papercollection
I.
Using a lcebraic laws ofsct.
prove that I(A u B)" C]u[(A u B) " C']- B =A-B. [6 marb]
1 .Ii
2.
Find
3.
On the same diagram, sketch the graphs of y
3x dx ZTx' + 1
[4 marb]
=x :
I and Y - 2x - J.
[3 morks)
A region R is bounded by the two graphs and the y-axis. Find the area of region R.(7 marh] A solid is fonned by rotating the region R completely about y-axis. Find the volume ofthc sol id fonned. [5 marb]
4.
The functionfis defined by fIx)
={~. x ~ 3 . O.
x =3
(i)
Find !~T- fIx) . !~T- f<x) nnd hence dctennine if the functionfis continuous atx - 3.
(i i)
Sketch the graph off
[3 marb] [2 marb]
S.
Prove that. for aU yaJues of k. the line kx + y - 8k is a tangent to the hyperbola xy = 16. Hence, find the coord inates of the point of contact. (S marks]
6.
Sketch the graphs of
y= ....!-. and Y =I2x Ix l
llonlhesamediagram. Hence, solvc the
inequality IZx - I I> ~ .
[7 marb]
Ixl
Y- 2
7.
8.
Findthevaluesofx.yandzif
4<-1)
x is symmetric. 2: - 1
[5 marb)
Given thatf(x) ... f + a:/ + 8x + b, where a and b are constant. f '(x) - 0 when x z: -2. When 1(..1') is divided by x + 2, the remainder is 2. Dctennine the \'alues of a and b. (8) Show that the equationf(x) - 0 has on ly one real root and find the set of values of x such thatf(x} > 0 (b)
Express x + 4 in partial fructions . fIx) I
9.
[
x'
4..1'; 4
Given the matrices A -
P
(
7
Find the values of p. q and r.
I
-I) (I
2 and 2 - 3 - I I 4
[5 marb]
papercollection 2009
954/1
Hence. solve the simultaneous equations x+ y - z ::-2 2y + Z a.5.r - 9 7x - 3y - : - 14
1y
10.
Given that y
) I.
Express _ -1_ - as partial fraction. (r + I)(r + 2)
, showthat (I + X2)d dx'
z>
, .. 2..
Find also the value of lim
)
dx
[4 marks)
(4 marks)
I
,.J-
Hence or otherwise. find the value of
+ 3x~ = O
----
.:-=, (r + l )(r + 2)
(6 marks)
I
L --(r + l )(r + 2)
[4 marks)
........ . ... 4 1
12.
By using sketching graph. show that the upproximate value of the root can be derived by the
following Newton - Raphson iterative fonnula X .. .
1
=- X..
-
f(x,, ) . f(x. )
[4 marks]
Show that the equation Ian x "" 2.r has a root in the interval ( ; . ~). Hence. find the root of me equation for x e (~ .
[3 marks]
%). correct to three decimal places.[7 mor.tsJ
papercollection 1. Ex press 3sinO-cosO inthefonn Rsin{O-a) ,with
R > O. andOo
18 J
equation 3sinO-cosB = I . for 0° <0<360°.
2. By using the substitution y = vx. show that the general solution for the differential equations
~ = x + 2}' is dx
AX l
3x
=(x _ y) l
I5I
,where A is a arbitrary constant
3. In a chemica1 process to obtain substance B from substance A. every molecule of A is directly change to molecule of B. The rate of increment of molecule B at any instant arc directly proportional to the number of molecule A at that instant. Initially the number of molecule of A is /,1 and the number of molecule B at t minutes after the process began is x. By assuming x as the continuous variable. Sbow that the differential equation representing tht' chemical process is
~ = *(M dl
x), with k as a eonstant
If x "" Owhent = O.showthat x=M(1- e- b
)
18 I
Sketch the graph of x versus t.
4. Ship A moves witb vclocity ( 30~+ 40j) kmh - ' and ship B moves with velocity (15~+12j ) kmh -' . Initially . the position vector of ship B relative to ship A is (5 ~ -1-12;') km.
