dr. Agustyas Tjiptaningrum, SpPK
GANGGUAN KESEIMBANGAN ASAM BASA, CAIRAN, DAN ELEKTROLIT
Acid Base Disorders
ACID-BASE REGULATION The body attempts to maintain a pH between 7.35 and 7.43 (hydrogen ion concentration between 35 and 45 nmol/L. This is achieved despite considerable variation in acid-base intake
Elimination of volatile acids Volatile hydrogen ion are eliminated by the lungs as CO2 based on: H+ + HCO3- ! H2CO3 ! CO2 + H2O
Sources of nonvolatile acids Diet, about 30 mEq of H ion is added to the body daily. (this can increase with a very high animal protein intake) Incomplete metabolism, about 30mEq/day (ketoacids,betahydroxybutyrate etc) Stool loss of Bicarbonate, around 20mEq bicarbonate is lost in stools daily.
Elimination of acid-base Lungs. The lungs eliminate a large amount of volatile acid as CO2.This can be greatly increased or modestly decreased if the lungs are normal. Kidneys. Acid excretion and alkali excretion Normally the kidneys are called on to excrete 70 to 100 mEq acid/day. This can be reduced to 0 or increased to fourfold. If faced with an alkaline load,the kidneys can excrete hundreds mEq of bicarbonate.
Abnormal States Lungs: Abnormalities can lead to reduced CO2 or too much CO2. Kidneys: Deficient or excess H ion excretion. Excess HCO3 regeneration or loss. Metabolic abnormalities: Diabetes, poor tissue perfusion, anaerobic metabolism. Gastrointestinal abnormalities: Vomiting, diarrhea.
Disturbances of Acid-base Balance
• Buffer systems • Respiration • Renal function • Maintain tight control within range 7.35 – 7.45
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
The Central Role of the Carbonic AcidBicarbonate Buffer System in the Regulation of Plasma pH
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Figure 27.11a
The Central Role of the Carbonic AcidBicarbonate Buffer System in the Regulation of Plasma pH
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Figure 27.11b
Measurements and Calculations Hydrogen concentration (pH) Bicarbonate concentration (HCO3) pCO2 Anion Gap (AG).
The body’s buffer system. Carbonic acid – bicarbonate system Hemoglobin Protein
The Henderson – Hasselbalch equation Clinically, the carbonic acid – bicarbonate system is most important. By applying the law of mass action to the following reaction: CO2 + H2O ↔ H2CO3 ↔ H+ +HCO3one obtains the classic equation: pH = 6.1 + log [HCO3] / pCO2
The Henderson – Hasselbalch equation The classic equation: pH = 6.1 + log [HCO3] / pCO2 The practical equation: [H+] = 24 x pCO2 / [HCO3-] pH = 7.40 [HCO3-] = 24 mEq/L [H+] = 40 nmol/L pCO2 = 40 mmHg
Specific Disturbances Metabolic acidosis (a fall in pH and a decrease in HCO3-) Metabolic alkalosis (a rise in pH and an increase in HCO3-) Respiratory acidosis (a fall in pH resulting from a primary increase in pCO2) Respiratory alkalosis (a rise in pH from a decrease in pCO2)
Figure 27.6 The Basic Relationship between PCO2 and Plasma pH
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Figure 27.6
Acid-Base Disorders
• Respiratory acid-base disorders • Result when abnormal respiratory function causes rise or fall in CO2 in ECF • Metabolic acid-base disorders • Generation of organic or fixed acids • Anything affecting concentration of bicarbonate ions in ECF
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Respiratory acid-base disorders • Respiratory acidosis • Results from excessive levels of CO2 in body fluids • Respiratory alkalosis • Relatively rare condition • Associated with hyperventilation
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Compensation. Metabolic disorders: The pulmonary response will attempt to correct the pH. Respiratory correction occurs immediately. Respiratory disorders: The kidneys regulates bicarbonate levels It takes several hours to respond
Respiratory Acid-Base Regulation
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Figure 27.12a
Respiratory Acid-Base Regulation
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Figure 27.12b
Incomplete Compensation When compensation fails to occur, it is because of disease in that system. This is then termed a mixed or combined disorder
Anion Gap In the blood, when measured, cations seem to exceed anions in number. This is due to the plasma proteins, the difference amounts to about 10 – 12 mEq/L. Anion Gap = [Na+] – (Cl- + HCO3-)
Anion Gap An increased AG always means a metabolic acidosis is present. An increased AG implies that the cause of acidosis must be retention of some acid other than HCl.
