Tabla de Derivadas f ( x ) ............................................ f ′ ( x ) k ..................................................0 x n ................................................ nx n − 1 1 ln x .............................................. x g′( x) ln g ( x ) ........................................ g x
( ) g ( x ) ± h ( x ) ................................. g ′ ( x ) ± h ′ ( x ) g ( x ) ⋅ h ( x ) ................................... g ′ ( x ) ⋅ h ( x ) + g ( x ) ⋅ h ′ ( x ) g ( x) g ′ ( x ) ⋅ h ( x ) − g ( x ) ⋅ h′ ( x ) ........................................... 2 h ( x) h ( x ) g x g x e ( ) ..............................................g ′ ( x ) ⋅ e ( ) k x ................................................ k x ⋅ ln k k
g( x)
.............................................ln k ⋅ g ′ ( x ) ⋅ k
log b ( x ) ..........................................
log b ( e )
log b g ( x ) .................................... g ( x )
h( x )
g( x)
x g ′ ( x ) ⋅ log b ( e ) g ( x)
....................................h′ ( x ) g ( x )
g( x)
h( x )
g ( x ) .................................... g ′ ( x ) g ( x ) x x .................................................... x x ( ln x + 1)
⋅ ln g ( x ) + h ( x ) g ( x )
g( x)
⋅ ln g ( x ) + g ′ ( x ) g ( x )
sen ( g ( x ) ) ........................................cos ( g ( x ) ) ⋅ g ′ ( x )
cos ( g ( x ) ) ....................................... − sen ( g ( x ) ) ⋅ g ′ ( x ) tg ( g ( x ) ) ..........................................sec 2 ( g ( x ) ) ⋅ g ′ ( x )
cotg ( g ( x ) ) ....................................... − csc2 ( g ( x ) ) ⋅ g ′ ( x )
sec ( g ( x ) ) .........................................sec ( g ( x ) ) ⋅ tg ( g ( x ) ) ⋅ g ′ ( x )
csc ( g ( x ) ) ......................................... − csc ( g ( x ) ) ⋅ cotg ( g ( x ) ) . g ′ ( x ) arcsen ( g ( x ) ) ....................................
g′( x)
1− ( g ( x))
2
h ( x ) −1
⋅ g′( x)
g( x)
arccos ( g ( x ) ) .................................... arctg ( g ( x ) ) ...................................... arccotg ( g ( x ) ) ..................................
−g′( x) 1− ( g ( x)) g ′( x)
1+ ( g ( x ))
arccsc ( g ( x ) ) ....................................
2
−g′( x)
1+ ( g ( x ))
arcsec ( g ( x ) ) ....................................
2
2
g′( x)
( g ( x ))
g ( x)⋅
2
−1
−g′( x)
( g ( x ) ) −1 senh ( g ( x ) ) ......................................cosh ( g ( x ) ) ⋅ g ′ ( x ) cosh ( g ( x ) ) ......................................senh ( g ( x ) ) ⋅ g ′ ( x ) tgh ( g ( x ) ) ........................................sech ( g ( x ) ) ⋅ g ′ ( x ) cotgh ( g ( x ) ) .................................... − csch ( g ( x ) ) ⋅ g ′ ( x ) sech ( g ( x ) ) ...................................... − sech ( g ( x ) ) ⋅ tgh ( g ( x ) ) ⋅ g ′ ( x ) csch ( g ( x ) ) ...................................... − csch ( g ( x ) ) ⋅ cotgh ( g ( x ) ) ⋅ g ′ ( x ) g ( x)⋅
2
2
2
arg senh ( g ( x ) ) ................................. arg cosh ( g ( x ) ) ................................
arg tgh ............................................
1+ ( g ( x ))
arg sech ( g ( x ) ) ............................... arg csch ( g ( x ) ) ...............................
2
g′( x)
( g ( x ))
2
−1
g′( x)
1− ( g ( x))
arg cotgh ( g ( x ) ) .............................
Lic. Eleazar J. García
g′( x)
2
−g′( x)
1+ ( g ( x ))
2
−g′( x)
g ( x ) ⋅ 1− ( g ( x ))
2
−g′( x) g ( x ) ⋅ 1+ ( g ( x ) )
2
[email protected]