Coursework 4
Local Axes For the Elements:
Degrees Of Freedom:
There are 8 unknowns as shown in the figure above. 1
Calculation Of Displacements Section Properties : Element ac cb ab cd
1st Node a c a c
2nd Node c b b d
θ 53 307 0 0
sinθ 0.8 -0.8 0 0
cosθ 0.6 0.6 1 1
I (m4) 0.00068 0.00137 0.00068
E kN/m2 30000000 30000000 210000000 30000000
Local Stiffness Matrices for the Elements: Local Stiffness Matrix - Element ac uxa
uya
θa
uxc
uyc
θc
270000 0
0 243
0 1215
-270000 0
0 -243
0 1215
0 -270000 0 0
1215 0 -243 1215
8100 0 -1215 4050
0 270000 0 0
-1215 0 243 -1215
4050 0 -1215 8100
Local Stiffness Matrix - Element cb uxc
uyc
θc
uxb
uyb
θb
342000
0
0
-342000
0
0
0
493
2466
0
-493
2466
0 -342000 0 0
2466 0 -493 2466
16440 0 -2466 8220
0 342000 0 0
-2466 0 493 -2466
8220 0 -2466 16440
Local Stiffness Matrix - Element cd uxc
uyc
θc
uxd
uyd
θd
450000
0
0
-450000
0
0
0
1125
3375
0
-1125
3375
0
3375
13500
0
-3375
6750
-450000
0
0
450000
0
0
0
-1125
-3375
0
1125
-3375
0
3375
6750
0
-3375
13500
ab uxa
uxb 7700
-7700
-7700
7700
2
A (m2) 0.09 0.114 0.0004 0.09
l(m) 10 10 12 6
Transformation Matrices for the Elements : Transformatin Matrix - Element ac uxa
uya
θa
uxc
uyc
θc
0.6 0.8 0 0 0 0
-0.8 0.6 0 0 0 0
0 0 1 0 0 0
0 0 0 0.6 0.8 0
0 0 0 -0.8 0.6 0
0 0 0 0 0 1
Transformatin Matrix - Element cb uxc
uyc
θc
uxb
uyb
θb
0.6 -0.8 0 0 0 0
0.8 0.6 0 0 0 0
0 0 1 0 0 0
0 0 0 0.6 -0.8 0
0 0 0 0.8 0.6 0
0 0 0 0 0 1
Transformation Matrices for elements ab and cd are not needed because they are on the same axes with the global.
3
Global Stiffness Matrices for the Elements : Transformation Matrix × Local Stiffness Matrix × Transpose Of Transformation Matrix (Matrix Calculations are made using MATLAB)
Global Stiffness Matrix - Element ac uxa
uya
θa
uxc
uyc
θc
97360 129480
129480 172890
-970 730
-97360 -129480
-129480 -172890
-970 730
-970 -97360 -129480 -970
730 -129480 -172890 730
8100 970 -730 4050
970 97360 129480 970
-730 129480 172890 -730
4050 970 -730 8100
Global Stiffness Matrix - Element cb uxc
uyc
θc
uxb
uyb
θb
123440 -163920
-163920 219060
1970 1480
-123440 163920
163920 -219060
1970 1480
1970 -123440 163920 1970
1480 163920 -219060 1480
16440 -1970 -1480 8220
-1970 123440 -163920 -1970
-1480 -163920 219060 -1480
8220 -1970 -1480 16440
Local Stiffness Matrix - Element cd uxc
uyc
θc
uxd
uyd
θd
450000
0
0
-450000
0
0
0
1125
3375
0
-1125
3375
0
3375
13500
0
-3375
6750
-450000
0
0
450000
0
0
0
-1125
-3375
0
1125
-3375
0
3375
6750
0
-3375
13500
ab uxa
uxb
7700
-7700
-7700
7700
The columns and rows with gray background are not needed when creating the Global Stiffness Matrix because those displacements are zero.
4
Global Stiffness Matrix for the Structure : Global Structure Matrix XB 131140 -1970 -123440 163920 -1970 0 0 0
θB -1970 16440 1970 1480 8220 0 0 0
XC -123440 1970 670800 -34440 2940 -450000 0 0
YC 163920 1480 -34440 393075 4125 0 -1125 3375
θC -1970 8220 2940 4125 38040 0 -3375 6750
XD 0 0 -450000 0 0 450000 0 0
YD 0 0 0 -1125 -3375 0 1125 -3375
θD 0 0 0 3375 6750 0 -3375 13500
Calculation Of The Displacements by Using The Known Forces On The Nodes : The uniformly distributed load can be act as two forces and two moments on nodes c and d to do the same effect on the total structure.
