SYBSC TUTORIAL No. Paper II BASIS, Q1. a) The vector u1= (1,2) and u2 = (4,-7) form a basis of ℝ2. Find the coordinates a, b ∈ ℝ of v = (5,3) relative to u1, u2. b) S ={t3+t2, t2+t,t+1,1} is a basis of P3(t). Find the coordinates a, b, c, d ∈ ℝ of v = 2t3+t2-4t+2 relative to S. Q2. Find a basis and dimension of following subspaces. i)
U = {(a, b, c, d) | b – 2c +d = 0 }
ii)
W = {(a, b, c, d) | a = d, b = 2c}
iii)
U∩W
iv)
X = {(a, b, c, d) | a = 2b = 3c}
Q3. Determine whether the following sets are linearly independent. i)
{t3-4t2+3t+3, t3+2t2+4t-1, 2t3- t2-3t+5} in P3(t).
ii)
{et, sin t, t2 } in C(ℝ).
iii)
1 0
−1 2 0 −1 , , 2 −1 3 0
0 3 , − 2 − 2
− 3 5 , 2 3
4 in M2X2(ℝ). 2
Q4. Find a subset u1, u 2, u3, u4 that gives a basis for W = L({u1, u 2, u3, u4 }) where u1 =
1 1
1 1 , u
2=
1 1
−1 0 , u
3=
1 0
1 0 , u
4=
1 0
0 0 .
Q5. Check whether following sets are bases of V. Justify your answer. a) S1 = { (1, 1), (2 , 2)} , S2 = { (1, 1), (1 , 0), ( 0, 1)}, S3 = { (1, 0)} where V= ℝ2. b) S1 = { (1, 0, 0), (2 , 0, 0), (0, 1, 0)} , S2 = { (1, 2, 3), (1, -1, 2)} S3 = { (1, 1, 1), (1 , 0, 0), ( 0, 1, 2), (2 , 1, 3)}
where V= ℝ3.