Metabolic Acidosis Metabolic acidosis results from three types of disorders: excess acid load decreased acid excretion by the kidney alkali (bicarbonate) loss
Metabolic acidosis Normal AG (hyperchloremic metabolic acidosis) A. Excess intake (HCl, NH4Cl) B. Bicarbonate loss 1. GI tract Diarrhea Fistulas 2. Proximal renal tubular acidosis C. Decreased renal acid secretion. (distal renal tubular acidosis)
Metabolic acidosis Increased AG A. Ketoacidosis 1. Diabetes mellitus 2. Alcohol B. Lactic acidosis (usually due to shock) C. Poisons D. Renal failure
Metabolic acid-base disorders • Major causes of metabolic acidosis are: • Depletion of bicarbonate reserve • Inability to excrete hydrogen ions at kidneys • Production of large numbers of fixed / organic acids • Bicarbonate loss due to chronic diarrhea • Metabolic alkalosis • Occurs when HCO3- concentrations become elevated • Caused by repeated vomiting Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
The Response to Metabolic Acidosis
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Figure 27.13
Workup of metabolic acidosis. low Bicarbonate 1. Measure pH high pH Respiratory alkalosis
low pH Metabolic acidosis 2. Determine AG
Increased Gap ketoacidosis lactic acidosis uremia
Normal Gap Renal tubular acidosis GI disease Acid intake
Workup of normal AG metabolic acidosis 1. Serum K
Decreased
2. Urinary pH
pH >5.5
Distal RTA
Increased or Normal : Early uraemic acidosis Obstructive nephropathy Mineralocorticoid deficiency Infusion / ingestion: HCl, NH4Cl
pH<5.5 Proximal RTA Acute Diarrhea
Metabolic Alkalosis
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Figure 27.14
Causes of metabolic alkalosis HCl loss a. Gastrointestinal b. Increased urine acidification Excess alkali intake a. Alkali abuse b. Treatment of acidosis Severe potassium depletion
Primary causes of alkalosis Vomiting/Diuretics Vomiting/Diuretics ↓HCl
↓ECV ↑Aldosterone
↑Bicarbonate Reabsorbtion
H+secretion
Alkalosis Alkalosis
↓KCl H+ Shift into cells
Secondary causes of alkalosis K Depletion
ECF Contraction
AKALOSIS Shift H+ Into cells
Proximal Tubule Bicarbonate Reabsorbtion Acid Urine
Exchange Na for H in Distal Tubule Exchange Na for K in Distal Tubule
Aldosterone
Workup of metabolic alkalosis elevated Bicarbonate 1. measure pH low pH Respiratory acidosis
high pH Metabolic alkalosis 2. Assess ECV a. history b. exam c. urine Na
ECV depletion a. GI losses b. Diuretics c. severe K depletion
ECV normal a. aldosteronism b. alkali intake c. severe K depletion
Respiratory disorders Respiratory Acidosis This disorder results from hypoventilation. Because chemical buffering is limited. Acute respiratory failure is associated with severe acidosis with little increase in plasma bicarbonate. Chronic respiratory failure causes increased renal generation of bicarbonate.
Causes of respiratory acidosis Depression of respiratory center Stroke, Tumors, Encephalitis, Drugs
Limitation of chest wall movement Neuromuscular disorders, Trauma, Surgery, Fixation of ribs
Pulmonary disease Chronic bronchitis, Chronic emphysema, Asthma, Pneumonia
Depression of respiratory center Strokes Tumors Encephalitis Drugs : narcotics sedatives tranquilizers
Limitation of chest wall movement Neuromuscular disorder : myasthenia gravis Guillain – Barré tetanus Trauma and surgery Fixation of ribs
Pulmonary disease Chronic bronchitis Chronic emphysema Asthma Pneumonia
Respiratory alkalosis This disorder results from hyperventilation due to a variety of causes. Acute hypocapnia causes release of H ions from tissue buffers, this tends to minimize the reduction of plasma bicarbonate. Chronic hypocapnia stimulates renal adaptation with reduced bicarbonate generation, thus lowering plasma bicarbonate concentration.
