Structure And Stereochemistry Of Alkanes

  • Uploaded by: theresadefreitas
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Structure And Stereochemistry Of Alkanes as PDF for free.

More details

  • Words: 1,571
  • Pages: 56
Organic Chemistry, 6th Edition L. G. Wade, Jr.

Chapter 3 Structure and Stereochemistry of Alkanes

Jo Blackburn Richland College, Dallas, TX Dallas County Community College District  2006, Prentice Hall

Classification Review

Chapter 3

2

Alkane Formulas • All C-C single bonds • Saturated with hydrogens • Ratio: CnH2n+2 • Alkane homologs: CH3(CH2)nCH3 • Same ratio for branched alkanes H H H H H H C C C C H

H C H H H

H H H H

H C C C H H H H

=> Chapter 3

3

Common Names • Isobutane, “isomer of butane” • Isopentane, isohexane, etc., methyl branch on next-to-last carbon in chain. • Neopentane, most highly branched • Five possible isomers of hexane, 18 isomers of octane and 75 for decane!

=>

Chapter 3

4

Alkane Examples

=> Chapter 3

5

IUPAC Names • Find the longest continuous carbon chain. • Number the carbons, starting closest to the first branch. • Name the groups attached to the chain, using the carbon number as the locator. • Alphabetize substituents. • Use di-, tri-, etc., for multiples of same substituent. => Chapter 3

6

Longest Chain

• The number of carbons in the longest chain determines the base name: ethane, hexane. (Listed in Table 3.2, page 82.) • If there are two possible chains with the same number of carbons, use the chain with the most substituents. H3C

CH CH2

CH3

CH3 H3C CH2

C CH3 Chapter 3

CH

CH2

CH2

CH3

=> 7

Number the Carbons • Start at the end closest to the first attached group. • If two substituents are equidistant, look for the next closest group. 1

H3C

CH3

3

4

CH CH CH2 2

CH2CH3 Chapter 3

5

CH2

CH3 CH CH3 6

7 => 8

Name Alkyl Groups • CH3-, methyl CH3

• CH3CH2-, ethyl

CH3

• CH3CH2CH2-, n-propyl

isobutyl

• CH3CH2CH2CH2-, n-butyl CH3

CH CH2

CH CH2

CH3 CH3

sec-butyl

H3C

C

CH3 tert-butyl

=> Chapter 3

9

Propyl Groups H H H H C

C C

H H H H

H C

H H H

H

n-propyl A primary carbon

C C H

H

H

isopropyl A secondary carbon => Chapter 3

10

Butyl Groups H H H H H C

C C

C

H H H H

H

H C

H H H H

H

n-butyl A primary carbon

C C

H

C

H

H H

sec-butyl A secondary carbon => Chapter 3

11

Isobutyl Groups H

H

C H H H

C H H H H

C

C

C

H

H

H

H

C H

H H H isobutyl A primary carbon

C H

C H H

tert-butyl A tertiary carbon Chapter 3

12

=>

Alphabetize • Alphabetize substituents by name. • Ignore di-, tri-, etc. for alphabetizing. CH3 H3C

CH3

CH CH CH2

CH2

CH CH3

CH2CH3 3-ethyl-2,6-dimethylheptane => Chapter 3

13

Complex Substituents • If the branch has a branch, number the carbons from the point of attachment. • Name the branch off the branch using a locator number. • Parentheses are used around the complex branch name. 1

2

3 1-methyl-3-(1,2-dimethylpropyl)cyclohexane Chapter 3

14

=>

Physical Properties • Solubility: hydrophobic • Density: less than 1 g/mL • Boiling points increase with increasing carbons (little less for branched chains). • Melting points increase with increasing carbons (less for oddnumber of carbons). Chapter 3

15

Boiling Points of Alkanes Branched alkanes have less surface area contact, so weaker intermolecular forces.

=>

Chapter 3

16

Melting Points of Alkanes Branched alkanes pack more efficiently into a crystalline structure, so have higher m.p.

=>

Chapter 3

17

Branched Alkanes • Lower b.p. with increased branching • Higher m.p. with increased branching • Examples: CH3 CH3 CH3

CH CH2 CH2 CH3 bp 60°C mp -154°C

CH3 CH3

CH

CH

CH3 CH3

bp 58°C mp -135°C

Chapter 3

CH3 C CH2 CH3 CH3 bp 50°C mp -98°C 18

=>

Major Uses of Alkanes • C1-C2: gases (natural gas) • C3-C4: liquified petroleum (LPG) • C5-C8: gasoline • C9-C16: diesel, kerosene, jet fuel • C17-up: lubricating oils, heating oil • Origin: petroleum refining => Chapter 3

19

Reactions of Alkanes • Combustion 2 CH3CH2CH2CH3

+ 13 O2

heat

8 CO2

+ 10 H2O

• Cracking and hydrocracking (industrial) • Halogenation CH4 + Cl2

heat or light

CH3Cl + CH2Cl2 + CHCl3 + CCl4

=> Chapter 3

20

Conformers of Alkanes • Structures resulting from the free rotation of a C-C single bond • May differ in energy. The lowestenergy conformer is most prevalent. • Molecules constantly rotate through all the possible conformations. => Chapter 3

21

Ethane Conformers • Staggered conformer has lowest energy. • Dihedral angle = 60 degrees H H

H

H

model

H

H Newman projection Chapter 3

=> sawhorse 22

Ethane Conformers (2) • Eclipsed conformer has highest energy • Dihedral angle = 0 degrees

=> Chapter 3

23

Conformational Analysis • Torsional strain: resistance to rotation. • For ethane, only 12.6 kJ/mol

=> Chapter 3

24

Propane Conformers Note slight increase in torsional strain due to the more bulky methyl group.

