Organic Chemistry, 6th Edition L. G. Wade, Jr.
Chapter 3 Structure and Stereochemistry of Alkanes
Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice Hall
Classification Review
Chapter 3
2
Alkane Formulas • All C-C single bonds • Saturated with hydrogens • Ratio: CnH2n+2 • Alkane homologs: CH3(CH2)nCH3 • Same ratio for branched alkanes H H H H H H C C C C H
H C H H H
H H H H
H C C C H H H H
=> Chapter 3
3
Common Names • Isobutane, “isomer of butane” • Isopentane, isohexane, etc., methyl branch on next-to-last carbon in chain. • Neopentane, most highly branched • Five possible isomers of hexane, 18 isomers of octane and 75 for decane!
=>
Chapter 3
4
Alkane Examples
=> Chapter 3
5
IUPAC Names • Find the longest continuous carbon chain. • Number the carbons, starting closest to the first branch. • Name the groups attached to the chain, using the carbon number as the locator. • Alphabetize substituents. • Use di-, tri-, etc., for multiples of same substituent. => Chapter 3
6
Longest Chain
• The number of carbons in the longest chain determines the base name: ethane, hexane. (Listed in Table 3.2, page 82.) • If there are two possible chains with the same number of carbons, use the chain with the most substituents. H3C
CH CH2
CH3
CH3 H3C CH2
C CH3 Chapter 3
CH
CH2
CH2
CH3
=> 7
Number the Carbons • Start at the end closest to the first attached group. • If two substituents are equidistant, look for the next closest group. 1
H3C
CH3
3
4
CH CH CH2 2
CH2CH3 Chapter 3
5
CH2
CH3 CH CH3 6
7 => 8
Name Alkyl Groups • CH3-, methyl CH3
• CH3CH2-, ethyl
CH3
• CH3CH2CH2-, n-propyl
isobutyl
• CH3CH2CH2CH2-, n-butyl CH3
CH CH2
CH CH2
CH3 CH3
sec-butyl
H3C
C
CH3 tert-butyl
=> Chapter 3
9
Propyl Groups H H H H C
C C
H H H H
H C
H H H
H
n-propyl A primary carbon
C C H
H
H
isopropyl A secondary carbon => Chapter 3
10
Butyl Groups H H H H H C
C C
C
H H H H
H
H C
H H H H
H
n-butyl A primary carbon
C C
H
C
H
H H
sec-butyl A secondary carbon => Chapter 3
11
Isobutyl Groups H
H
C H H H
C H H H H
C
C
C
H
H
H
H
C H
H H H isobutyl A primary carbon
C H
C H H
tert-butyl A tertiary carbon Chapter 3
12
=>
Alphabetize • Alphabetize substituents by name. • Ignore di-, tri-, etc. for alphabetizing. CH3 H3C
CH3
CH CH CH2
CH2
CH CH3
CH2CH3 3-ethyl-2,6-dimethylheptane => Chapter 3
13
Complex Substituents • If the branch has a branch, number the carbons from the point of attachment. • Name the branch off the branch using a locator number. • Parentheses are used around the complex branch name. 1
2
3 1-methyl-3-(1,2-dimethylpropyl)cyclohexane Chapter 3
14
=>
Physical Properties • Solubility: hydrophobic • Density: less than 1 g/mL • Boiling points increase with increasing carbons (little less for branched chains). • Melting points increase with increasing carbons (less for oddnumber of carbons). Chapter 3
15
Boiling Points of Alkanes Branched alkanes have less surface area contact, so weaker intermolecular forces.
=>
Chapter 3
16
Melting Points of Alkanes Branched alkanes pack more efficiently into a crystalline structure, so have higher m.p.
=>
Chapter 3
17
Branched Alkanes • Lower b.p. with increased branching • Higher m.p. with increased branching • Examples: CH3 CH3 CH3
CH CH2 CH2 CH3 bp 60°C mp -154°C
CH3 CH3
CH
CH
CH3 CH3
bp 58°C mp -135°C
Chapter 3
CH3 C CH2 CH3 CH3 bp 50°C mp -98°C 18
=>
Major Uses of Alkanes • C1-C2: gases (natural gas) • C3-C4: liquified petroleum (LPG) • C5-C8: gasoline • C9-C16: diesel, kerosene, jet fuel • C17-up: lubricating oils, heating oil • Origin: petroleum refining => Chapter 3
19
Reactions of Alkanes • Combustion 2 CH3CH2CH2CH3
+ 13 O2
heat
8 CO2
+ 10 H2O
• Cracking and hydrocracking (industrial) • Halogenation CH4 + Cl2
heat or light
CH3Cl + CH2Cl2 + CHCl3 + CCl4
=> Chapter 3
20
Conformers of Alkanes • Structures resulting from the free rotation of a C-C single bond • May differ in energy. The lowestenergy conformer is most prevalent. • Molecules constantly rotate through all the possible conformations. => Chapter 3
21
Ethane Conformers • Staggered conformer has lowest energy. • Dihedral angle = 60 degrees H H
H
H
model
H
H Newman projection Chapter 3
=> sawhorse 22
Ethane Conformers (2) • Eclipsed conformer has highest energy • Dihedral angle = 0 degrees
=> Chapter 3
23
Conformational Analysis • Torsional strain: resistance to rotation. • For ethane, only 12.6 kJ/mol
=> Chapter 3
24
Propane Conformers Note slight increase in torsional strain due to the more bulky methyl group.
