Sum Of Divisors In A Ring Of Gaussian Integers

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Sum Of Divisors In A Ring Of Gaussian Integers as PDF for free.

More details

  • Words: 6,574
  • Pages: 15
Ukrainian Mathematical Journal, Vol. 53, No. 7, 2001

SUM OF DIVISORS IN A RING OF GAUSSIAN INTEGERS O. V. Sinyavskii

UDC 511.33

We construct an asymptotic formula for a sum function for σ a (α ) , where σ a (α ) is the sum of the a th powers of the norms of divisors of the Gaussian integer α on an arithmetic progression α ≡ α 0 (mod γ ) and in a narrow sector ϕ1 ≤ arg α < ϕ 2 . For this purpose, we use a representation of σ a (n) in the form of a series in the Ramanujan sums.

1. Introduction The sum function Sa ( x ) =

∑ σ a ( n) ,

n≤ x

where σ a (n) denotes the sum of the a th powers of different natural divisors n, is of great interest because it is related to various additive problems in number theory. As a rule, asymptotic formulas for Sa ( x ) are obtained by using estimates for sums of the form Gb, k ( x ) =



n≤ x

x n b ψ k   , n

where b is a real number, k is a natural number, and ψ k ( y) = Bk ({y}) is the k th Bernoulli polynomial [1, 2]. The behavior of σ a (n) on arithmetic progressions with increasing difference can be investigated by using estimates for special trigonometric sums and the method of generating Dirichlet series. In [3], Kiuchi studied a weighted function σ a (n) , namely, for Da  x; 

h = k

∑ σ a ( n) e

2πi

hn k ,

n≤ x

he obtained an asymptotic expansion of the remainder ∆ a ( x; h / k ) of the asymptotic formula for Da ( x; h / k ) analogous to the Voronoi identity ∆ a ( x; h / k ) = Da ( x; h / k ) – k a –1ζ (1 – a) x – k –1– a (1 + a) –1 ζ (1 + a) x1+ a for the problem of divisors. The investigation of the function σ a (n) in a ring of Gaussian integers by the methods indicated above is very difficult. For this reason, in the present paper, we study the distribution of the values of the function σ a (n) Odessa University, Odessa. Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 53, No. 7, pp. 970–982, July, 2001. Original article submitted January 28, 1999; revision submitted May 5, 1999. 1156

0041–5995/01/5307–1156 $25.00

© 2001 Plenum Publishing Corporation

S UM OF DIVISORS IN A RING OF GAUSSIAN INTEGERS

1157

on arithmetic progressions α ≡ α 0 (mod γ ) and in narrow sectors ϕ1 ≤ arg α < ϕ 2 by using the representation of σ a (n) in the form of a series in the Ramanujan sums. Note that this method cannot be used for a = 0, i.e., in the case where d ( a) is the number of nonassociated divisors of the Gaussian number α . In this case, according to the method indicated, the representation d (α ) =

∑ cω (α)

ω ω≠0

log N (ω ) N (ω )

is used, but the result thus obtained turns out to be trivial. The case a = 0 was considered, e.g., in [4], where the following results were obtained:

1.

∑ d (α )

= c0 (α 0 , γ )

N (α ) α ≡ α 0 (mod γ )

2.



d (α) =

N (α ) ≤ x α ≡ α 0 (mod γ ) ϕ1 < arg α ≤ ϕ 2

(

)

x x x log + c1(α 0 , γ ) + O x 3 / 5 + ε N (γ )– 2 / 5 ; N (γ ) N (β) N (γ )

ϕ 2 – ϕ1 2π

 x x x  2 /3 + ε N (γ )– 1/ 2 . c0 (α 0 , γ ) N (γ ) log N (β) + c1(α 0 , γ ) N (γ )  + O x  

(

)

