AP Calculus Review Worksheet This packet is a review of the entering objectives for AP Calculus and is due on the first day back to school. It is to be done neatly and on a separate sheet of paper. Have a great summer! I.
Simplifying Rational Expressions Simplify. (Show your work!) x−4 1. 2 x − 3x − 4 2.
x3 − 8 x−2
3.
5− x x 2 − 25
4.
x 2 − 4 x − 32 x 2 − 16
II.
Trigonometric Identities
1.
Pythagorean Identities
2.
cos2x=_____________ ____________ ____________ sin2x=___________
3. III.
Operations with Rational Expressions 1 1 − 1. x+h x
2.
2 x2 10 x5
__________________ __________________ __________________
3.
1 1 − 3+ x 3 x
4.
2x 1 8 − − 2 x − 6x + 9 x + 1 x − 2x − 3
IV.
2
Solving equations Solve for Z 1. 4x+10yz=0
2. y 2 + 3 yz − 8 z − 4 x = 0
V.
Operations with functions If
f(x)={(3,5), (2,4), (1,7)} g(x)= x − 3 k(x)= x 2 + 5 determine the following: 1. 2. 3. 4. 5. 6. 7. 8.
VI.
h(x)={(3,2), (4,3), (1,6)}
(f+g)(1)= (k-g)(5)= ( f o h)(3) =
( g o k )(7) = f −1 ( x) =
k −1 ( x) = 1 f ( x) (kg)(x)=
Miscellaneous: Follow the directions for each problem.
f ( x + h) − f ( x ) and simplify if f(x)= x 2 − 2 x. h 3 2. Expand ( x + y )
1. Evaluate
3 2
5 2
3. Simplify: x ( x + x − x 2 ) 4. Eliminate the parameter and write a rectangular equation for x = t2 + 3 y = 2t VII.
Series
Expand and simplify. 4 n2 1. ∑ n=0 2 2.
3
1
∑n n =1
3
VIII. Simplifying Expressions Simplify. 1.
x x
2. eln 3
3. e(1+ ln x )
4. ln 1
5. ln e7
1 6. log 3 ( ) 3
7. log 1 8
8. ln
2
10.
4 xy −2 −
1 3
12 x y 5 3 3 2
13. (4a )
IX.
1 2
11. 27
2 3
9. e3ln x 2 3
3 2
12. (5a )(4a )
−5
14.
3(n + 1)! 5n !
Using the point-slope form y − y1 = m( x − x1 ) , write an equation for the line 1. with a slope of -2, containing the point (3,4)
2. 3. 4. 5.
X.
containing the points (1,-3) and (-5,2) with slope 0, containing the point (4,2) parallel to 2x-3y=7 and passes through (5,1) perpendicular to the line in problem #1, containing the point (3,4)
Trigonometry Without a calculator, determine the exact value of each expression. 1. sin 0
5.
cos
9. tan
2.
7π 6
2π 3
12. Sin −1 (sin XI.
6. cos
sin
3. sin
2
π
3π 4
7. tan
3
10. tan
7π ) 6
π
π
7π 4
4. cos π
8. tan
π 6
1 11. cos( S in −1 ) 2
2
Domain and Range For each function, determine its domain and range. 1.
y = x−4
2. y = x 2 − 4 3. y = 4 − x 2 4. y = x 2 + 4 XII. Determine all points of intersection
y = x 2 + 3x − 4 1. y = 5 x + 11
y = cos x 2.
y = sin x in the 1st quadrant
XIII. Solving equations Solve for x, where x is a real number. Show your work. 1.
x 2 + 3x − 4 = 14 x4 −1 =0 2. x3 3. ( x − 5) 2 = 9
4. 2 x 2 + 5 x = 8 5. ( x + 3)( x − 3) > 0 6. x 2 − 2 x − 15 ≤ 0 7. 12 x 2 = 3x 8. sin 2 x = sin x , 0 ≤ x ≤ 2π 9. x − 3 < 7 10. ( x + 1) 2 ( x − 2) + ( x + 1)( x − 2) 2 = 0 11. 27 2 x = 9 x −3 12. log x + log( x − 3) = 1 13. e3 x = 5 14. ln y = 2 x − 3