Causes of respiratory alkalosis Direct stimulation of respiratory center. Psychogenic, CNS disease, Sepsis, Hypermetabolic state, Exercise, Liver failure, Drugs
Reflex stimulation of respiratory center. Pneumonia, Pulmonary edema, Pulmonary fibrosis, Asthma, Cyanotic heart disease
Excessive mechanical ventilation
Direct stimulation of respiratory center Psychogenic CNS disease : stroke, encephalitis Sepsis Hypermetabolic state: fever, thyrotoxicosis. Exercise Liver faillure Drugs: salicylates, ammonia, progesterone
Reflex stimulation of respiratory center Pneumonia Pulmonary edema Pulmonary fibrosis Asthma Cyanotic heart disease
Detection of acidosis and alkalosis
• Diagnostic blood tests • Blood pH • PCO2 • Bicarbonate levels • Distinguish between respiratory and metabolic
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
A Diagnostic Chart for Acid-Base Disorders
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Figure 27.15
Aging and Fluid, Electrolyte, and Acid-base Balance • Reduced total body water content • Impaired ability to perform renal compensation • Increased water demands • Reduced ability to concentrate urine • Reduced sensitivity to ADH/ aldosterone • Net loss of minerals • Inability to perform respiratory compensation • Secondary conditions that affect fluid, electrolyte, acidbase balance
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
TEORI STEWART UNTUK KESEIMBANGAN ASAM BASA dr. Agustyas Tjiptaningrum, SpPK
PENDAHULUAN • Konsep asam basa tradisional
– berdasarkan konsep Henderson-Hasselbalch serta Bronsted & Lowry pH = pKa + log10 ( [HCO3-] / PaCO2 ) • Konsep tradisional tidak dapat menjelaskan beberapa keadaan gangguan keseimbangan asam basa seperti:
– Asidosis hiperkloremik – Asidosis dilusional • Stewart menawarkan pendekatan baru: pendekatan fisika kimiawi / kuantitatif
PENDAHULUAN
Pendekatan teori Stewart: 1. 2. 3. 4.
5.
6.
[H+] x [OH-] = K 'w (keseimbangan disosiasi air) [H+] x [A-] = KA x [HA] (asam lemah) [HA] + [A-] = [ATOT] (konservasi massa A) [H+] x [HCO3-] = KC x PCO2 (keseimbangan pembentukan ion bikarbonat) [H+] x [CO3=] = K3 x [HCO3-] (keseimbangan pembentukan ion karbonat) [SID] + [H+] - [HCO3-] - [A-] -[CO3=] - [OH-] = 0 (prinsip netralitas elektrik)
Grogono AW. Stewart’s strong ion difference [online]. 2006; Available from: URL: http://www.acidbase.com/strongion.php.
[H+] and [HCO3-] depend on concentrations of other ions Stewart’s Dependent Variables
Stewart’s Independent Variables
[H+]
[OH-]
PCO2
[HCO3-]
[CO3=]
[ATOT]
[HA]
[A-]
[HA] = weak acid [A-] = weak ions
[SID] [ATOT] = total non-volatile acids [SID] = net Strong Ion Difference
Grogono AW. Stewart’s strong ion difference [online]. 2006; Available from: URL: http://www.acid-base.com/ strongion.php.
FAKTOR YANG MEMPENGARUHI H+ DAN HCO3SID
pCO2
H+ / HCO3-
Asam lemah
Konstanta disosiasi air dan asam lemah Modifikasi dari: Slide 53 Story DA.. Crit Care. 2004;8:253-8.