Here, c0 (α 0 , γ ) and c1 (α 0 , γ ) are calculable constants dependent on α 0 and γ, (α 0 , γ ) = β, and β is a proper divisor of γ. However, the method used in [4] cannot be applied to the case a < 0. For this reason, in the present paper, we consider only the case a < 0. 2. Notation Let Q [ i ] be a field of Gaussian numbers, Q [ i ] : = {a + bi a, b ∈ Q, i 2 = –1}, and let G be a ring of Gaussian integers, G : = {u + vi u, v ∈Z}. For α = a + bi ∈ Q [ i ], we set N(α ) = α 2 = a 2 + b 2 and call it the norm of α. Let Sp(α ) = 2 Re α = 2a denote the trace of α, let (α, β) be the least common divisor of α and β, α , β ∈ G, let µ(α ) and ϕ (α ) be, respectively, the Möbius and Euler functions in the ring G, and let τ (α ) be the number of nonassociated divisors of α . The Vinogradov symbol “ << ” has the same meaning as the Landau symbol “O.” Let σ s (α ) =





N (δ ) s ,

δ/α

where * means that the summation is carried out over all nonassociated divisors of the Gaussian integer α. In the present paper, we assume that 0 < σ ≤ 1, where Re s = σ and e ( x ) = e2πix , x ∈R.

1158

O. V. S INYAVSKII

3. Auxiliary Results Assume that δ 0 , δ ∈Q [ i ], and s = σ + i t ∈ C. For σ > 1, the series ζ ( s; δ 0 , δ ) =



ω ∈G ω≠ – δ0

1 e  Sp (δ ω ) N (ω + δ 0 ) – s 2

is absolutely convergent. The function ζ ( s; δ 0 , δ ) is called a generalized Dedekind zeta function of the field Q [ i ]. Lemma 1. For fixed δ 0 , δ ∈Q [ i ], ζ ( s; α, β) is an entire function of s i f β is a noninteger Gaussian number. If β is a Gaussian integer, then the function ζ ( s; α, β) is analytic in the entire s-plane except the point s = 1, where it has a simple pole with residue π . The following functional equation is true: 1 π – s Γ ( s) ζ ( s; α, β) = π –(1– s ) Γ (1 – s) ζ (1 – s; – β, α ) e  – Sp (αβ) .  2  For ζ( s; 0, 0) , the proof can be found in [5]. The general case is proved by analogy. Lemma 2. For Re s > 0, the following representation is true: σ – s (α ) = ζ (1 + s; 0, 0)

∑ cγ (α) N (γ )–(1+s) ,

γ ∈G γ ≠0

where cγ (α ) is the Ramanujan sum



cγ (β) =

δ (mod γ ) ( δ, γ )=1

 1 βδ e  Sp  . 2 γ

Proof. As in the rational case, we have cγ (β) =





d /( γ ,β )

N (d ) µ

 γ .  d

Therefore, for Re s > 0, we get ζ (1 + s; 0, 0)

∑ cγ (α) N (γ )–(1+s)

γ ∈G γ ≠0

= ζ (1 + s; 0, 0)



γ ∈G γ ≠0

N ( γ ) –(1+ s )





δ ( γ ,α )

γ N (δ ) µ   δ

S UM OF DIVISORS IN A RING OF GAUSSIAN INTEGERS

= ζ (1 + s; 0, 0)

1159 ∗

∑ N (δ )

δ α

= ζ (1 + s; 0, 0)



γ ∈G γ ≠0 γ ≡ 0 (mod δ )

γ N ( γ ) –(1+ s ) µ   δ



∑ N (δ)– s ∑ µ (γ ) N (γ )–(1+ s)

δ α

= σ – s (α ) .

γ ∈G γ ≠0

The lemma is proved. Let α 0, q, γ ∈ G. For Re s > 1, we have 1 α q  α qγ  f ( s) = N ( γ ) – s e  Sp 0  ζ  s; 0 ,  2 ω   γ ω

= N (γ )– s

1 q( γ δ + α 0  e  Sp 2  ω



δ∈G δ≠ – α0 / γ

α   N δ + 0  γ 

s

=



δ∈G δ = α 0 (mod γ )

