Stpm Trial 2009 Matht Q&a Kelantan

  • Uploaded by: SimPor
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Stpm Trial 2009 Matht Q&a Kelantan as PDF for free.

More details

  • Words: 4,823
  • Pages: 29
papercollection

I.

Using a lcebraic laws ofsct.

prove that I(A u B)" C]u[(A u B) " C']- B =A-B. [6 marb]

1 .Ii

2.

Find

3.

On the same diagram, sketch the graphs of y

3x dx ZTx' + 1

[4 marb]

=x :

I and Y - 2x - J.

[3 morks)

A region R is bounded by the two graphs and the y-axis. Find the area of region R.(7 marh] A solid is fonned by rotating the region R completely about y-axis. Find the volume ofthc sol id fonned. [5 marb]

4.

The functionfis defined by fIx)

={~. x ~ 3 . O.

x =3

(i)

Find !~T- fIx) . !~T- f<x) nnd hence dctennine if the functionfis continuous atx - 3.

(i i)

Sketch the graph off

[3 marb] [2 marb]

S.

Prove that. for aU yaJues of k. the line kx + y - 8k is a tangent to the hyperbola xy = 16. Hence, find the coord inates of the point of contact. (S marks]

6.

Sketch the graphs of

y= ....!-. and Y =I2x Ix l

llonlhesamediagram. Hence, solvc the

inequality IZx - I I> ~ .

[7 marb]

Ixl

Y- 2

7.

8.

Findthevaluesofx.yandzif

4<-1)

x is symmetric. 2: - 1

[5 marb)

Given thatf(x) ... f + a:/ + 8x + b, where a and b are constant. f '(x) - 0 when x z: -2. When 1(..1') is divided by x + 2, the remainder is 2. Dctennine the \'alues of a and b. (8) Show that the equationf(x) - 0 has on ly one real root and find the set of values of x such thatf(x} > 0 (b)

Express x + 4 in partial fructions . fIx) I

9.

[

x'

4..1'; 4

Given the matrices A -

P

(

7

Find the values of p. q and r.

I

-I) (I

2 and 2 - 3 - I I 4

[5 marb]

papercollection 2009

954/1

Hence. solve the simultaneous equations x+ y - z ::-2 2y + Z a.5.r - 9 7x - 3y - : - 14

1y

10.

Given that y

) I.

Express _ -1_ - as partial fraction. (r + I)(r + 2)

, showthat (I + X2)d dx'

z>

, .. 2..

Find also the value of lim

)

dx

[4 marks)

(4 marks)

I

,.J-

Hence or otherwise. find the value of

+ 3x~ = O

----

.:-=, (r + l )(r + 2)

(6 marks)

I

L --(r + l )(r + 2)

[4 marks)

........ . ... 4 1

12.

By using sketching graph. show that the upproximate value of the root can be derived by the

following Newton - Raphson iterative fonnula X .. .

1

=- X..

-

f(x,, ) . f(x. )

[4 marks]

Show that the equation Ian x "" 2.r has a root in the interval ( ; . ~). Hence. find the root of me equation for x e (~ .

[3 marks]

%). correct to three decimal places.[7 mor.tsJ

papercollection 1. Ex press 3sinO-cosO inthefonn Rsin{O-a) ,with

R > O. andOo
18 J

equation 3sinO-cosB = I . for 0° <0<360°.

2. By using the substitution y = vx. show that the general solution for the differential equations

~ = x + 2}' is dx

AX l

3x

=(x _ y) l

I5I

,where A is a arbitrary constant

3. In a chemica1 process to obtain substance B from substance A. every molecule of A is directly change to molecule of B. The rate of increment of molecule B at any instant arc directly proportional to the number of molecule A at that instant. Initially the number of molecule of A is /,1 and the number of molecule B at t minutes after the process began is x. By assuming x as the continuous variable. Sbow that the differential equation representing tht' chemical process is

~ = *(M dl

x), with k as a eonstant

If x "" Owhent = O.showthat x=M(1- e- b

)

18 I

Sketch the graph of x versus t.

4. Ship A moves witb vclocity ( 30~+ 40j) kmh - ' and ship B moves with velocity (15~+12j ) kmh -' . Initially . the position vector of ship B relative to ship A is (5 ~ -1-12;') km.