KONSEP TRADISIONAL VERSUS STEWART
• Tradisional: – pH = pKa + log10 ( [HCO3-] / PaCO2 ) – CO2 : komponen respiratorik – HCO3-: komponen metabolik
• Stewart: – Tiga variabel yang independen: • pCO2 • Strong Ion Difference [SID] • Total asam lemah nonvolatil [ATOT] Slide 54
ELEKTROLIT (ION KUAT) MENENTUKAN PH
Ion kuat (strong ion) Disosiasi sempurna pada larutan air Misal: Na+, K+, Ca2+, Mg2+, dan Cl-
Ion lemah Terdapat dalam bentuk terdisosiasi (ion) dan bentuk tak terdisosiasi
SID: Perbedaan jumlah kation kuat dan anion kuat SID = [jumlah kation kuat] - [jumlah anion kuat] SID = [Na+] + [K+] + [Ca2+] + [Mg2+] - [Cl-] - [UA-] UA: konsentrasi anion kuat yang tak diukur (unmeasured strong anion) seperti asam keto, laktat, dan substansi endogen lain
Slide 55
pH RESPIRATORY
PCO2
METABOLIC
SID Na+, K+ Ca++, Mg++ ClLactate Ketoacids
ATOT Albumin Globulin Phosphat e
Sulfate
Constable PD. Review Article, Clinical Assessment of Acid-Base Status: Comparison of Henderson-Hasselbalch and Strong Ion Approaches. Veterinary Clinical Pathology, 29;4, 2000
SID
Perbedaan jumlah kation kuat dan anion kuat SID = [jumlah kation kuat] - [jumlah anion kuat] SID = [Na+] + [K+] + [Ca2+] + [Mg2+] - [Cl-] - [UA-] UA: konsentrasi anion kuat yang tak diukur (unmeasured strong anion) seperti asam keto, laktat, dan substansi endogen lain
Praktis:
Slide 57
SIDa = (Na+ + K+ + Ca2+ + Mg2+) - (Cl- + Laktat -) SIDe = CO2 + ASIG = SIDa - SIDe
Prinsip elektronetralitas [jumlah kation] = [jumlah anion]
Slide 58
Kaplan LJ, Frangos S. Crit Care. 2005 Apr;9(2):198-203.
Prinsip fisika-kimiawi larutan biologik (2)
Prinsip konservasi massa
Jumlah substansi tetap konstan
Penambahan ion kuat (contoh: NaCl)
Bila tidak dihilangkan atau dipakai pada reaksi kimia: • Menyebabkan perubahan elektronetralitas • Ion H+ dan OH- dihasilkan atau dipakai untuk memelihara elektronetralitas.
Laktat
Slide 59
Kecuali bila ditambahkan, diproduksi, dipindahkan atau dihilangkan
Di metabolisme tubuh Laktat dari cairan infus akan dimetabolisme sehingga kurang mempengaruhi SID tubuh
Total asam lemah (ATOT)
Adalah variabel independen
ATOT = AH + A-
A- bukan merupakan variabel independen
Slide 60
juga menentukan konsentrasi H+ (prinsip konservasi massa A)
dipengaruhi oleh SID dan pCO2
Peningkatan ATOT : asidosis Penurunan ATOT : alkalosis
pCO2
Ventilasi
Eliminasi CO2 tidak mencukupi:
Bukan karena HCO3 berfungsi sebagai buffer Karena fenomena fisika kimiawi guna mencapai chemical equilibrium
Kompensasi untuk peningkatan pCO2:
Slide 61
Peningkatan pCO2 Peningkatan H+ dan HCO3-
Peningkatan HCO3
Mempertahankan pCO2 arterial pada 35-45 mmHg
Regulasi SID oleh ginjal: ekskresi Cl-
APLIKASI TEORI STEWART
Aplikasi konsep tradisional versus Stewart
Konsep tradisional hanya memperhatikan pCO2 dan HCO3Konsep Stewart lebih komprehensif karena memperhatikan peran lebih banyak faktor:
Slide 63
CO2 Ion kuat seperti Na+, K+, Cl-, Ca2+, Mg+ Asam lemah seperti albumin, globulin dan fosfat
Constable PD. Vet Clin Pathol. 2000;29(4):115-28.