1 qδ e  Sp  2 ω  . N (δ ) s

By virtue of Lemma 1, the function f ( s) is analytic in the entire complex plane for ω /q γ . For ω q γ , this 1 α q function has a simple pole at the point s = 1 with residue π N ( γ ) –1 e  Sp 0  . 2 ω  Here and in what follows, we assume that (q, ω ) = 1 and ω / γ . Lemma 3. Suppose that (q, ω ) . Then  x  x 1/ 3 log x   1 qα 0   N ( γ ) πe  2 Sp ω  + O   N ( γ ) 2 ε/3   1 qα q  S  x,  = e  Sp  =  ∑ 2 ω ω –1– ε    N ( α )≤ x  x 1/ 3 log x  qγ  O N   α = α 0 (mod γ ) O +     ω  N ( γ ) 2 ε/3     where u denotes the distance between u ∈R and the nearest integer, and ε > 0. Proof. By virtue of the theorem on partial sums of the Dirichlet series, we have 1 q S  x,  = 2 πi ω

b + iT s



b – iT

 xb  x  x A ( x ) log x f ( s) ds + O   + O  s T  T (b – 1)

 xb   x A ( x ) log x , = Y + O  + O  T  T (b – 1) where A ( x ) << 1 and b = 1 + 1 / log x .

if ω γ ,

if ω / γ ,

1160

O. V. S INYAVSKII

Let us calculate the last integral. To this end, we move the line of integration toward the line Re s = – ε and take into account that, for ω q γ , the integrand has simple poles at the points s = 1 and s = 0 with residues equal to 1 α q π x N ( γ ) –1 e  Sp 0  2 ω

 α qγ  1 qα e  Sp 0  ζ  0; 0 ,  << 1,  γ ω ω 2

and

respectively. As a result, we get b – iT b + iT  s – ε + iT  xs  1  x + + Y = res  f ( s)  +  ∫  f ( s) ds + O (1) ∫ ∫ s 2 i π s =1   – ε – iT – ε – iT – ε +iT  s 

  xs = res  f ( s)  + Y1 + Y2 + Y3 + O (1). s =1  s  Let us estimate the integral Y2 ; the integral Y3 can be estimated by analogy. For this purpose, we estimate the integrand in the strip – ε 1 ≤ Re s ≤ 1 + ε 2 , ε 1 , ε 2 > 0 , by using the Phragmén – Lindelöf principle. On the straight line σ = 1 + ε 2, the integrand is << N( γ ) – ε 2 ε 2–1. On the straight line σ = – ε 1, for the estimation of the integrand, we use the functional equation for ζ ( s; α, β) (Lemma 1) and establish that the integrand is << N ( γ )ε1 t1+ 2 ε1 ε1–1 . Therefore, in the strip (– ε1, 1+ ε 2 ) , we get σ + ε1

1+ ε 2 – σ

 N ( γ ) – ε 2  1+ ε1 + ε 2  N ( γ )ε1 t1+ 2 ε1  1+ ε1 + ε 2 f ( s) <<  .    ε1  ε2    Therefore, the integral Y2 is estimated as follows: Y2 <<

x N ( γ )ε . T log x

Let us calculate the integral Y1. By using the functional equation for the function ζ ( s; α, β) , we get 1 2πi

– ε + iT s

– ε + iT s

– ε – iT

– ε – iT



1 x f ( s) ds = 2 πi s



Γ (1 – s)  x qγ α  1 α q N ( γ ) – s π 2 s –1 ζ 1 – s; – , 0  e  Sp 0  ds . Γ (s)  s ω γ  2 ω

We set s = – ε + it . According to the Stirling formula, we have 1 Γ (1 – s) = t1+ 2 ε eit ( 2 – 2 log t ) 1 + O    . t Γ (s) Therefore, the integral Y2 takes the form

S UM OF DIVISORS IN A RING OF GAUSSIAN INTEGERS



δ qγ δ≠ ω

 1 α δ e  Sp 0  2 γ   1 α 0 q – ε e Sp y q γ 2 ω  N δ –  ω

T

∫ 1

 + O  

1161

1 yit 1+ 2 ε it ( 2 – 2 log t )  1 + O    dt t e   – ε + it t 



δ δ≠qγ /ω

1 N  δ –

qγ  ω

y

–ε

1

∫ 0

 yit 1 + 2ε it(2 – 2 log t )  1    t e 1 + O  t   dt  – ε + it 

α δ 1 e  Sp 0  2 α q γ  1 = ∑ e  Sp 0  y – ε I + R , qγ 2 ω δ N  δ –  ω δ ≠ q γ /ω where  O  1   ε  R =     qγ   O N ω   

qγ x N  δ –  π 2 ω y = , N (γ )

if ω γ , –1– ε 

 

if ω / γ .