Calculate the magnitude and direction of ship A relative to ship B and the nearest distance bctwccp ship A and ship B 15 1

5. (a) If ! and

!!... are the position vectors of two points A and B respectively .and P is a poi nt

which divides AB in the ratio m : n. Show that P has the position vector

no +mb r = - - --m+n

(b) Find a vector of the equation oflhe straight line passing through the point A with position vCClOr a = 2 i +.i and is parallel to the vector ~ = - 5 ~ - 2 j

PJ

I' I

papercollection 6. lbe figure shows a quadrilateral which inscribed two isosceles triangles ABC and ADE with base AB and AE respectively. Each trianglcs has the base angles of75 o . Be and DE are parallcl and equal in lengths.

~,~----------------------~;

Show that (a)

LeBE = LBED =90'

[4 )

r31

(b) ACD is an equilateral triangle

7. The random variable X is normally distributed with mean • jJ • and variance 400 . It is known that I'(X rel="nofollow"> 1159) ,; 0.123 and P(X > 769) ~ 0.881 . Determine the range of the value of I'. 15 )

8. In a certain city . records for burglaries show that the probability of an arrest in one week is 0.42 . l bc pro bability o f an arrest and conviction in that week is 0.35. (a) Find the probability that a person arrested for a particular week for burglary will be convicted . (b) What is the probability that there wi ll be 3 weeks of successful arrested and conviction in o nc particular month . .[5 }

9. The continuous random variable X has probability dcnsity function given by

lex) =

{

k(x+I),

O';x S 2

2k

2SxSb.

()

otherwise

Where k and b arc constants. (a) Given that P(X > 2.5)

=.!.. find the val ue of the constants 6

(b) Sketch the graph ofthc probabi lity density function [(x). (e) Find 1'(1 .5 S X S 2.5)

k and b.

16)

131 12 1

papercollection 10. A discrete random variable X has a probability function

P(X) ={

k(9-x)',

x = 5,7,8

o

.

otherwise

With k as 0 constant. (0) DetU' m i~ the value of k. (b) Find the cumulative distribut ion f ooction F(X).ond s ketch the graph of F(X) (e) Find the mean and variance fo r X (d) Find E(4X-2} and Var{ 4X- 2)

[2 J [ 4) [3

J

[7 J

II. The successful sale of T-shirts in a local shop is bi nomially distributed with the probability o f

selling one T-shirt (if thc customer enter the shop) is 0.35. (a) If 12 customers visit the shop in onc particular day, find thc probability that at least two T-shirts were sold. (2 ] (b) CaJculate the least number of cu.~ome rs nceded in order the probability of getting at least one sale is greater than 99 %. r3 J 12. The fo llowing data are the handphones prices . to the nearest RM 100, of40 hand phones taken at random from a handphone shop, arrange in ascending order.

100 1000 1400 2 100 3300

400 11 00 1500 2300 3400

500 1100 1600 2400 3900

600 1200 1700 2500 4 100

900 1300 1700 2600 4500

900 1400 1800 3000 4500

1000 1400

1900 3000

4900

1000 1400 2100 3300 5300

(a) Display the data in a .templot (b) Find the median and interquartile nUlge. (c) Calculate the mean and the standard deviation. (d) Draw a box piotto represent the data (e) State the sJlape of the fTequency distribution and givc a reason for your answer.

Elfd 0/ questions

[2 : [4I r5 '

(3 I ,~ j

Stpm2009

mls: I

Us ing algebraic laws of set, prove that

papercollection

[(A v B) nCJv[(A V B) nC 'J- B = A -B .

[(Av B) n C JV[(AvB) nC 'J - B =[(A v B)nCJV[(A V 8) n C'ln

Solution:

= (A vB) n (CvC) n B'

B'

[6 mar.lsl

BI BI

= (A v B) n~n 8'

= (A v B) n B'

BI

= (AnB') v (BnB')

BI

=(AnB') v ; = (A n B')

BI

= A-B

BI

:; 2.

Find

Solution:

r

3x

i 2:.rr:i

rl 2J7:i 3x

14 mar';..]

dx

'f 3U


MI

,3

=f-du ,2

AIM I AI

3.

On the same diagram, sketch the graphs of y = ~ and y '" 2x - I. (1 marks I x+1 A region R is bounded by the two gmphs and the y-axis. Find the area of region R.[7 marh ] A solid is fonned by rotating the region R completely about y-axis. Fi nd the volume of the [5 morh]

sol id formed .