Calculate the magnitude and direction of ship A relative to ship B and the nearest distance bctwccp ship A and ship B 15 1
5. (a) If ! and
!!... are the position vectors of two points A and B respectively .and P is a poi nt
which divides AB in the ratio m : n. Show that P has the position vector
no +mb r = - - --m+n
(b) Find a vector of the equation oflhe straight line passing through the point A with position vCClOr a = 2 i +.i and is parallel to the vector ~ = - 5 ~ - 2 j
PJ
I' I
papercollection 6. lbe figure shows a quadrilateral which inscribed two isosceles triangles ABC and ADE with base AB and AE respectively. Each trianglcs has the base angles of75 o . Be and DE are parallcl and equal in lengths.
~,~----------------------~;
Show that (a)
LeBE = LBED =90'
[4 )
r31
(b) ACD is an equilateral triangle
7. The random variable X is normally distributed with mean • jJ • and variance 400 . It is known that I'(X rel="nofollow"> 1159) ,; 0.123 and P(X > 769) ~ 0.881 . Determine the range of the value of I'. 15 )
8. In a certain city . records for burglaries show that the probability of an arrest in one week is 0.42 . l bc pro bability o f an arrest and conviction in that week is 0.35. (a) Find the probability that a person arrested for a particular week for burglary will be convicted . (b) What is the probability that there wi ll be 3 weeks of successful arrested and conviction in o nc particular month . .[5 }
9. The continuous random variable X has probability dcnsity function given by
lex) =
{
k(x+I),
O';x S 2
2k
2SxSb.
()
otherwise
Where k and b arc constants. (a) Given that P(X > 2.5)
=.!.. find the val ue of the constants 6
(b) Sketch the graph ofthc probabi lity density function [(x). (e) Find 1'(1 .5 S X S 2.5)
k and b.
16)
131 12 1
papercollection 10. A discrete random variable X has a probability function
P(X) ={
k(9-x)',
x = 5,7,8
o
.
otherwise
With k as 0 constant. (0) DetU' m i~ the value of k. (b) Find the cumulative distribut ion f ooction F(X).ond s ketch the graph of F(X) (e) Find the mean and variance fo r X (d) Find E(4X-2} and Var{ 4X- 2)
[2 J [ 4) [3
J
[7 J
II. The successful sale of T-shirts in a local shop is bi nomially distributed with the probability o f
selling one T-shirt (if thc customer enter the shop) is 0.35. (a) If 12 customers visit the shop in onc particular day, find thc probability that at least two T-shirts were sold. (2 ] (b) CaJculate the least number of cu.~ome rs nceded in order the probability of getting at least one sale is greater than 99 %. r3 J 12. The fo llowing data are the handphones prices . to the nearest RM 100, of40 hand phones taken at random from a handphone shop, arrange in ascending order.
100 1000 1400 2 100 3300
400 11 00 1500 2300 3400
500 1100 1600 2400 3900
600 1200 1700 2500 4 100
900 1300 1700 2600 4500
900 1400 1800 3000 4500
1000 1400
1900 3000
4900
1000 1400 2100 3300 5300
(a) Display the data in a .templot (b) Find the median and interquartile nUlge. (c) Calculate the mean and the standard deviation. (d) Draw a box piotto represent the data (e) State the sJlape of the fTequency distribution and givc a reason for your answer.
Elfd 0/ questions
[2 : [4I r5 '
(3 I ,~ j
Stpm2009
mls: I
Us ing algebraic laws of set, prove that
papercollection
[(A v B) nCJv[(A V B) nC 'J- B = A -B .
[(Av B) n C JV[(AvB) nC 'J - B =[(A v B)nCJV[(A V 8) n C'ln
Solution:
= (A vB) n (CvC) n B'
B'
[6 mar.lsl
BI BI
= (A v B) n~n 8'
= (A v B) n B'
BI
= (AnB') v (BnB')
BI
=(AnB') v ; = (A n B')
BI
= A-B
BI
:; 2.
Find
Solution:
r
3x
i 2:.rr:i
rl 2J7:i 3x
14 mar';..]
dx
'f 3U
MI
,3
=f-du ,2
AIM I AI
3.
On the same diagram, sketch the graphs of y = ~ and y '" 2x - I. (1 marks I x+1 A region R is bounded by the two gmphs and the y-axis. Find the area of region R.[7 marh ] A solid is fonned by rotating the region R completely about y-axis. Fi nd the volume of the [5 morh]
sol id formed .