The forces that should be acted would be V1 = V2 = -150 kN, Mc = -150 kNm and Md = 150 kNm Global Structure Matrix XB 131140 -1970 -123440 163920 -1970 0 0 0
θB -1970 16440 1970 1480 8220 0 0 0
XC -123440 1970 670800 -34440 2940 -450000 0 0
YC 163920 1480 -34440 393075 4125 0 -1125 3375
θC -1970 8220 2940 4125 38040 0 -3375 6750
XD 0 0 -450000 0 0 450000 0 0
YD 0 0 0 -1125 -3375 0 1125 -3375
θD 0 0 0 3375 6750 0 -3375 13500
Displacements
Force
XB θB XC YC θC XD YD θD
0 0 0 -150 -150 0 -150 150
Solving the Global Matrix × Displacements = Force by Matlab gives us the Displacements: Displacements XB
θB
XC
YC
θC
XD
YD
θD
0.0143
0.0234
0.0074
-0.0061
-0.0441
0.0074
-0.6705
-0.1333
meter
rad
meter
meter
rad
meter
meter
rad
5
Local Displacement Vectors: = Transpose of Transformation Matrix × Global Displacement Vector Of Element (Matrix multiplications made my MATLAB) Global Displacement Vector For Element ac XA
0
meter
YA
0
meter
θA
0
rad
XC
0.0074
meter
YC
-0.0061
meter
θC
-0.0441
rad
Local Displacement Vector For Element ac xa
0
meter
ya
0
meter
θa
0
rad
xc
-0.0004
meter
yc
-0.0096
meter
θc
-0.0441
rad
Global Displacement Vector For Element cb XC
0.0074
meter
YC
-0.0061
meter
θC
-0.0441
rad
XB
0.0143
meter
YB
0
meter
θB
0.0234
rad
Local Displacement Vector For Element cb xc
0.0093
meter
yc
0.0023
meter
θc
-0.0441
rad
Xb
0.0086
meter
yb
0.0114
meter
θb
0.0234
rad
Global Displacement Vectors are same with the Local Displacement Vectors for the elements cd and ab as they are on the same axes.
6
Calculating the Local Nodal Forces: = Local Stiffness Matrix × Local Displacement Vector
fxa fya ma fxc fyc mc
Local Forces ac 118.8 -51.2536 -166.9653 -118.8 51.2536 -345.5703
kN kN kNm kN kN kNm
fxc fyb mc fxb fyb mb
Local Forces cb 253.08 -55.5738 -555.2939 -253.08 55.5738 -0.4439
kN kN kNm kN kN kNm
xa xb
fxc fyc mc fxd fyd md
Local Forces ab -110.1 110.1
meter meter
Local Forces cd 0 149.7375 749,25 0 -149,7375 149,1750
kN kN kNm kN kN kNm
We need to subtract the forces we have loaded on the nodes to get the correct nodal forces for cd:
fxc fyc mc fxd fyd md
Local Forces cd 0 300 900 0 0 0
7
kN kN kNm kN kN kNm
Nodal Forces : (in kN and kN m)
8
Axial Force :
Member ab : Dark Gray : +110.01 kN (in tension) Member ac : Light Gray : -118.80 kN (in compression) Member cb : Light Gray : -253.08 kN (in compression) No Axial Force on member cd.
Shear Force : No shear force on element ab. Member ac : Light Gray : - 51.26 kN Member cb : Dark Gray : -55.57 kN Member cd : Dark Gray : 300.00 kN to a zero value at the d
Moment Diagram : Diagram on the tension side of the element. No Moment on member ab. Member ac: The moment on node a is in clockwise direction. At node c it’s rotating the node c in clockwise direction. There is no external load on the frame element causing a constant shear force thru the element and that causing the moment diagram to be linear. Member bc: Moment on node b is zero since there is a roller support there. Moment on node c is bending the node in clockwise direction. Member cd : Moment at node c is rotating at counter-clockwise direction. So the total moment on node c is zero. (The other two moments on this node were in clockwise direction.) Node d is a free end so the moment there is zero. There is uniformly distributed load on the frame element causing a non constant – but linear shear force which causes the moment diagram to be parabolic. The moment is never on the other side of the frame element since there is no contra flexure.
9
Reaction Forces:
Reaction Forces at node b (Roller Support) Vb = 253.08 × 0.8 + 55.57 × 0.6 = 235.80 kN Hb = 0 ( Roller Support ) Mb = 0 ( Roller Support ) Reaction Forces at node a Va = 50 × 6 – 235.80 = 64.20 kN Ha = 0 Ma = 166.96 kN m Comments On The Coursework : The main difference between the slope deflection method and the stiffness matrix method is that in the stiffness matrix method, the axial deflections are also considered. With both methods, the displacements are found first, and then the internal forces are derived from the displacements, using the material and section properties, such as the Young Modulus, Moment Of Inertia and the area of the section. (Area of the section only for the stiffness matrix.)
10