Solution:

5 -

- ----"---+..,f-,-=--'--+

y= ~

010101

Slpm2009

papercollection

mls:2

~=2x- 1 H I

S = 2x2+X - 1 2xl +x - 6 = O (2x - 3)(x+2) = 0 MIAI

Area -

, j...!...dx - 2 X~+ . !. X3X~ o x+ 1 2 2 2

, 9 = 5In [x+ IU -3 +

4

=

5 In ~ - ~

MIMI

AI

2 4

Vo lume =

MIAI

'n5 ')' dy +"3"I (3 "ily2" )' (3)

,.. If

25

10 )

M IA I

9

1 dy+-1t y Y 4 X1'"--+

1

25- 101ny+ y )' +-If 9 =If ( - -

Y

= ,,[( - ¥ =

4.

,

AI

- 10In5 + 5)-( - ¥ - 10In2 +2

~ + IOln ~ 4

4

H1

MI

AI

5

{~. x

(i)

';C 3. O. x=3 Find lim I(x) . lim I(x) and hence detennine iflhe function/i s continuous al x = 3.

(ii)

Sketch the g.. ph off

The function/is defined by I(x) =

..... ,.

. ....r

[3 marls) [2 marls]

Solution: lim lex) = lim x - 3 = I

. -.,.

.-d·

x- 3

lim /(x) = lim -

H 3

=_ 1

.... ,. .... ,- x - 3 I{x) "'$. lim I(x) Since .lim _ .,' .-0)'

:. lis not continuous at x = 3.

MIAI

AI

Stpm2009

papercollection

mls:3

0---

DIDI 5.

Prove that, for all va lues of k, the line /l!x + y = 8k is a tangent to the hyperbola xy::: 16. '-Icnee, find the coordinates of the point of contact. [5 marks1

Solutio n:

y=8k-.I". .I"(8k - 6) = 16 k'x' - 8h+ 16 - 0 (h - 4Xh - 4) = 0 (h - 4)' - 0 4

MIAI

:. x=!

MI

.:::) There is only one point of contact :. The line Itx + y "'" 8A: is a tangent to the hyperbola .ry "" 16.

AI

When x = ! . x=4k k

:. The coordinates of the point of contact =-

6.

(~.4.t )

Sketch the graphs of y = ~ and y ""

Ixl

12x -

BI

l ion the same diagram. Hence. solve the

inequality 12x - II> ~.

[7 mOTu]

Ixl

Solution: y

Ilx - II

010101

...!.. =f 2.1" - 11 Ixl

:::) .!. = 2x - 1 .I"

=> 2..' - .1" - 1 = 0

Slpm2009

mls:4

=>«- I)(2x+

papercollection

I )~O

I

MIAI

x : J,- 2'

For

12x- I I>~, the solution

D

{x:x<

- ~,x > I}

MIAI

4X- I)

y- 2 x' Find the values of x, y and z if 4x - 4 2x X is symmetric. ( Y y+z 2% - 1

7.

Solution: Xl = 4% - 4 ,, - 4x - l, x"'y+z. =><'- 4x + 4 - 0, => (x - 2)2 a 0, =>x=2, y = 4(2) - 1 = 7,z = 2 - 7 =-5

MIAI

MtAIAI

Given thall(x) - x' + ax' + 8x + b. where a and b an: constant. I '(x) - 0 when x = -2. When f(x) is divided by x + 2, the remainder is 2. Determine the values of a and b. (a) Show that the equationj(x} "" 0 has only one real root and find the set of values ofx such thatl(x) > 0

8.

(b)

Express %+ 4 in partial fractions. I(x)

I(x) - x' + ax' + 8x + b ['(x) - lx' + 2ax + 8 1 (-2) - 12 - 40 + 8 = 0 40 ~ 20 a- 5 Whena - 5. I(x) - x' + 5x' + 8x + b 1(-2) - -8 + 20 - 16 + b - 2 -4+b - 2 b- 6 :.I(x) - x' + 5<' + 8x + 6

Solution:

ax' +0:<' + 8x+ b 1(- 3) = - 27 + 45 - 24 + 6 = 0 .: :c - -3 i$ a rool o/the equationj(x) = O.

a) [(x)

Lel[(x) = x'+ 5<' + 8x + 6 = (x + 3)(<' + 2x + 2) When[(x) - O. (x + 3)(<' + 2x + 2) - 0 .T _ _

[5 marb)

3.x _ - 2±~ 2(1)

-2±~

x - -3. x - - 2-

The equalion n,x) - 0 has only one real rool,

X"

- 3.