For the estimation of the integral I, we use the method of stationary phase (see Theorem 1.4 in [6, p. 162]). In the integral, we perform the following substitution:

1/ 2

t = uy

I =

1/ 2 + ε

= y

Ty –1/ 2



1/ 2

t 2 ε ei 2 ty

(1–log t )

dt .

y –1/ 2

N (γ ) T 2 qγ  , then the stationary point belongs to < 2 x ω the line of integration. It gives the following contribution:

Here, t = 1 is a stationary point. Therefore, if

y1/ 2 + ε

1+ δ



1/ 2

t 2 ε ei 2 ty

N  δ –

(1–log t )

dt << y1/ 2 +ε

1– δ

(

) (

π 1/ 2

y

<< y1/ 4 +ε .

)

On the interval t ∈Y = y –1/ 2 ; 1 – δ U 1 + δ; Ty –1/ 2 , we perform integration by parts. As a result, we get y1/ 2 + ε



t ∈Y

1/ 2

t 2 ε ei 2 ty

(1–log t )

dt <<

T 2ε . log T

1162

O. V. S INYAVSKII

Further, if N  δ –

N (γ ) T 2 qγ  2 , ≥ x ω

then the stationary point does not belong to the line of integration. For this reason, we estimate the integral I as follows: 1/ 2 + ε

Ty –1 / 2



y

t 2 ε ei 2 ty

1/ 2

(1– log t )

dt <<

y –1 / 2

T 2ε . log T

We have

I <<

x + T log x

+

∑ N (δ ) ≤

–ε



x T N (γ )ε log T

–ε

+

N ( γ )T 2 x



x T N (γ )ε log T

 1  α δ α q e  Sp 0 – 0   2  γ ω  qγ N  δ –  ω

∑ N (δ ) ≤

N ( γ )T 2 x

∑ N (δ ) >

N ( γ )T 2 x

1/ 4  x N δ – qγ    ω     N (γ )  

 1  α δ α q e  Sp 0 – 0   2  γ ω  1+ ε qγ N  δ –  ω  1  α δ α q e  Sp 0 – 0   2  γ ω  . 1+ ε qγ   N δ –  ω

In the case ω γ , we get I <<

x x ε T 1/ 2 + 2 ε + . T log x N ( γ )ε

For ω / γ , we have I <<

x x ε T 1/ 2 + 2 ε qγ + + N   ε ω T log x N (γ )

–1 – ε

.

Setting T = x 2 / 3 N ( γ )2 ε / 3 , we obtain the statement of the lemma. Lemma 4. Let r be a positive number, let Ω > 0, 0 < ∆ < Ω / 2 , and let ϕ1 , ϕ 2 ∈ R, ∆ ≤ ϕ 2 – ϕ1 ≤ Ω – 2∆ .

S UM OF DIVISORS IN A RING OF GAUSSIAN INTEGERS

1163

There exists a periodic function f (ϕ ) with period Ω that possesses the following properties: (i)

f (ϕ ) = 1 in [ϕ1, ϕ 2 ] , 0 ≤ f (ϕ ) ≤ 1 in [ϕ1 – ∆, ϕ1 ] and [ϕ 2 , ϕ 2 + ∆ ] , f (ϕ ) = 0 in [ϕ 2 + ∆, ϕ1 + Ω – ∆ ];

(ii)

f (ϕ ) can be expanded in the Fourier series f (ϕ ) =



∑ am e  Ω  ,

where

a0 =

1 (ϕ 2 – ϕ1 ) , Ω

am

 1 ( ϕ – ϕ + ∆ ), 1 Ω 2  2 , =  π m  r  2  r Ω  , r ∈ N.    π m  π m ∆ 

Proof. For the proof of Lemma 4, see [7]. 4. Main Theorem Theorem 1. For Re(s) = σ > 0 , the following asymptotic relation is true:

∑ σ – s (α ) =

N ( α )≤ x α ≡ α 0 (mod γ )

 x1– 2 σ / 3  1  x  + O πζ ( s; 0, 0) ∏ 1 –    .  N ( ù)1+ s  N (γ )  N ( γ )1– σ  ù γ /

Proof. By virtue of Lemma 2, we get

∑ σ – s (α )

= ζ (1 + s; 0, 0)

N ( α )≤ x α ≡ α 0 (mod γ )



∑ cω (α) N (ω )–(1+s)

N ( α )≤ x ω ≠ 0 α ≡ α 0 (mod γ )

= ζ (1 + s; 0, 0)



N (ω ) – (1+ s )

N ( ω )≤ M ω≠0

+ ζ (1 + s; 0, 0)



q (mod ω ) N ( α )≤ x ( q,ω )=1 α ≡ α 0 (mod γ )



N (ω )> M

= S1 + S2 .



N (ω ) – (1+ s )

1 qα e  Sp  2 ω



N (α )≤ x α ≡ α 0 (mod γ )

cω (α )

1164

O. V. S INYAVSKII

Further, we have



N ( ω )> M

cω (α ) = N (ω )1+ s

=





N (ω ) – (1+ s )

N (ω )> M





d ( ω ,α )



N (d )– s



ω N ( d ) µ   = d





 M  N (d )– σ    N ( d )



N (ω ) – (1+ s ) µ (ω ) <<

d α

–σ

N (d )



N (ω )> M ω ≡ 0 (mod d )

d α

N (ω )> M / N ( d )

d α

<<





∑ N (d )– σ

d α

ω N (ω ) – (1+ s ) µ   d

r ( n) n1+ σ n> M / N (d )



= M – σ τ (α ) ,

where τ (α ) is the number of divisors of α . Therefore, S2 = ζ (1 + s; 0, 0)





N (α )≤ x N (ω )> M α ≡ α 0 (mod γ )

N (ω ) – (1+ s ) cω (α ) << M – σ

1 σ



τ (α ) << M – σ

N (α )≤ x α ≡ α 0 (mod γ )

x 1 log x . N (γ ) σ

Let us determine the sum S1 . We have S1 = ζ (1 + s; 0, 0)





N (ω ) – (1+ s )

N (ω )≤ M ω≠0



q (mod ω ) N (α )≤ x ( q,ω ) =1 α ≡ α 0 (mod γ )

1 qα e  Sp  . 2 ω

Applying Lemma 3 to the last sum, we get S1 =

x πζ (1 + s; 0, 0) ∑ N (ω ) – (1+ s ) N (γ ) N (ω )≤ M ω γ

1 α q e  Sp 0  2 ω q (mod ω )



( q,ω ) =1

  x1 / 3 1– σ  – (1+ s ) + O  + O  ∑ N (ω ) 2ε / 3 M  N (γ )   N (ω )≤ M ω/γ

=



q (mod ω ) ( q,ω ) =1

qγ N   ω

 x1 / 3 x 1– σ  πζ (1 + s; 0, 0) ∑ N (ω ) – (1+ s ) cω (α 0 ) + O   + 2ε / 3 M N (γ )  N (γ )  N (ω )≤ M ω γ

 + O  ∑ N (ω ) – (1 + s )   N (ω )≤ M ω/γ



q (mod ω ) ( q,ω ) =1

qγ N   ω

–1– ε

   

–1 – ε

   

S UM OF DIVISORS IN A RING OF GAUSSIAN INTEGERS

=

1165

x πζ (1 + s; 0, 0) ∑ N (ω ) – (1+ s ) µ (ω ) N (γ ) N (ω )≤ M ω γ

  x1 / 3 1– σ  + O M  + O  ∑ N (ω ) – (1 + s )   N ( γ )2 ε / 3   N (ω )≤ M ω/γ



q (mod ω ) ( q,ω ) = 1

qγ N   ω

–1– ε

 .  