Solution:
5 -
- ----"---+..,f-,-=--'--+
y= ~
010101
Slpm2009
papercollection
mls:2
~=2x- 1 H I
S = 2x2+X - 1 2xl +x - 6 = O (2x - 3)(x+2) = 0 MIAI
Area -
, j...!...dx - 2 X~+ . !. X3X~ o x+ 1 2 2 2
, 9 = 5In [x+ IU -3 +
4
=
5 In ~ - ~
MIMI
AI
2 4
Vo lume =
MIAI
'n5 ')' dy +"3"I (3 "ily2" )' (3)
,.. If
25
10 )
M IA I
9
1 dy+-1t y Y 4 X1'"--+
1
25- 101ny+ y )' +-If 9 =If ( - -
Y
= ,,[( - ¥ =
4.
,
AI
- 10In5 + 5)-( - ¥ - 10In2 +2
~ + IOln ~ 4
4
H1
MI
AI
5
{~. x
(i)
';C 3. O. x=3 Find lim I(x) . lim I(x) and hence detennine iflhe function/i s continuous al x = 3.
(ii)
Sketch the g.. ph off
The function/is defined by I(x) =
..... ,.
. ....r
[3 marls) [2 marls]
Solution: lim lex) = lim x - 3 = I
. -.,.
.-d·
x- 3
lim /(x) = lim -
H 3
=_ 1
.... ,. .... ,- x - 3 I{x) "'$. lim I(x) Since .lim _ .,' .-0)'
:. lis not continuous at x = 3.
MIAI
AI
Stpm2009
papercollection
mls:3
0---
DIDI 5.
Prove that, for all va lues of k, the line /l!x + y = 8k is a tangent to the hyperbola xy::: 16. '-Icnee, find the coordinates of the point of contact. [5 marks1
Solutio n:
y=8k-.I". .I"(8k - 6) = 16 k'x' - 8h+ 16 - 0 (h - 4Xh - 4) = 0 (h - 4)' - 0 4
MIAI
:. x=!
MI
.:::) There is only one point of contact :. The line Itx + y "'" 8A: is a tangent to the hyperbola .ry "" 16.
AI
When x = ! . x=4k k
:. The coordinates of the point of contact =-
6.
(~.4.t )
Sketch the graphs of y = ~ and y ""
Ixl
12x -
BI
l ion the same diagram. Hence. solve the
inequality 12x - II> ~.
[7 mOTu]
Ixl
Solution: y
Ilx - II
010101
...!.. =f 2.1" - 11 Ixl
:::) .!. = 2x - 1 .I"
=> 2..' - .1" - 1 = 0
Slpm2009
mls:4
=>«- I)(2x+
papercollection
I )~O
I
MIAI
x : J,- 2'
For
12x- I I>~, the solution
D
{x:x<
- ~,x > I}
MIAI
4X- I)
y- 2 x' Find the values of x, y and z if 4x - 4 2x X is symmetric. ( Y y+z 2% - 1
7.
Solution: Xl = 4% - 4 ,, - 4x - l, x"'y+z. =><'- 4x + 4 - 0, => (x - 2)2 a 0, =>x=2, y = 4(2) - 1 = 7,z = 2 - 7 =-5
MIAI
MtAIAI
Given thall(x) - x' + ax' + 8x + b. where a and b an: constant. I '(x) - 0 when x = -2. When f(x) is divided by x + 2, the remainder is 2. Determine the values of a and b. (a) Show that the equationj(x} "" 0 has only one real root and find the set of values ofx such thatl(x) > 0
8.
(b)
Express %+ 4 in partial fractions. I(x)
I(x) - x' + ax' + 8x + b ['(x) - lx' + 2ax + 8 1 (-2) - 12 - 40 + 8 = 0 40 ~ 20 a- 5 Whena - 5. I(x) - x' + 5x' + 8x + b 1(-2) - -8 + 20 - 16 + b - 2 -4+b - 2 b- 6 :.I(x) - x' + 5<' + 8x + 6
Solution:
ax' +0:<' + 8x+ b 1(- 3) = - 27 + 45 - 24 + 6 = 0 .: :c - -3 i$ a rool o/the equationj(x) = O.
a) [(x)
Lel[(x) = x'+ 5<' + 8x + 6 = (x + 3)(<' + 2x + 2) When[(x) - O. (x + 3)(<' + 2x + 2) - 0 .T _ _
[5 marb)
3.x _ - 2±~ 2(1)
-2±~
x - -3. x - - 2-
The equalion n,x) - 0 has only one real rool,
X"
- 3.
