Summer Review Packet 8

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Summer Review Packet 8 as PDF for free.

More details

  • Words: 734
  • Pages: 5
AP Calculus Review Worksheet This packet is a review of the entering objectives for AP Calculus and is due on the first day back to school. It is to be done neatly and on a separate sheet of paper. Have a great summer! I.

Simplifying Rational Expressions Simplify. (Show your work!) x−4 1. 2 x − 3x − 4 2.

x3 − 8 x−2

3.

5− x x 2 − 25

4.

x 2 − 4 x − 32 x 2 − 16

II.

Trigonometric Identities

1.

Pythagorean Identities

2.

cos2x=_____________ ____________ ____________ sin2x=___________

3. III.

Operations with Rational Expressions 1 1 − 1. x+h x

2.

2 x2 10 x5

__________________ __________________ __________________

3.

1 1 − 3+ x 3 x

4.

2x 1 8 − − 2 x − 6x + 9 x + 1 x − 2x − 3

IV.

2

Solving equations Solve for Z 1. 4x+10yz=0

2. y 2 + 3 yz − 8 z − 4 x = 0

V.

Operations with functions If

f(x)={(3,5), (2,4), (1,7)} g(x)= x − 3 k(x)= x 2 + 5 determine the following: 1. 2. 3. 4. 5. 6. 7. 8.

VI.

h(x)={(3,2), (4,3), (1,6)}

(f+g)(1)= (k-g)(5)= ( f o h)(3) =

( g o k )(7) = f −1 ( x) =

k −1 ( x) = 1 f ( x) (kg)(x)=

Miscellaneous: Follow the directions for each problem.

f ( x + h) − f ( x ) and simplify if f(x)= x 2 − 2 x. h 3 2. Expand ( x + y )

1. Evaluate

3 2

5 2

3. Simplify: x ( x + x − x 2 ) 4. Eliminate the parameter and write a rectangular equation for x = t2 + 3 y = 2t VII.

Series

Expand and simplify. 4 n2 1. ∑ n=0 2 2.

3

1

∑n n =1

3

VIII. Simplifying Expressions Simplify. 1.

x x

2. eln 3

3. e(1+ ln x )

4. ln 1

5. ln e7

1 6. log 3 ( ) 3

7. log 1 8

8. ln

2

10.

4 xy −2 −

1 3

12 x y 5 3 3 2

13. (4a )

IX.

1 2

11. 27

2 3

9. e3ln x 2 3

3 2

12. (5a )(4a )

−5

14.

3(n + 1)! 5n !

Using the point-slope form y − y1 = m( x − x1 ) , write an equation for the line 1. with a slope of -2, containing the point (3,4)

2. 3. 4. 5.

X.

containing the points (1,-3) and (-5,2) with slope 0, containing the point (4,2) parallel to 2x-3y=7 and passes through (5,1) perpendicular to the line in problem #1, containing the point (3,4)

Trigonometry Without a calculator, determine the exact value of each expression. 1. sin 0

5.

cos

9. tan

2.

7π 6

2π 3

12. Sin −1 (sin XI.

6. cos

sin

3. sin

2

π

3π 4

7. tan

3

10. tan

7π ) 6

π

π

7π 4

4. cos π

8. tan

π 6

1 11. cos( S in −1 ) 2

2

Domain and Range For each function, determine its domain and range. 1.

y = x−4

2. y = x 2 − 4 3. y = 4 − x 2 4. y = x 2 + 4 XII. Determine all points of intersection

y = x 2 + 3x − 4 1. y = 5 x + 11

y = cos x 2.

y = sin x in the 1st quadrant

XIII. Solving equations Solve for x, where x is a real number. Show your work. 1.

x 2 + 3x − 4 = 14 x4 −1 =0 2. x3 3. ( x − 5) 2 = 9

4. 2 x 2 + 5 x = 8 5. ( x + 3)( x − 3) > 0 6. x 2 − 2 x − 15 ≤ 0 7. 12 x 2 = 3x 8. sin 2 x = sin x , 0 ≤ x ≤ 2π 9. x − 3 < 7 10. ( x + 1) 2 ( x − 2) + ( x + 1)( x − 2) 2 = 0 11. 27 2 x = 9 x −3 12. log x + log( x − 3) = 1 13. e3 x = 5 14. ln y = 2 x − 3

Related Documents