Konsep Tradisional versus Stewart
Peran Ginjal Regulasi ekskresi H+ dan amonia
Slide 64
Regulasi ekskresi/ reabsorbsi elektrolit Terutama Cl- untuk keseimbangan asam basa NH4- sebagai konjugat Cl- supaya K+ atau Na+ tidak perlu diekskresi
Konsep Tradisional versus Stewart
Peran saluran gastrointestinal Lambung
Ekskresi
H+
Cairan usus
Lambung
HCO3
Pankreas
Reabsorbsi ClSID cairan ≈ plasma
Usus besar
Slide 65
Ekskresi Na+ Cairan pankreas • SID tinggi
Usus halus
Ekskresi ClCairan lambung • SID rendah
Reabsorbsi Na+ Cairan usus besar • SID tinggi
Diagnosis gangguan keseimbangan asam basa
Gangguan respiratorik ≈ konsep tradisional
Kontribusi utama: gangguan metabolik
Pemeriksaan SID menuntut banyak parameter
Analisis anion gap (AG) masih bermanfaat Parameter
Perubahan
Status
SID
Meningkat
Alkalosis metabolik
SID
Menurun
Asidosis metabolik
ATOT
Meningkat
Asidosis metabolik
ATOT
Menurun
Alkalosis metabolik
Kellum JA. Crit Care. 2000;4(1):6-14. Slide 66
Anion gap: masih bermanfaat
Kaplan LJ, Frangos S. Crit Care. 2005 Apr;9(2):198-203. Slide 67
Gangguan metabolik
Asidosis metabolik
AG tinggi
Ketosis, asidosis laktat, keracunan, gagal ginjal, sepsis
AG normal Asidosis tubuler ginjal: SID urin > 0
Nonrenal: SID urin < 0
Tipe I (distal): pH urin > 5,5
Gastrointestinal : diare Tipe II (proximal): pH urin < 5,5/ small bowel + serum K rendah drainase pankreas Tipe IV: defisiensi aldosteron: pH urin < 5,5 / serum K+ tinggi
Iatrogenik: nutrisi parenteral garam, anion exchange resins
SID urin = Na+ + K+ - ClKellum JA. Crit Care. 2000;4(1):6-14. Slide 68
Alkalosis metabolik (SID tinggi) Kehilangan klorida < kehilangan natrium Responsif klorida (konsentrasi Cl- urin <10 mmol/L) Kehilangan pada gastrointestinal: muntah, drainase gaster, chloride wasting diarrhea (villous adenoma) Postdiuretik Posthiperkapnia Resisten klorida (konsentrasi Cl- urin > 20 mmol/L) Kelebihan mineralokortikoid Penggunaan diuretik Beban natrium eksogen (> klorida) Pemberian garam natrium (asetat, sitrat): transfusi darah masif, nutrisi parenteral, expander volume plasma, natrium laktat (larutan Ringer) Penyebab lain Kellum JA. Crit Care. 2000;4(1):6-14. Slide 69
Defesiensi berat kation intraseluler: Mg2+, K+
Terapi cairan
Terapi cairan dengan mempertimbangkan SID Memperbaiki outcome Hindari asidosis metabolik Parameter
Konsentrasi cairan ekstrasel
Setelah dilusi dengan cairan NaCl
Setelah dilusi dengan air
[Na+] (mmol/L)
140
142,5
105
[Cl-] (mmol/L)
100
112,5
75
[A-] + [HCO3-]
40
30
30
SID
40
30
30
Cairan ekstrasel 3 L, NaCl 0,15 mol/L 1L, air 1L Morgan TJ. Crit Care. 2005;9(2):204-11. Slide 70
Kelemahan & Kelebihan Untung & Rugi
Kelemahan konsep tradisional
Deskriptif kualitatif
Tidak bersifat mekanistik
Gangguan metabolik sukar dijelaskan
Skala pH kurang menggambarkan realitas [H+]
Slide 72
Gagal membedakan variabel dependen dan independen
Akurasi menurun pada perubahan protein, suhu dan elektrolit
Kelebihan Teori Stewart
Pendekatan sistematik
Beda variabel dependen dan independen
Penjelasan fisiologi dan patologi asam basa lebih baik
Perbaiki upaya deteksi unmeasured ion
Gunakan SIG
Strategi penatalaksanaan kelainan asam basa
Slide 73
Peran amonia pada homeostasis asam basa Alkalosis metabolik pada penurunan albumin Asidosis hiperkloremik
Terapi cairan
Kelemahan
Perhitungan SID: parameter banyak
Analit dengan kadar rendah:
Slide 74
Tidak praktis
Kesalahan relatif besar
Pengukuran ATOT tidak jelas Menolak pengaruh hemoglobin sebagai buffer plasma Data klinis masih kurang
Titik temu konsep Stewart dan tradisional
Peran CO2
Persamaan Henderson-Hasselbalch
Kedua konsep dapat berguna dalam klinik?