Whenl(x) > 0 (x + 3)(..' + 2x + 2) > 0 But ,r2 + 2.t + 2::: (x + 1)2 + 1 > O. since (x + 1)2 > 0 for all real valuesof x
Stpm2009 mls:5 Hence (x + 3)(x 2 + 2x + 2) > 0 Whenx+3 > O::::)x > -3 The set of values ofx such that}{x»O is/x: x >-3). b) x+4 _
t
x+4
(x + 3)(x' + 2.<+ 2)
f(x) l..c
papercollection
x+4 A nx+C (x+3)(x'+ 2x+2) · (x+3) + (x'+2x+ 2)
x + 4 . A (x' + 2.r + 2) + (x + 3)(& + C) Substitutingx - -3: I =A(9 - 6+2)
A=.!. 5
Comparing the coefficients of~: 0
=A + B
B- -.!.
5
Comparing the constant terms: 4 .,. 2.'1 + JC
~
4=
+3C
5
.!.8.
3C -
5
C- ~ 5
I
I
6
.: A=S,B- -S andC - S x+4 = _ 1_ (x+3Xx 2 + 2x+2)
9.
_
S(x+)
Given the matTices A
(x - 6) 5(x l + 2.%+2)
c(~ ~ 1
1 -2 ) and
- 3 - I
(~
:) satisfy AB c BA
I
Find the values of p, q and ,..
[5 marks)
Hence, solve the simultaneous equations
x+ y - z =-2 2y +z o:Sx-9 1x - 3y - z = 14
Since AB " SA AB - BA "" nl, where n is a scalar a nd I is the 3 x J idenfity molrix.
( ~ 4~I] (~ ; !]= 1
-3
-I
1 5 r
nf
[5 morbI
papercollection
mls:6
q- 2 pq+22
J 3p+ 16+2r = nl 7- r
7q-14
9- r
-r J (n OJ
q- 2
7 0 pq+22 3p+16+2r = 0 n 0 9- r 0 0 n 7q - 14
p+ 10 = 0, q - 2 =
oand 7 -
p=-IO,q=2and r=7
A=(~ ~ ~IJ~(_:O 7 -3 - I
r = O. Notethatn ~ 2
~IJ
4
7
- 3-1
Also, AB :: BA "'" 2J x+y-z "' -2
2y+z = 5x - 9. -IOx + 4y+2z = - 18 7,- 3y-z c 14 The 3 simultaneous equations can be written as a matrix equation as follows
_~ ~:J(;) =(~~8 J
HO
Premultipllying with matrix B
BAUJ= B(~~8l
V
(~J =B( ~~8)
2[~} [~ ;JU~8JSloce/(~) £[~) =
(~)=[~) 2.r = 4, 2y c - 2 and 2z = 6 x == 2.y =- 1 andz ; )
10.
Given that y =
2y
. show that O + x2}d dx'
+ 3x~ = O dx
(4 marks]
mls:7
Stpm2009 Answer: y = -
x
-
papercollection
-,
( l + x1)1
, y( I + X2)2 - x
y(1 +x, )- i (.!.X2x) + (1 +x, )i !!l. = 1 2 dx
y ' + (1 u , )i !!l. = 1 dx 2y !!l. + (I +x, )i d'y + !!l.(.!.Xl u, )-i (2x)= O dx dx' dx 2 2 (I+xl)i d y + 2[2Y + (I + x2 x1 = O dx' dx
)-i
(I +X, )i d
1y
(/xl
+ 3( _ _ X_)~= O ! fix
(I +X1 )1
(I+z' / 'y + 3z!!l. = O dx' dx
II .
Express - -1- - as partial fraction. (r + IXr +2)
Hence or otherwise, find the value of
[4 mar,u]
._2. 1 L ---, ••• , (r+IXr +2)
. ,· 1.. I Find also the value o f lim ....... , ..... , (r + IXr +2)
L ----
Answer: Let _ _ 1_ _ = _ A_+ _ B_
Substitute
(r+ IXr + 2) (r+l) (r + 2) I - A(r+2) + B(r + I) r ... -2 I = - B, r '"" -I if .. I
(r + IXr + 2)
(r + l)
B :: - I
(r + 2)
'f __1_ _ ;; ,'f.... , (~~) , .... , (r + IXr + 2) r + 1 r +2 (_ I __ ~)+ (~ __I _ ) + (_ I __ ~) + n+ 2 n+ 3 n +3 n + 4 n + 2 n +3 (_ I __ ~) + n+ 4 n+ 5 (_ 1_ _ _ 1_ ) . 2n + 1 2n + 2
n +2
1 2n + 2
....... + (-,- _ _1_ ) + 2n 2n + 1
[6mar,u]
[4 mar,u]
S!pm2009
papercollection
mls:S 2("+1)("+2)
1
~_l..