=> Chapter 3

25

Butane Conformers C2-C3 • Highest energy has methyl groups eclipsed. • Steric hindrance • Dihedral angle = 0 degrees

totally eclipsed Chapter 3

=> 26

Butane Conformers (2) • Lowest energy has methyl groups anti. • Dihedral angle = 180 degrees

anti => Chapter 3

27

Butane Conformers (3) • Methyl groups eclipsed with hydrogens • Higher energy than staggered conformer • Dihedral angle = 120 degrees

=>

eclipsed Chapter 3

28

Butane Conformers (4) • Gauche, staggered conformer • Methyls closer than in anti conformer • Dihedral angle = 60 degrees

gauche

=>

Chapter 3

29

Conformational Analysis

=> Chapter 3

30

Higher Alkanes • Anti conformation is lowest in energy. • “Straight chain” actually is zigzag.

H H H H H C C C C C H H H H H H H

Chapter 3

=> 31

Cycloalkanes • Rings of carbon atoms (-CH2- groups) • Formula: CnH2n • Nonpolar, insoluble in water • Compact shape • Melting and boiling points similar to branched alkanes with same number of carbons => Chapter 3

32

Naming Cycloalkanes • • • •

Cycloalkane usually base compound Number carbons in ring if >1 substituent. First in alphabet gets lowest number. May be cycloalkyl attachment to chain. CH2CH3 CH2CH3 CH3

=> Chapter 3

33

Cis-Trans Isomerism

• Cis: like groups on same side of ring • Trans: like groups on opposite sides of ring => Chapter 3

34

Cycloalkane Stability • • • •

5- and 6-membered rings most stable Bond angle closest to 109.5° Angle (Baeyer) strain Measured by heats of combustion per -CH2 =>

Chapter 3

35

Heats of Combustion/CH2 Alkane + O2 → CO2 + H2O 697.1 686.1 658.6 kJ

Long-chain

664.0

663.6 kJ/mol 662.4 658.6

=> Chapter 3

36

Cyclopropane • Large ring strain due to angle compression • Very reactive, weak bonds

=> Chapter 3

37

Cyclopropane (2) Torsional strain because of eclipsed hydrogens

=> Chapter 3

38

Cyclobutane • Angle strain due to compression • Torsional strain partially relieved by ring-puckering

=> Chapter 3

39

Utilizando  los  datos  de  la  tabla  dada  a  continuación.    Demuestre  cuantitativamente  que  la  tensión  total  en  ciclobutano  es  aproximadamente  26.4  kcal/mol.    Describa  los  factores  que  contribuyen  a  esta  tensión  en  ciclobutano.    •  o

cicloalcano

∆H comb  (kcal/mol)

Tensión Total  (kcal/mol)

ciclopropano

499.8

27.6

ciclobutano

655.9

26.4

ciclopentano

793.5

6.5

ciclohexano

944.5

0

cicloheptano

1108.3

6.3

ciclooctano

1268.9

9.6

Chapter 3

40

Cyclopentane • If planar, angles would be 108°, but all hydrogens would be eclipsed. • Puckered conformer reduces torsional strain.

=> Chapter 3

41

Cyclohexane • Combustion data shows it’s unstrained. • Angles would be 120°, if planar. • The chair conformer has 109.5° bond angles and all hydrogens are staggered. • No angle strain and no torsional strain. => Chapter 3

42

Chair Conformer

=> Chapter 3

43

Boat Conformer

=> Chapter 3

44

Conformational Energy

=> Chapter 3

45

Axial and Equatorial Positions

=> Chapter 3

46

Monosubstituted Cyclohexanes

=> Chapter 3

47

1,3-Diaxial Interactions

=> Chapter 3

48

Disubstituted Cyclohexanes

=> Chapter 3

49

Cis-Trans Isomers Bonds that are cis, alternate axialequatorial around the ring. CH3 CH3 One axial, one equatorial Chapter 3

=> 50

Bulky Groups • Groups like t-butyl cause a large energy difference between the axial and equatorial conformer. • Most stable conformer puts t-butyl equatorial regardless of other substituents.

=> Chapter 3

51

• 3)  Considere el siguiente ciclohexano sustituído: H

C 3

CH(CH

) 3

2

OCH 3

• a)  Dibuje la conformación silla correspondiente.  • (b)  Haga  la  representación  Newman  correspondiente.    (Recuerde especificar la perspectiva que representa) • c)

Dibuje 

ambas 

sillas 

(interconversión 

de 

los 

confórmeros).  Señale la que considere más estable.          

                          

o  de  o • d) Utilizando  los  valores  de  la  tabla  Sust de ∆G∆G   kcal/mol de  sustituyentes,  calcule  el  ∆Go  para  el  proceso  interconversión. CH3 1.74 • e)  Calcule el por ciento de cada confórmero OCH3 0.75

CH(CH3)2 Chapter 3

2.61 52

Bicyclic Alkanes • Fused rings share two adjacent carbons. • Bridged rings share two nonadjacent C’s.

bicyclo[3.1.0]hexane Chapter 3

bicyclo[2.2.1]heptane => 53

Cis- and Trans-Decalin • Fused cyclohexane chair conformers • Bridgehead H’s cis, structure more flexible • Bridgehead H’s trans, no ring flip possible. H

H

=>

H

H

cis-decalin

trans-decalin Chapter 3

54

Bicyclo[4.4.0]decane

=> Chapter 3

55

End of Chapter 3

Chapter 3

56

Related Documents

Alkanes
October 2019 19
Reactions Of Alkanes:
June 2020 5
Structure , And .: Of Mis
November 2019 18
Chapter3 Alkanes
July 2020 3
Alkanes Isomers
May 2020 9

More Documents from "pixholic"