Steel Beam Design

  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Steel Beam Design as PDF for free.

More details

  • Words: 687
  • Pages: 4
India Pavilion at World Expo 2010, Shangai, China

Design of STEEL BEAM :--

Steel Beam Design

(for uniaxial bending)

Data given : Span of the beam :--

7.5 .m

u.d.l. On the beam :-

36.6 .kN/m

Point load on the beam:-

25 .kN

Yield stress of steel :-Beam type

( udl from slab + L.L + Landscapping load)

308 N/mm2

:-

1 (enter 1 – laterally supported & 2 – laterally unsupported)

End condition of the Column.

2 (enter 1 – hinged condition & 2- for fixed condition) 36.60 kN/m 25.00 kN

0.00 kN

a1 = 0.00 a2= 0.00 L = 7.50 m

figure no . 1 0

figure no . 2

(B.M. Dia. Due to POINT LOAD )

257.34375 ( B.M.Dia. Due to UDL )

Design for Bending Moment :-I) Bending moment due to UDL :-M = W * l 2/ =

=

8 36.6

257.34375

x 7.50 8

2

kN.m

ii) Bending moement due to POINT LOADS :M =

P*l/4 =

46.875

1

India Pavilion at World Expo 2010, Shangai, China

Steel Beam Design

Total Moment :-=

257.34 +

=

304.22 kN.m

46.875

Assume permissible bending comp. Stress in steel =

175 N/mm2

Z required = M / Stress Z required =

1738392.857 .mm3

Go for higher Z . Approximately 20 % of required area. Select section having Z = Select

2086071.429 .mm3

=

2086.1 cm3

ISMB 550

11.2 ISMB 550

All dimensions are in mm 550

19.3

Properties

ISMB 550 :--

Area Ab =

132.11 cm2

Ixxb =

64893.6 cm4

Iyyb =

1833.8 cm4

b

=

19.00 cm

twb

=

1.12 cm

=

1.93 cm

.rxxb =

22.16 cm

tfb

.ryyb =

3.73 cm

D

=

55.00 cm

Maximum compresive and tensile stresses at top and bottom fibers of the beam are :-Actual Bending Stress :-σ c = M yt / Ix

=

304.22 x 64893.60 x =

1000.00 x 10000.0

1000.00 x

275.00000

128.919 N/mm2 2

σ t = M yb / Ix

=

304.22 x 64893.60 x =

1000.00 x 10000.0

1000.00 x

275.00000

128.919 N/mm2

The allowable bending compressive stress has to be computed from the following parameters. dw twb

=

( 55 -

=

45.66

1.93 1.12

x 2 )

2

India Pavilion at World Expo 2010, Shangai, China

T t

=

Steel Beam Design

mean thickness of compression flange web thikness =

tfb twb

=

T t

=

D T

=

=

1.930 1.12

1.930 1.12 1.723

depth of beam = mean th. Of comp. Flange

=

55 1.9

28.497

ry = sqrt ( Iyb / Ab ) =

1833.8 132.11 3.73 cm

= Ly ry

=

750.00 3.73

=

( enter span when no secodary beam else distance of point load)

201.304

The allowable bending compression from IS 800 1984 Table 6.1 A to Table 6.1 f σ bc

=

160 N/mm2

O.K

Check for Shear :-shear force :-- W * l / 2 +

P

=

36.6

x 7.50 2

=

137.25 kN

+

0.00

Shear stress Tv = Vu / D tw =

137.25 550

=

22.28

Maximum Permissible Sheat stress :--

x 1000.00 x 11.20 N/mm2 ( as per IS 800 1984 # 6.4.1 )

Tvm = 0.45 * fy =

0.45 x

308 = 138.60 N/mm2

o.k

3

India Pavilion at World Expo 2010, Shangai, China

Steel Beam Design

Check for Deflection :-a) Due to POINT LOAD ONLY :-Maximum Deflection from Conjugate beam method. Max.def =

B.M at centre of B.M Diagram.

EI * v =

[ 0.00

x 0.00

x 0.50

[0.00

x 0.00

x 0.50 ]

x 1000.00 200000

x 1000.00 x 64893.60

EI * v =

0.000 kN.m3

v

=

0.000

=

0.000 mm

x 1.00 ]

x 1.00

( 0.00

x 0.33)

x 1000.00 x 10000.00

x 1000.00

x

x 3.75

b) Due to UDL :-Maximum Deflection :--

5 * W * L4 384 * EI

=

5 384

=

x 36.60 x 200000

x 7.50 x 64893.60

4

x

x 10000.00

11.618 mm

Total Deflection :--

0.000

Permissible Deflection :--

+

11.618

=

L / 325 =

7.500

=

23.08 mm

x 1000.00 325 O.K

4

11.62 mm

1E+12

Related Documents