Whenl(x) > 0 (x + 3)(..' + 2x + 2) > 0 But ,r2 + 2.t + 2::: (x + 1)2 + 1 > O. since (x + 1)2 > 0 for all real valuesof x

Stpm2009 mls:5 Hence (x + 3)(x 2 + 2x + 2) > 0 Whenx+3 > O::::)x > -3 The set of values ofx such that}{x»O is/x: x >-3). b) x+4 _

t

x+4

(x + 3)(x' + 2.<+ 2)

f(x) l..c

papercollection

x+4 A nx+C (x+3)(x'+ 2x+2) · (x+3) + (x'+2x+ 2)

x + 4 . A (x' + 2.r + 2) + (x + 3)(& + C) Substitutingx - -3: I =A(9 - 6+2)

A=.!. 5

Comparing the coefficients of~: 0

=A + B

B- -.!.

5

Comparing the constant terms: 4 .,. 2.'1 + JC

~

4=

+3C

5

.!.8.

3C -

5

C- ~ 5

I

I

6

.: A=S,B- -S andC - S x+4 = _ 1_ (x+3Xx 2 + 2x+2)

9.

_

S(x+)

Given the matTices A

(x - 6) 5(x l + 2.%+2)

c(~ ~ 1

1 -2 ) and

- 3 - I

(~

:) satisfy AB c BA

I

Find the values of p, q and ,..

[5 marks)

Hence, solve the simultaneous equations

x+ y - z =-2 2y +z o:Sx-9 1x - 3y - z = 14

Since AB " SA AB - BA "" nl, where n is a scalar a nd I is the 3 x J idenfity molrix.

( ~ 4~I] (~ ; !]= 1

-3

-I

1 5 r

nf

[5 morbI

papercollection

mls:6

q- 2 pq+22

J 3p+ 16+2r = nl 7- r

7q-14

9- r

-r J (n OJ

q- 2

7 0 pq+22 3p+16+2r = 0 n 0 9- r 0 0 n 7q - 14

p+ 10 = 0, q - 2 =

oand 7 -

p=-IO,q=2and r=7

A=(~ ~ ~IJ~(_:O 7 -3 - I

r = O. Notethatn ~ 2

~IJ

4

7

- 3-1

Also, AB :: BA "'" 2J x+y-z "' -2

2y+z = 5x - 9. -IOx + 4y+2z = - 18 7,- 3y-z c 14 The 3 simultaneous equations can be written as a matrix equation as follows

_~ ~:J(;) =(~~8 J

HO

Premultipllying with matrix B

BAUJ= B(~~8l

V

(~J =B( ~~8)

2[~} [~ ;JU~8JSloce/(~) £[~) =

(~)=[~) 2.r = 4, 2y c - 2 and 2z = 6 x == 2.y =- 1 andz ; )

10.

Given that y =

2y

. show that O + x2}d dx'

+ 3x~ = O dx

(4 marks]

mls:7

Stpm2009 Answer: y = -

x

-

papercollection

-,

( l + x1)1

, y( I + X2)2 - x

y(1 +x, )- i (.!.X2x) + (1 +x, )i !!l. = 1 2 dx

y ' + (1 u , )i !!l. = 1 dx 2y !!l. + (I +x, )i d'y + !!l.(.!.Xl u, )-i (2x)= O dx dx' dx 2 2 (I+xl)i d y + 2[2Y + (I + x2 x1 = O dx' dx

)-i

(I +X, )i d

1y

(/xl

+ 3( _ _ X_)~= O ! fix

(I +X1 )1

(I+z' / 'y + 3z!!l. = O dx' dx

II .

