiperímetro del triángulo)
S=
1 1 b ⋅ hb = b ⋅ a ⋅ senC 2 2
S = p(p − a )(p − b )(p − c )
S=
a ⋅b ⋅c 4 ⋅R
donde
p=
a+b+c 2
F FÓ ÓR RM MU UL LA AS SD DE EL LO OG GA AR RIIT TM MO OS S loga N = b ⇔ a b = N
a>0
loga M ⋅ N = loga M + loga N
loga 1 = 0
M = loga M − loga N N log a MN = N ⋅ log a M
loga a m = m
log a M =
Si a = 10 → loga N = log N → (log aritmos decimales )
NOTA :
loga a = 1
Si a = e → loga N = ln N → (log aritmos neperianos)
loga
logb M logb a n
⎛ 1⎞ e = lim ⎜1 + ⎟ = 2'718281.... n→ +∞ ⎝ n⎠
__________________________________________________________________________________________ Profesor: Edis Alberto Flores