IimL -+-I)(r-+2)
.40, ••• , (r
n
lim
·-2("+ 1)("+2) lim(_I-- _ I-)
..... n+2
o 12.
2n+2
By using sketching graph, show that the approximate value of the root can be derived by the
following Newton - Raphson iterative fonnula x •• , =x. - f(x. ) . f(x.)
[4 marks]
Show that the equation tan x = 2x has a root in the interval (~.
%).
[3 marks1
Hence. find the root of the equation for xe (~, ~), correct to three decimal places.[7 marks] Answer.
frx)
x~
Q(x". ,)
f{x.)]
x,.
01 Refer to the graph above, Q is the point of intersection of tangent at P and the x-axis. Gradien! ofll>e langen!.! P = f(x.) :. Equation of langen! . ! P is:y - j(x.) = f(x.) [ x - x.l A!Q.y= O.O - j(x.) =f(x.)[x", - x.l MIAI
:. x•• , = x. - f(x.) , f'(x.) f(x.)
~0
AI
li~tanx =1X!
MI
" :. The equation tan x = 2r has a root in the interval
j(x) - lanx - 2x f(x) =sec' x - 2 Letxo "" I,
XI = X(J -
!(xo) f'(x. )
(~ .
%).
AI
SIpm2009
papercollection
mls:9 x = 1_ tanl - 2 = 1.3 105 I
secl l - 2
X,
= 1.3105 _ tan(I.31 05) - 2(1.31 05) - 1.2239 sec'(1.3 105) - 2
X,
= 1.2239 _ tan(1.2239) - 2(1.2239) _ 1.1760 sec'(1.2239) - 2
x, = 1.1760 tan(1.I760) - 2(1.I 76O) = 1.1659
MIAI
MI
sec'(1.I76O) - 2 x, = 1.1659 tan(1.I659) - 2(1.1659) = 1.1656 sec' (1.1659) - 2 :. x = l.l66
MI AI
papercollection
G
rz. .~
,c:; .. ({! - c<) (,.",'0 0 - ((.
R
3 I
(-!!
0( 0(
fin
3
~
l {j. 43
0(
_
! , '" (
Co< ( ,'1 \
Q( ,-( _
[O<&f;.,
-
1-..'
('fJ(
(J
(,1>
<\,,] (;'{
1
bot!'
0
{",,,({7-I~ . if3· )t/
CorB:.JIo
>f;,,(j-
fin
5,:, ( J
v:
0(
B
[t,,,8
R
-;::0
COl
(.l
fah
"
r (J
I cor
/? -
(fJ-
&" l 'l' '13'
I
I
=
J
,g ' lf']') "
../TO
papercollection Vx ·
: V
=
o l e)
-I
dv
">(
"oix
':t
o/ 'x.
-I-
:> ~
3 "('
V ·' ." dv
oIx
1 1:Jv
- V
-' 1 +
3V
':>.\1 -
3
u
~
d,( ( rlV
I _V
A" : _ I
,,-
)
1 ~
. 1.! ,/.
/
.~ )(
:::
I- V I" (
; ( ~-fV
I - V
( A.?s.. )
1- " )
' I
3"1(
1.
1'1)"1 I" ( I -
If)
., c.
"
v) =-
v '
/
- C
3 l "x .1
1,,(1 _ \;)1
\" [ X( r - v) 3J
~
_7,(.
B
e. li
X( I - V)J =
')(~ " - ;f = 4 \ ,
)( ( 'X.-;'_'L/)
J
~ (" " (1 ) ,
~
A
- fj,
xJf>
(,( 'J) ' - A ('
II ~
' ~
(."
'I ) I
(/}
papercollection
,'i,- / ( I
I~.,f
~!
i
k(t11 -)( 0
::
II
I' f
/11", ' . /H. · i ,: ,1<
c1{
.Ti
=( k
JM -><
..J t .. /.'