Here, we have used the fact that (α 0 , ω ) = 1 because (α 0 , γ ) = 1, ω γ , and, hence, cω (α 0 ) = µ (ω ) . Let us estimate the sum under the sign O. We have



S′ =

N (ω ) – (1+ s )

N (ω )≤ M ω/γ



q (mod ω ) ( q,ω ) =1

N 

qγ  ω

–1 – ε

.

Let qω γ = c + id and ω = u + iv . Then qγ ω –1 = (c + id)( N (ω )) –1 and S ′ <<



N (ω ) – (1+ s )

N (ω )≤ M







N (ω )1+ ε

c, d (mod u + iv)

N (ω ) – (1+ s )

N (ω )≤ M

(c2 + d 2 )1+ ε

N (ω )1+ ε << cd c, d (mod u + iv)





N (ω ) – (1+ s ) N (ω )1+ 2 ε << M1–σ .

N (ω )≤ M

Setting M = x 2 / 3 N ( γ ) –1 and taking into account the relation



N (ω )≤ x 2 / 3 / N ( γ ) ω γ

µ (ω ) = N (ω )(1+ s )



ω γ

µ (ω ) – N (ω )(1+ s )



N (ω )> x 2 / 3 / N ( γ ) ω γ

µ (ω ) = N (ω )(1+ s )



ω γ

 1  x2/3  –σ  µ (ω ) + O   , N (ω )(1+ s )  σ  N ( γ ) 

we get

∑ σ – s (α ) =

N (α )≤ x α ≡ α 0 (mod γ )

 x1– 2 σ / 3  x 1   O + πζ (1 + s; 0, 0) ∏ 1 –   ,  N (ù)1+ s  N (γ )  N ( γ )1– σ  ù| γ

which completes the proof of the theorem. 5. Sum of Divisors in a Sector Now we investigate the distribution of the values of the function σ – s (α ) in narrow sectors ϕ1 ≤ arg α < ϕ 2 . To this end, we use Lemma 6 and proceed by analogy with the proof of Theorem 1. For brevity, we present only necessary calculations. In Lemma 6, we set ϕ = arg α and Ω = π / 2. Then

1166

O. V. S INYAVSKII

f (arg α ) =





am e 4 mi arg α .

m= –∞

Consider

∑ σ – s (α) f (arg α)

Φ ( x, [ ϕ1, ϕ 2 ] ) =

N ( α )≤ x α ≡α 0 ( γ ) ∞

=

∑ am

m= – ∞

=



N ( α )≤ x α ≡α 0 ( γ )

∑ σ – s (α) e4im arg(α ) =

N ( α )≤ x α ≡α 0 ( γ )

σ – s (α )



∑ am e4im arg(α )

m= – ∞



∑ am Dm ( x, α 0 , γ ) .

m= – ∞

Then A ( x, [ ϕ1, ϕ 2 ] ) =



σ– s (α ) = Φ ( x, [ ϕ1, ϕ 2 ] ) + Θ1Φ ( x, [ ϕ1 – ∆, ϕ1 ] ) + Θ 2 Φ ( x, [ ϕ 2 , ϕ 2 + ∆ ] ) ,

N (α )≤ x α ≡ α 0 (mod γ ) ϕ1 ≤ arg α < ϕ 2

where Θ1 , Θ 2 ≤ 1. Further, we assume that m ≠ 0, unless otherwise stated. Let us determine Φ ( [ ϕ1, ϕ 2 ] ) . For this purpose, we estimate the sum q Sm  x,  = ω



N (α )≤ x α ≡α 0 (γ )

1 qα e  Sp  e 4 mi arg(α ) . 2 ω

For Sm ( x, q / ω ) , the generating series has the form q 1 qα  α qγ  Em  s,  = N ( γ ) – s e  Sp 0  e 4 mi arg( γ ) ζ  s; 0 ,  .  γ ω ω ω 2 By virtue of the theorem on partial sums of the Dirichlet series, we have q 1 Sm  x,  =  ω 2 πi

b + iT



b – iT

 xb  xs q  x A( x ) log x Em  s,  ds + O   + O  s ω T  T (b – 1)

 xb   x A( x ) log x , = Y + O  + O  T  T (b – 1) where A ( x ) << 1 and b = 1 + 1 / log x . To calculate Y, we move the line of integration toward Re s = – ε , ε > 0. Since m ≠ 0, the integrand has a pole only at the point s = 0 with residue equal to