Koreksi persamaan Hendersen-Hasselbalch
Slide 75
Versi sederhana dari konsep Stewart yang berlaku lebih umum?
pH= 6,1 + log (SID-[ATOT]) / 0,03 x pCO2
Case illustration Liver cirrhosis, bleeding varices, male, 53 year. Alb. 13 g/L, K+. 5.2 mEq/L, Na+. 125 mEq/L, Cl-. 98 mEq/L, pH 7.4, [HCO3-] 24 mEq/L, PCO2 39 mmHg, Ca++ 3.2 mEq/L, Mg ++ 1 mEq/L, Pi (fosfat inorganik) = 1.55 mg/dL. Case analysis: [Alb-] = 13 x {0.123 x (7.4 – 0.631)} = 3.6296 mEq/L [Pi-] = (1.55 x 10/30.97) x 0.309 x (7.4 – 0.469) = 0.90968 mEq/L SIDe = 24 + 3.6296 + 0.90968 = 28.53928 mEq/L SIDa = (125 + 5.2 + 3.2 + 1) – 98 = 36.4 mEq/L Stong Ion Gap = 7.86072 (SIG > 5) mEq/L AG = 125 + 5.2 – (98 + 24) = 8.2 mEq/L AG corrected= AG + (0.25 x [44 – 13]) = 15,95 mEq/L BE = 0.9287 x (24 – 24.4) + 14.83 x (7.4 – 7.4) = - 0.37148 All traditional parameters are apparently normal. Metabolic acidosis, with water excess (low sodium) Fencl V. Jabor A. Kadza A. Figge J. Diagnosis of Metabolic Acid-Base Disturbances in Critically Ill Patients. Am J Respir Crit Care Med. 2000;162 (6): 2246 - 51
Case illustration Male, 41 year, multiple trauma. Alb.18 g/L, K+ 4.5 mEq/L, Na+ 143 mEq/L, Cl- 111 mEq/L, pH 7.4, [HCO3-] 25 mEq/L, PCO2 41 mmHg, Ca++ 4.0 mEq/L, Mg++1.6 mEq/L, Pi 2.05 mg/dL. Case analysis: [Alb-] = 18 x {0.123 x (7.4 – 0.631)} = 5.0256 mEq/L [Pi-] = (2.05 x 10/30.97) x 0.309 x (7.4 – 0.469) = 1.2031 mEq/L SIDe = 25 + 5.0256 + 1.2031 = 31.2287 mEq/L SIDa = (143 + 4.5 + 4.0 + 1.6) – 111 = 42.1 mEq/L SIG = 42.1 – 31.2287 = 10,8713 mEq/L AG = 143 + 4.5 – (25 + 111) = 11.5 mEq/L AG corrected= 11.5 + (0.25 x [44 – 18]) = 18 mEq/L BE = 0.9287 x (25 – 24.4) + 14.83 x (7.4 – 7.4) = 0.5572 Hyperchloremic acidosis matched by alkalosis of hypoalbuminemia. Traditional approach: no acid-base disturbance detected
Fencl V. Jabor A. Kadza A. Figge J. Diagnosis of Metabolic Acid-Base
dr. Agustyas Tjiptaningrum, SpPK
AN IDEAL OF TUMOR MARKERS
• SPECIFIC FOR A GIVEN TYPE OF CANCER (TUMOR SPECIFIC MARKERS) à NOT PRODUCE BY NORMAL CELLS OR BENIGN CELLS • SENSITIVE TO DETECT SMALL TUMOR à FOR EARLY DIAGNOSIS OR SCREENING MOST ARE FOUND WITH DIFFERENT TUMOR OF THE SAME TISSUE TYPE (TUMOR ASSOCIATED MARKERS)