- \
- l fI((v1 -~ )
/ ,., (IIA) =C
~ - Kf
M -
M
>(
')( =
M -
X
M
I i/ c{
/1
:
lufV.'
"I'V
AI
I. -
.~
I -: 1/1 _ "t('
./(
(A,I _>< )
\
oi l
( .fx
IW I
1\ '4/
/( ( hi - r~ . ( .- 1"'iF"/-
k ( M - .,.. )
cI
-
- -i> "'..; r, I
-e -
/.
\ k-(
M e- I,,!
( I -
e - /<-1) ./ \
'>-1.
papercollection
J /<;,,-;);;" "0\ / '
n]r« -f;<.
r> ,-
rJ ~
7 (~
')~
-1<;,, ':. '
"
I ~-
G I '2
0>. /' "
., t( .
/0 rlN
_1
<
hdh I:,~"
V;
''f \(,. Va '1 ' , " " " ~ ::
,
I :' 1
So-)
I'
") ( ' 1"0'
I ';
\
./ I
t.
,
~/
rt?-i \:011
papercollection
o--' A:
q
Oii ;- ~
p n --'
OJ>
~d
=
?
OP 0 "
( p lYh 1,,,,, Vf CW- )
(3-:" 01 n
-=
o (r -4 ) = Ilr _ n tl
t
n r
""
(Yl r-
N)b
-
fY'
h
=-
~
-or
OP
I
o~
b _ r
rnr
I n l'1
f"It\~ fY'b
.-.( IVl-ln ) f'"
- 0n t
--> PB (b - rl
~
p(i I 0 5
~
"'4
+
r'YI
b
r'l'1 -J n
"
1\
-i>
/ --
( ,
I ,.
"''')
I', v
/"',
.
)I. ,
- ,. - "
r
j' lf}.1 1
/ ' . . ,1" .
'/<..
fIr:.:.
(I r.
7 r
, / _-
I~
- ' (2.. -r,-- -
On rl l" /..')11
\1.-" f ".... I
\
•
I" " ../h
/.
I
I f"
II, • ."
'i
-
A /-'
/
I
papercollection
w
~
e, . I,'"e
0,1/<-1 {Mt
4
:
r, ( }\
'c
·r" Be. , 'Of:
fMc.l le l I go - (1) t:o)
~
(.:£.
05 ,:} e/r ll)
3 0'
4 4
< 4!l> <: N ':: 4(\01' ~ 40""' =30 ' (RC #MN Hor-) = 330 - 'I-'5- 7-r -3 0 - ]u : ~(,() - 4 ' A/M - .j: 01\"' - 461\ ( - o}OJ\E ( :2 'f ·f 'b 0 )
C A I\1
~"l'
, 1'5"
(I" ~F/Jt'tr
1
v
I
f'!,f. = I\ f' CA~!\ (. II e:. fl pf. - 1$0 <1 <.1£, Cl IN oI'> -" I" ", b /
(' _ I(uu .. " 4- AGe ", 2f.IIEC> ~ ~90 - 11-" ( 5 otr 4. "Ii 0 ) ;,
~<
-'~ I1 ~ '
r
-}( H =AO :- /'I (
t\ fi C O
(
,/'(
= '\.(1'>(\.19' hlle
H
.{.(!>[O
,... (\", (
= 10 '
~ nor -
~ ·c(O\ ( u '-l
1 f?> I
'10~
~
.
0 - 4 /tt01· 1.(I U J >
1\
1°«('Hr , .I P ,
)
\ ....
i ~f, ~
15;
+ 1<5' , qo
j?11(,.
)
() •
.rn... .....
/
_
. •
,
X An " _
d r I1 n . t.
papercollection ..if
~
y.. ~ rv(
<1l.
I
4- 00 )
.-fA,
p( X >1I ,q) :;::
0 · / :>
3
>
il S-'1 - A.i ;;>..0
1/ ,.. q
-
II ,- 1
r( I'
:l 3 . .:l
J 3 . :)
/'
V
6q ) >/ :> 76: -,.(/ )
I
() . 8'8 /
X ? -=7
( 'Z'
;>.,{(
lI .3s B
<:
.4{
.,«( ;:>
-
>/0 · gg I
0
r ( z
> () ) ~
"
8'il I
1- i?(z <(f) >/0 8£ 1 r ('2 < C\) ~ I -08iS ?( ;Z<"l ) ?