S UM OF DIVISORS IN A RING OF GAUSSIAN INTEGERS

1167

1 qα  α qγ  e  Sp 0  ζ m  0; 0 ,  << 1. 2   γ ω ω Therefore, – ε + iT b – iT b + iT  s x s q  1  x  q + + Y = res  Em  s,   +  ∫  Em  s,  ds = Y1 + Y2 + Y3 + O (1). ∫ ∫ s ω  2 πi  ω s=0  s  – ε – iT – ε – iT – ε +iT 

The integrals along the horizontal sections are estimated by analogy with the integrals Y2 and Y3 in Lemma 3. As a result, we obtain

(

)1/ 2 .

T 2 + m2 xm ε Y2 + Y3 << + TN ( γ ) log x T log x Further, by using the functional equation for ζ m (s; δ, α ) , we get

1 2πi

– ε + iT



– ε – iT

1 xs q Em  s,  ds = ω 2 πi s

– ε + iT



– ε – iT

m Γ + 1 – s   xs qγ α  1 α q – s 2 s –1  2 N (γ ) π ζ m 1 – s; – , 0  e  Sp 0  ds . m  s ω γ  2 ω Γ + s  2 

Then, by using the Stirling formula, we obtain m Γ + 1 – s  2  = m Γ + s  2 

(m2 + t 2 )1/ 2+ε eit(2–2 log(m +t ))–im arg ( m / 2+it ) 1 + O  m1+ t   . 2

2

The last integral takes the form  1 α δ e  Sp 0  2 1 qα γ  ∑  q γ  e4 mi arg (δ – qγ / ω ) e  2 Sp ω 0  y – ε Nδ –  δ ω δ ≠ qγ / ω T

×

∫ 1

=



yit m2 + t 2 – ε + it

δ δ ≠ qγ / ω

where

(

)1/ 2 + ε eit(2 – 2 log(m

2

+t 2

)) 1 + O 1  dt 

 t 

 1 α δ e  Sp 0  2 γ  4 mi arg (δ – qγ / ω )  1 α 0 q – ε e e  Sp y Im , γ q 2 ω  N  δ –  ω

1168

O. V. S INYAVSKII

qγ  ω. N (γ )

xN  δ –

y =

We decompose the integral Im into two integrals

m

∫1

and

T

∫m .

The first integral can easily be estimated

and is << m1+ ε / 2 log m . We estimate the second integral by analogy with the estimation of I in Lemma 3. As a result, we get

Im

  m 1+ ε / 2 log m + y (1+ 2 ε )/ 4  <<   m2 +T2  m 1+ ε / 2 log m +  T

(

(

)

(

)

N (γ ) m 2 + T 2 q γ  if N  δ –  ≤ 2 ,  ω x

)1/2

N (γ ) m 2 + T 2 q γ  if N  δ –  > 2 .  ω x

q The sum Sm  x,  can be estimated as follows:  ω q  x  S  x,  <<    N ( γ ) ω

–ε

1+ ε / 2

m

ε

xm ε  x  1/ 2 + ε + log m +   T  N ( γ ) TN ( γ ) log x

+

(m2 + T 2 )1/ 2 T log x

+

qγ x log x + N   T ω

–1– ε

(1 + m1+ ε log m) .

Setting T = x 2 / 3 , we get q  x  S  x,  <<    N ( γ ) ω

–ε

m1+ ε / 2 log m +

x1 / 3 m ε N (γ )

qγ + x1/ 3 N ( γ )2 ε / 3 log x + N   ω

–1– ε

(1 + m1+ε log m) .