APPLICATION OF TUMOR MARKERS
•
• •
NONE OF THE TUMOR MARKERS KNOWN TODAY MEETS THE REQUIREMENTS OF AN IDEAL MARKER à NONE HAS 100% SENSITIVITY 100% SPECIFICITY MOST OF THE TUMOR MARKERS ARE NOT DISEASE SPECIFIC NOT EVERY TUMOR OF THE SAME ORGAN EXPRESS THE SAME TUMOR MARKER
Aplikasi tumor marker yg ideal • Mesti disekresikan ke darah atau cairan tubuh shg mudah dideteksi • Memiliki half life yg panjang • Memiliki spesifisitas dan sensitivitas yg tinggi
CLINICAL UTILITY OF TUMOR MARKERS
• ADDITIONAL TOOL FOR DIAGNOSIS PROGNOSIS • USEFUL FOR MONITORING COURSE OF DISEASE • DETERMINE EFFECTIVENESS OF TREATMENT
• Contoh alur diagnosis
CLINICAL UTILITY OF TUMOR MARKERS
• MONITORING HIGH RISK GROUPS e.g AFP IN HBsAg CARRIERS LIVER CIRRHOSIS CALCITONIN IN FAMILIES SUSCEPTIBLE TO C CELL Ca • DETERMINE PROGNOSIS à INCREASE VALUE CLOSELY LINKED TO PATIENT PROGNOSIS ALMOST ALL MARKERS SHOW HIGHER VALUE AT ADVANCED TUMOR STAGES
INDICATIONS FOR TUMOR MARKER DETERMINATION Marker
Screening
Diagnosis
Follow up
Prognosis
CEA
Risk group
C-cell Ca
Colon, breast, lung, C-cell
Colon
AFP
Risk group
Germ cell, HCC
Germ cell, HCC
Germ cell
Pancreas
Pancreas, billiary duct
--
CA19.9
--
CA125
--
--
Ovary
--
CA15.3
--
--
Breast
--
NSE
--
SCLC
SCLC, neurobl
--
SCC
--
--
Cervical, ENT, esophagus
--
Cyfra21.1
--
--
NSCLC
--
HCG
Risk group
Germ cell, trophobl tumor
Germ cell, trophobl tumor
Germ cell trophobl
PSA
Males>50
Prostate
Prostate
--
SCHEDULE OF TUMOR MARKERS
• BEFORE TREATMENT • BEFORE EACH CHANGE OF TREATMENT • AFTER TREATMENT 1 – 2 year : MONTHLY AT FIRST UNTIL VALUE HAVE SHOWN MARKED DECREASE THEN EVERY 3 MONTHS 3 – 5 year : TWICE YEARLY > 6 year : YEARLY
SCHEDULE OF TUMOR MARKERS
• IF MARKER VALUE INCREASE FREQUENT MONITORING à 2 - 4 WEEKS • IF RELAPSE OR METASTASIS IS SUSPECTED • IF STAGING IS REPEATED
INTERPRETATION OF TUMOR MARKERS MARKER’S LEVEL SHOULD INCREASE WITH PROGRESSION DECREASE WITH REGRESSION
• LINEAR INCREASE IN 3 CONSECUTIVE SPECIMEN WITH 3 MONTHS INTERVAL à RECURRANCE • A DECREASE LEVEL OF 50% à PARTIAL REMISSION • AN INCREASE LEVEL OF 25% FROM LAST LEVEL OR PROGRESSIVE INCREASE à RECURRANCE METASTASIS
CYFRA 21-1
Thank You For Your Attention