,
7 (, 1 -
,if
l
O, (/ q
/
,/
,
¥1r
< - I . I ~ ,// I
20
, 61 - --l/
<::
-.)3 ·6
76,/-1 :1. 3 ·~ < AI
A(
> 71.) b
71;1'" AJ
/,
I
< 11 3 ~-. f1
~ .~
~ «c-
papercollection
,:?G o ~)
1\
/'
~ 'l1 n)
:"'-- f~ ·
c....
\
0
P,C Il /I C )
V · .»
0 '
I, )
x .- i·~
( 4 /
r(X - ?' ) ~
14
)t
(; "f
'~ ("
().J ~ -
7·
(:,
(> J
....---;/
c.--;/
r) (
(!
(~
?
14- 1 ) ! (("
v,
/'
3 _c
~)
I
/,
papercollection
(j) tI )
P (X>;J»
C'
: ~ G !
:>k d )(
-- '.
" 5
[ :>kx ] .b ,
I v
:6
/ 'I
~
:
b~
-V
' ::>)<
tA K(
-i¥) b -
20 k
=I
=l OK = !
\.
/.\
papercollection b)
v<
'4
*~ "
~+
3
0
L)
p
(/ ~
~
(' ~
I,
t, .!.. b
X ~
:>
·.S )
jrxld r i("tl)c1x
[
~
')(
1.
~"
r
, r
[;' f
d,<
-/"
x
~
fJ It" V;
papercollection
1«
4- "- + I" (
"2..'2. +
~
:1 / )
I< --
I
2.
I ) = J'
~
A
~
:J..I
¥
bl
~
''h , ~~ \ \~, Fe, )
P(
~
?(
pr-x)
>( ~., )' ~(~ ); 8( },) l~ I It
>, .$"
0 ,..
-:;
4-
, ~'
"- ,
C:;(,0j "2 /
~ l /' 4/
I
) ( ~G 2,
ov
'z / ' V (l
I
.
1 /1 I / '
\
papercollection
r:: (4)(- 2)
i
4t(x) -
4 ( 2.
0
1~16) 16 't .r
~ 2
:l.
~ ..'<. () ~ .2 (
Or
/'
V I
•
:::
:: ~
4v.-;v(x)
I b(~) 4(0
/1 L 1Jj 0 I ll~. 1
OI-
0 r
4-2 Z -'-I
papercollection
tI )
x - e. (
I
L
/
x >/:2 )
p(
~
j})
()
~ I -
(P(O)
p(I))
i-
I - (" (.0
Q.")
0'1<; T
X.>-- I) >
I -
nCo I -
0
o~
> ()
')<)
> 0·') '/
0 G <;"
o . b_' ~ < I o (,~- " <: 0 fl
>0 7'1 , /
o · 3r • Q bS' "
>
0 .
-0 I
4.!:b
vO l
/ 01> O(' r
n :>
n =
1
11
10' /I
{,"f
/ v
I
I>
/-
. ' (
I
")
I O · ] S ./
I
v:
-11 .)
.
p (X ;0 )
I -
O· {, S-
» Vi
b
)(~B(t1 / 0 - 3>~ ) f? (
r •
(O'6 4 ~4-)
1-
papercollection ';f~(Yf
tl)
[,,6Itv,,-,<
o
I
Lj
I
o
I
~.
{, .
2
"3
1 ·9 Lj.
4
V
u/'
i<.,,~
-luO '-i' t.,- oU
4 I~-
-
~ 1-00 t 1'1 (10 2-
~ asol
~
T 00
10
Or
i"_
10 ·f~ I
/1
11,
L..
!.!..p :: fM I f
th
-1
0
I
,.
" 00
00 ,f.
11
(l(rJ )
4~ 0/" 1 a ·11, 1 1 1 II>
J
(jiJO
I
1 dlJ"O
2
0,..,1 007)
/
~
--',
v-;
I
papercollection
1- 0 ..
,;.
~(J iJV
: /111 I
<-)
-
II OV 1'1
'1 00.
t =
V
c/
vi
I
4u
V; ,/-
0=
v{
I
40
vi' d) t3 ox-pi of
/\>
t r~
Shtif €: r (IiW "
:
1-> 11,