Express - -1- - as partial fraction. (r + IXr +2)

Hence or otherwise, find the value of

[4 mar,u]

._2. 1 L ---, ••• , (r+IXr +2)

. ,· 1.. I Find also the value o f lim ....... , ..... , (r + IXr +2)

L ----

Answer: Let _ _ 1_ _ = _ A_+ _ B_

Substitute

(r+ IXr + 2) (r+l) (r + 2) I - A(r+2) + B(r + I) r ... -2 I = - B, r '"" -I if .. I

(r + IXr + 2)

(r + l)

B :: - I

(r + 2)

'f __1_ _ ;; ,'f.... , (~~) , .... , (r + IXr + 2) r + 1 r +2 (_ I __ ~)+ (~ __I _ ) + (_ I __ ~) + n+ 2 n+ 3 n +3 n + 4 n + 2 n +3 (_ I __ ~) + n+ 4 n+ 5 (_ 1_ _ _ 1_ ) . 2n + 1 2n + 2

n +2

1 2n + 2

....... + (-,- _ _1_ ) + 2n 2n + 1

[6mar,u]

[4 mar,u]

S!pm2009

papercollection

mls:S 2("+1)("+2)

1

~_l..

IimL -+-I)(r-+2)

.40, ••• , (r

n

lim

·-2("+ 1)("+2) lim(_I-- _ I-)

..... n+2

o 12.

2n+2

By using sketching graph, show that the approximate value of the root can be derived by the

following Newton - Raphson iterative fonnula x •• , =x. - f(x. ) . f(x.)

[4 marks]

Show that the equation tan x = 2x has a root in the interval (~.

%).

[3 marks1

Hence. find the root of the equation for xe (~, ~), correct to three decimal places.[7 marks] Answer.

frx)

x~

Q(x". ,)

f{x.)]

x,.

01 Refer to the graph above, Q is the point of intersection of tangent at P and the x-axis. Gradien! ofll>e langen!.! P = f(x.) :. Equation of langen! . ! P is:y - j(x.) = f(x.) [ x - x.l A!Q.y= O.O - j(x.) =f(x.)[x", - x.l MIAI

:. x•• , = x. - f(x.) , f'(x.) f(x.)

~0

AI

li~tanx =1X!

MI

" :. The equation tan x = 2r has a root in the interval

j(x) - lanx - 2x f(x) =sec' x - 2 Letxo "" I,

XI = X(J -

!(xo) f'(x. )

(~ .

%).

AI

SIpm2009

papercollection

mls:9 x = 1_ tanl - 2 = 1.3 105 I

secl l - 2

X,

= 1.3105 _ tan(I.31 05) - 2(1.31 05) - 1.2239 sec'(1.3 105) - 2

X,

= 1.2239 _ tan(1.2239) - 2(1.2239) _ 1.1760 sec'(1.2239) - 2

x, = 1.1760 tan(1.I760) - 2(1.I 76O) = 1.1659

MIAI

MI

sec'(1.I76O) - 2 x, = 1.1659 tan(1.I659) - 2(1.1659) = 1.1656 sec' (1.1659) - 2 :. x = l.l66

MI AI

papercollection

G

rz. .~

,c:; .. ({! - c<) (,.",'0 0 - ((.

R

3 I

(-!!

0( 0(

fin

3

~

l {j. 43

0(

_

! , '" (

Co< ( ,'1 \

Q( ,-( _

[O<&f;.,

-

1-..'

('fJ(

(J

(,1>

<\,,] (;'{

1

bot!'

0

{",,,({7-I~ . if3· )t/

CorB:.JIo

>f;,,(j-

fin

5,:, ( J

v:

0(

B

[t,,,8

R

-;::0

COl

(.l

fah

"

r (J

I cor

/? -

(fJ-

&" l 'l' '13'

I

I

=

J

,g ' lf']') "

../TO

papercollection Vx ·

: V

=

o l e)

-I

dv

">(

"oix

':t

o/ 'x.

-I-

:> ~

3 "('

V ·' ." dv

oIx

1 1:Jv

- V

-' 1 +

3V

':>.\1 -

3

u

~

d,( ( rlV

I _V

A" : _ I

,,-

)

1 ~

. 1.! ,/.

/

.~ )(

:::

I- V I" (

; ( ~-fV

I - V

( A.?s.. )

1- " )

' I

3"1(

1.

1'1)"1 I" ( I -

If)

., c.

"

v) =-

v '

/

- C

3 l "x .1

1,,(1 _ \;)1

\" [ X( r - v) 3J

~

_7,(.

B

e. li

X( I - V)J =

')(~ " - ;f = 4 \ ,

)( ( 'X.-;'_'L/)

J

~ (" " (1 ) ,

~

A

- fj,

xJf>

(,( 'J) ' - A ('

II ~

' ~

(."