=> Chapter 3
25
Butane Conformers C2-C3 • Highest energy has methyl groups eclipsed. • Steric hindrance • Dihedral angle = 0 degrees
totally eclipsed Chapter 3
=> 26
Butane Conformers (2) • Lowest energy has methyl groups anti. • Dihedral angle = 180 degrees
anti => Chapter 3
27
Butane Conformers (3) • Methyl groups eclipsed with hydrogens • Higher energy than staggered conformer • Dihedral angle = 120 degrees
=>
eclipsed Chapter 3
28
Butane Conformers (4) • Gauche, staggered conformer • Methyls closer than in anti conformer • Dihedral angle = 60 degrees
gauche
=>
Chapter 3
29
Conformational Analysis
=> Chapter 3
30
Higher Alkanes • Anti conformation is lowest in energy. • “Straight chain” actually is zigzag.
H H H H H C C C C C H H H H H H H
Chapter 3
=> 31
Cycloalkanes • Rings of carbon atoms (-CH2- groups) • Formula: CnH2n • Nonpolar, insoluble in water • Compact shape • Melting and boiling points similar to branched alkanes with same number of carbons => Chapter 3
32
Naming Cycloalkanes • • • •
Cycloalkane usually base compound Number carbons in ring if >1 substituent. First in alphabet gets lowest number. May be cycloalkyl attachment to chain. CH2CH3 CH2CH3 CH3
=> Chapter 3
33
Cis-Trans Isomerism
• Cis: like groups on same side of ring • Trans: like groups on opposite sides of ring => Chapter 3
34
Cycloalkane Stability • • • •
5- and 6-membered rings most stable Bond angle closest to 109.5° Angle (Baeyer) strain Measured by heats of combustion per -CH2 =>
Chapter 3
35
Heats of Combustion/CH2 Alkane + O2 → CO2 + H2O 697.1 686.1 658.6 kJ
Long-chain
664.0
663.6 kJ/mol 662.4 658.6
=> Chapter 3
36
Cyclopropane • Large ring strain due to angle compression • Very reactive, weak bonds
=> Chapter 3
37
Cyclopropane (2) Torsional strain because of eclipsed hydrogens
=> Chapter 3
38
Cyclobutane • Angle strain due to compression • Torsional strain partially relieved by ring-puckering
=> Chapter 3
39
Utilizando los datos de la tabla dada a continuación. Demuestre cuantitativamente que la tensión total en ciclobutano es aproximadamente 26.4 kcal/mol. Describa los factores que contribuyen a esta tensión en ciclobutano. • o
cicloalcano
∆H comb (kcal/mol)
Tensión Total (kcal/mol)
ciclopropano
499.8
27.6
ciclobutano
655.9
26.4
ciclopentano
793.5
6.5
ciclohexano
944.5
0
cicloheptano
1108.3
6.3
ciclooctano
1268.9
9.6
Chapter 3
40
Cyclopentane • If planar, angles would be 108°, but all hydrogens would be eclipsed. • Puckered conformer reduces torsional strain.
=> Chapter 3
41
Cyclohexane • Combustion data shows it’s unstrained. • Angles would be 120°, if planar. • The chair conformer has 109.5° bond angles and all hydrogens are staggered. • No angle strain and no torsional strain. => Chapter 3
42
Chair Conformer
=> Chapter 3
43
Boat Conformer
=> Chapter 3
44
Conformational Energy
=> Chapter 3
45
Axial and Equatorial Positions
=> Chapter 3
46
Monosubstituted Cyclohexanes
=> Chapter 3
47
1,3-Diaxial Interactions
=> Chapter 3
48
Disubstituted Cyclohexanes
=> Chapter 3
49
Cis-Trans Isomers Bonds that are cis, alternate axialequatorial around the ring. CH3 CH3 One axial, one equatorial Chapter 3
=> 50
Bulky Groups • Groups like t-butyl cause a large energy difference between the axial and equatorial conformer. • Most stable conformer puts t-butyl equatorial regardless of other substituents.
=> Chapter 3
51
• 3) Considere el siguiente ciclohexano sustituído: H
C 3
CH(CH
) 3
2
OCH 3
• a) Dibuje la conformación silla correspondiente. • (b) Haga la representación Newman correspondiente. (Recuerde especificar la perspectiva que representa) • c)
Dibuje
ambas
sillas
(interconversión
de
los
confórmeros). Señale la que considere más estable.
o de o • d) Utilizando los valores de la tabla Sust de ∆G∆G kcal/mol de sustituyentes, calcule el ∆Go para el proceso interconversión. CH3 1.74 • e) Calcule el por ciento de cada confórmero OCH3 0.75
CH(CH3)2 Chapter 3
2.61 52
Bicyclic Alkanes • Fused rings share two adjacent carbons. • Bridged rings share two nonadjacent C’s.
bicyclo[3.1.0]hexane Chapter 3
bicyclo[2.2.1]heptane => 53
Cis- and Trans-Decalin • Fused cyclohexane chair conformers • Bridgehead H’s cis, structure more flexible • Bridgehead H’s trans, no ring flip possible. H
H
=>
H
H
cis-decalin
trans-decalin Chapter 3
54
Bicyclo[4.4.0]decane
=> Chapter 3
55
End of Chapter 3
Chapter 3
56