By analogy with the proof of Theorem 1, we obtain Dm ( x, α 0 , γ ) =

∑ σ – s (α) e4im arg(α )

N ( α )≤ x α ≡ α 0 (mod γ )

= ζ (1 + s; 0, 0)



∑ cω (α) N (ω )– (1+s) e4im arg(α )

ω≠0 N ( α )≤ x α ≡ α 0 (mod γ )

S UM OF DIVISORS IN A RING OF GAUSSIAN INTEGERS

= ζ (1 + s; 0, 0)



1169

N (ω ) – (1+ s )

N ( ω )≤ M ω≠0





q (mod ω ) N ( α )≤ x ( q,ω )=1 α ≡ α 0 (mod γ )

+ ζ (1 + s; 0, 0)



1 qα e  Sp  e 4im arg(α ) 2 ω



N (ω ) – (1+ s )

N ( ω )> M

N ( α )≤ x α ≡ α 0 (mod γ )

cω (α ) e 4im arg(α )

= S1 + S2 . We estimate the sum S2 by analogy with the corresponding sum in the proof of Theorem 1. For the estimation of the sum S1 , we use the estimate of S( x, q / ω ) . We have Dm ( x, α 0 , γ ) <<

x 2 / 3(1– σ )– ε N ( γ ) 1+ ε / 2 x1– 2 σ / 3 m ε x1– 2 σ / 3 m log m + + x1– 2 σ / 3 log xN ( γ )2 / 3 + log x . ε N (γ ) N (γ )

Therefore, ∞



am Dm ( x, α 0 , γ )

m= – ∞ m≠0



<<



m= – ∞ m≠0

 x1– 2 σ / 3 log x ε  2ε /3 2 / 3– 2 σ / 3– ε N (γ ) N (γ ) + x m2 ∆    x1 – 2 σ / 3  + N (γ )  

∑m

m ≤M m≠0

ε

+



m1 + ε / 2 log m + m



 mε  . m2 ∆  

m ≤M m≠0

m >M



m >M

 m1 + ε / 2 log m  m3∆2  

Setting M = ∆–1, we get ∞

∑ am Dm ( x, α 0 , γ ) << ∆–1 x1– 2σ / 3 log xN (γ )2ε / 3 + ∆–1– 2ε x 2 / 3– 2σ / 3– ε N (γ )ε +

m= –∞ m≠0

Finally, setting ∆ <<

x 1 – 2 σ / 3 –1 – ε ∆ . N (γ )

log x N ( γ )1/ 2 , we obtain x1/ 3σ

A ( x, [ϕ1, ϕ 2 ] ) =

∑ σ– s (α )

N ( α )≤ x α ≡ α 0 (mod γ ) ϕ1 ≤ arg(α ) < ϕ 2

=

 x1– σ / 3  x (ϕ 2 – ϕ1 ) 1   ζ (1 + s; 0, 0) ∏ 1 – O +   .  N ( ù)1+ s  N (γ )  N ( γ )1/ 2  ù|γ

1170

O. V. S INYAVSKII

REFERENCES 1. W. Recknagel, “Über eine Vermuntung von S. Chowla und H. Walum,” Arc. Math., 44, 348–354 (1985). 2. Y.-F. Peterman, “Divisor problems and exponent pairs,” Arc. Math., 50, 243–250 (1988). 3. I. Kiuchi, “On an exponential sum involving the arithmetic function σ a (n),” Arch. Math. J. Okayama Univ., 29, 193–205 (1987). 4. U. B. Zhanbyrbaeva, Asymptotic Problems of Number Theory in Sectorial Domains [in Russian], Candidate-Degree Thesis (Physics and Mathematics), Odessa (1986). 5. E. Hecke, “Über eine neue Art von Zeta-functionen und ihre Besziechungen zur Verteilung der Primzahlen,” Math. Z., 6, 11–15 (1920). 6. M. V. Fedoryuk, Asymptotics: Integrals and Series [in Russian], Nauka, Moscow (1987). 7. I. P. Kubilyus, “On some problems in geometry of prime numbers,” Mat. Sb., 31 (78), No. 3, 507–542 (1952).

Related Documents

Sum Of Integers
November 2019 10
Sum Of Integers Do While
November 2019 15
Divisors Of A Number
July 2020 8
Sum Of All Fears
May 2020 7
Ring Of Power
May 2020 7