'I ) I

(/}

papercollection

,'i,- / ( I

I~.,f

~!

i

k(t11 -)( 0

::

II

I' f

/11", ' . /H. · i ,: ,1<

c1{

.Ti

=( k

JM -><

..J t .. /.'

- \

- l fI((v1 -~ )

/ ,., (IIA) =C

~ - Kf

M -

M

>(

')( =

M -

X

M

I i/ c{

/1

:

lufV.'

"I'V

AI

I. -

.~

I -: 1/1 _ "t('

./(

(A,I _>< )

\

oi l

( .fx

IW I

1\ '4/

/( ( hi - r~ . ( .- 1"'iF"/-

k ( M - .,.. )

cI

-

- -i> "'..; r, I

-e -

/.

\ k-(

M e- I,,!

( I -

e - /<-1) ./ \

'>-1.

papercollection

J /<;,,-;);;" "0\ / '

n]r« -f;<.

r> ,-

rJ ~

7 (~

')~

-1<;,, ':. '

"

I ~-

G I '2

0>. /' "

., t( .

/0 rlN

_1

<

hdh I:,~"
V;

''f \(,. Va '1 ' , " " " ~ ::

,

I :' 1

So-)

I'

") ( ' 1"0'

I ';

\

./ I

t.

,

~/

rt?-i \:011

papercollection

o--' A:

q

Oii ;- ~

p n --'

OJ>

~d

=

?

OP 0 "

( p lYh 1,,,,, Vf CW- )

(3-:" 01 n

-=

o (r -4 ) = Ilr _ n tl

t

n r

""

(Yl r-

N)b

-

fY'

h

=-

~

-or

OP

I

o~

b _ r

rnr

I n l'1

f"It\~ fY'b

.-.( IVl-ln ) f'"

- 0n t

--> PB (b - rl

~

p(i I 0 5

~

"'4

+

r'YI

b

r'l'1 -J n

"

1\

-i>

/ --

( ,

I ,.

"''')

I', v

/"',

.

)I. ,

- ,. - "

r

j' lf}.1 1

/ ' . . ,1" .

'/<..

fIr:.:.

(I r.

7 r

, / _-

I~

- ' (2.. -r,-- -

On rl l" /..')11

\1.-" f ".... I

\



I" " ../h

/.

I

I f"

II, • ."

'i

-

A /-'

/

I

papercollection

w

~

e, . I,'"e

0,1/<-1 {Mt

4

:

r, ( }\

'c

·r" Be. , 'Of:

fMc.l le l I go - (1) t:o)

~

(.:£.

05 ,:} e/r ll)

3 0'

4 4

< 4!l> <: N ':: 4(\01' ~ 40""' =30 ' (RC #MN Hor-) = 330 - 'I-'5- 7-r -3 0 - ]u : ~(,() - 4 ' A/M - .j: 01\"' - 461\ ( - o}OJ\E ( :2 'f ·f 'b 0 )

C A I\1

~"l'

, 1'5"

(I" ~F/Jt'tr

1

v

I

f'!,f. = I\ f' CA~!\ (. II e:. fl pf. - 1$0 <1 <.1£, Cl IN oI'> -" I" ", b /(' _ I(uu .. " 4- AGe ", 2f.IIEC> ~ ~90 - 11-" ( 5 otr 4. "Ii 0 ) ;,

~<

-'~ I1 ~ '

r

-}( H =AO :- /'I (

t\ fi C O

(

,/'(

= '\.(1'>(\.19' hlle

H

.{.(!>[O

,... (\", (

= 10 '

~ nor -

~ ·c(O\ ( u '-l

1 f?> I

'10~

~

.

0 - 4 /tt01· 1.(I U J >

1\

1°«('Hr , .I P ,

)

\ ....

i ~f, ~

15;

+ 1<5' , qo

j?11(,.

)

() •

.rn... .....

/

_

. •

,

X An " _

d r I1 n . t.

papercollection ..if

~

y.. ~ rv(

<1l.

I

4- 00 )

.-fA,

p( X >1I ,q) :;::

0 · / :>

3

>

il S-'1 - A.i ;;>..0

1/ ,.. q

-

II ,- 1

r( I'

:l 3 . .:l

J 3 . :)

/'

V

6q ) >/ :> 76: -,.(/ )

I

() . 8'8 /

X ? -=7

( 'Z'

;>.,{(

lI .3s B

<:

.4{

.,«( ;:>

-

>/0 · gg I

0

r ( z

> () ) ~

"

8'il I

1- i?(z <(f) >/0 8£ 1 r ('2 < C\) ~ I -08iS ?( ;Z<"l ) ?

,

7 (, 1 -

,if

l

O, (/ q

/

,/

,

¥1r

< - I . I ~ ,// I

20

, 61 - --l/

<::

-.)3 ·6

76,/-1 :1. 3 ·~ < AI

A(

> 71.) b

71;1'" AJ

/,

I

< 11 3 ~-. f1

~ .~

~ «c-

papercollection

,:?G o ~)

1\

/'

~ 'l1 n)

:"'-- f~ ·

c....

\

0

P,C Il /I C )

V · .»

0 '

I, )

x .- i·~

( 4 /

r(X - ?' ) ~

14

)t

(; "f

'~ ("

().J ~ -



(:,

(> J

....---;/

c.--;/

r) (

(!

(~

?

14- 1 ) ! (("

v,

/'

3 _c

~)

I

/,

papercollection

(j) tI )

P (X>;J»

C'

: ~ G !

:>k d )(

-- '.

" 5

[ :>kx ] .b ,

I v

:6

/ 'I

~

:

b~

-V

' ::>)<

tA K(

-i¥) b -

20 k

=I

=l OK = !

\.

/.\

papercollection b)

v<

'4

*~ "

~+

3

0

L)

p

(/ ~

~

(' ~

I,

t, .!.. b

X ~

:>

·.S )

jrxld r i("tl)c1x

[

~

')(

1.

~"

r

, r

[;' f

d,<

-/"

x

~

fJ It" V;

papercollection



4- "- + I" (

"2..'2. +

~

:1 / )

I< --

I

2.

I ) = J'

~

A

~

:J..I

¥

bl

~

''h , ~~ \ \~, Fe, )

P(

~

?(

pr-x)

>( ~., )' ~(~ ); 8( },) l~ I It

>, .$"

0 ,..

-:;

4-

, ~'

"- ,

C:;(,0j "2 /

~ l /' 4/

I

) ( ~G 2,

ov

'z / ' V (l

I

.

1 /1 I / '

\

papercollection

r:: (4)(- 2)

i

4t(x) -

4 ( 2.

0

1~16) 16 't .r

~ 2

:l.

~ ..'<. () ~ .2 (

Or

/'

V I



:::

:: ~

4v.-;v(x)

I b(~) 4(0

/1 L 1Jj 0 I ll~. 1

OI-

0 r

4-2 Z -'-I

papercollection

tI )

x - e. (

I

L

/

x >/:2 )

p(

~

j})

()

~ I -

(P(O)

p(I))

i-

I - (" (.0

Q.")

0'1<; T

X.>-- I) >

I -

nCo I -

0

o~

> ()

')<)

> 0·') '/

0 G <;"

o . b_' ~ < I o (,~- " <: 0 fl

>0 7'1 , /

o · 3r • Q bS' "

>

0 .

-0 I

4.!:b

vO l

/ 01> O(' r

n :>

n =

1

11

10' /I

{,"f

/ v

I

I>

/-

. ' (

I

")

I O · ] S ./

I

v:

-11 .)

.

p (X ;0 )

I -

O· {, S-

» Vi

b

)(~B(t1 / 0 - 3>~ ) f? (

r •

(O'6 4 ~4-)

1-

papercollection ';f~(Yf

tl)

[,,6Itv,,-,<

o

I

Lj

I

o

I

~.

{, .

2

"3

1 ·9 Lj.

4

V

u/'

i<.,,~

-luO '-i' t.,- oU

4 I~-

-

~ 1-00 t 1'1 (10 2-

~ asol

~

T 00

10

Or

i"_

10 ·f~ I

/1

11,

L..

!.!..p :: fM I f

th

-1

0

I

,.

" 00

00 ,f.

11

(l(rJ )

4~ 0/" 1 a ·11, 1 1 1 II>

J

(jiJO

I

1 dlJ"O

2

0,..,1 007)

/

~

--',

v-;

I

papercollection

1- 0 ..

,;.

~(J iJV

: /111 I

<-)

-

II OV 1'1

'1 00.

t =

V

c/

vi

I

4u

V; ,/-

0=

v{

I

40

vi' d) t3 ox-pi of

/\>

t r~

Shtif €: r (IiW "

:

1-> 11,

Related Documents


More Documents from "SimPor"