Statistics Ii Worksheet # 2 (solutions)(2)

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Statistics Ii Worksheet # 2 (solutions)(2) as PDF for free.

More details

  • Words: 1,979
  • Pages: 6
UNIVERSITY OF TECHNOLOGY, JAMAICA STATISTICS II (STA 2004) WORKSHEET # 2 (SOLUTIONS) Question # 1 Using Normal Distribution tables, evaluate: i. P ( Z > 1.27) = 0.3980 = 0.5000 − 0.3980 = 0.1020 ii.

P ( Z > -2.71) = 0.4966 + 0.5 = 0.9966

iii.

P ( Z < -0.72) = 0.5 – 0.2642 = 0.2358

iv.

P ( Z < 2.09) = 0.5 + 0.4817 = 0.9817

v.

P ( 0.87 < Z < 2.35) = 0.1828

vi.

P ( - 1.89 < Z < 0.6) = 0.6963

vii.

P ( - 2.04 < Z < 1.46) = 0.4793 + 0.4279 = 0.9072

viii.

P ( -2.44 < Z < -0.64) = 0.2538

Question # 2 Given µ = 368 and σ = 97 i. P ( 115 < X) Standard Normal Variable X =µ Z= σ  115 − 368  P < Z  = P ( −2.608 < Z ) = 0.4955 + 0.5 = 0.9955 97  

ii.

iii.

  594 − 368   P ( X > 594 ) = P  Z >   97      226   = P Z >    = P ( Z > 2.329 ) = 0.5 − 0.4901 = 0.0099  97      229 − 368   P ( 229 < X ) = P  
Question # 2 continued iv.

v.

  428 − 368   P ( X > 428 ) = P  
vi.

609 − 368   458 − 368 P ( 458 < X < 609 ) = P 
vii.

‘a’ if P ( X < a ) = 0.1466 µ = 368 & σ = 97 X −µ Z= σ  X − µ a − 368  P <  = 0.1466 97   σ a − 368   Equation 1 → P  Z <  = 0.1466 97   Equation 2 → P ( Z < −1.05 ) = 0.1466 Comparing equation 1 & equation 2 a − 368 = −1.05 97 a = ( −1.05 × 97 ) + 368 = 368 − 101.85 a = 266.15 ∴ P ( X < 266.15 ) = 0.1466

viii.

P ( X > b ) = 0.3745  X − µ b − 368  P >  = 0.3745 97   σ b − 368   Equation 1 → P  Z >  = 0.3745 97   Equation 2 → P ( Z > 0.32 ) = 0.3745 Comparing equations 1 & 2 b − 368 = 0.32 97 b = ( 97 × 0.32 ) + 368 b = 399.09 ∴ P ( Z > 399.09 = 0.3745 )

Question # 3 Page 2

i.

P ( 1820 < X < 1970 )  1820 − 1820 X − µ 1970 − 1820  = P < <  120 σ 120   150   = P0 < Z <  = P ( 0 < Z < 1.25 ) = 0.3944 = 39.44% 120  

ii.

P ( X ≥ 1970 ) 1970 − 1820   = PZ ≥  120   = P ( Z ≥ 1.25 ) = 0.1056 = 10.56%

iii.

P ( X ≤ 1600 ) 1600 − 1820   = PZ ≤  120   220   = PZ ≤ −  = P ( Z ≤ −1.83) = 0.0336 = 3.36% 120  

Question # 4

µ = 32 hours i.

σ = 2 hours  32 − 32 X − µ 34 − 32  P ( 32 < x < 34 ) = P  < <  σ 2   2 = P ( 0 < Z < 1) = 0.3413 = 34.13%

ii.

iii.

28.7 − 32   P ( X ≤ 28.7 ) = P  Z ≤  2   3.3   = PZ ≤ −  = P ( Z ≤ −1.65 ) 2   = 0.0495 = 4.95% P ( X ≥ a ) = 0.05  X −µ a−µ  P ≥ = 0.05 σ   σ a − 32   Equation 1 → P  Z ≥  = 0.05 2   Equation 2 → P ( Z ≥ 1.65 ) = 0.05 From equations 1 & 2 a − 32 = 1.65 2 a = ( 1.65 × 2 ) + 32 a = 35.3 hours

Question # 5

Page 3

µ = 20 seconds σ = 8 seconds P ( X > 30 ) i. 30 − 20  10    = PZ >  = P  Z >  = P ( Z > 1.25 ) 8  8   = 0.5 − 0.3944 = 0.1056 ii.

P ( X < 15 ) 15 − 20   = PZ <  = P ( Z < −0.625 ) 8   = 0.5 − 0.2357 = 0.2643

iii.

P ( 15 < X < 25 ) 25 − 20   15 − 20 = P
iv.

P ( X < a ) = 0.4 a − 20   Equation 1 → P  Z <  = 0.4 8   Equation 2 → P ( Z < −0.25 ) = 0.4 From equations 1 & 2 a − 20 = −0.25 8 a = ( −0.25 × 8 ) + 20 = 18 seconds

Question # 6 i.

ii. iii.

iv.

5200 − 3462   P ( X > 5200 ) = P  Z >  = P ( Z > 1.62 ) 1070   = 0.5 − 0.4474 = 0.0526 4000 − 3462   P ( X < 4000 ) = P  Z <  = P ( Z < 0.5028 ) 1070   2900 − 3462 2900 − 3462   P ( 2900 < X < 5500 ) = P  a ) = 0.85

a − 3462   Equation 1 → P  Z >  = 0.85 1070   Equation 2 → P ( Z > −1.04 ) = 0.85 a − 3462 = −1.04 1070 a = ( −1.04 ×1070 ) + 3462 = −1112.8 + 3462 = 2349.2



v. vi.

P ( X > a ) = 0.20 P ( X < a ) = 0.75

4360.8 hours 4189.6 hours

BINOMIAL APPROXIMATION Page 4

Question # 7 The Normal Approximation to the Binomial Distribution p = 0.1 & q = 0.9 µ = E ( X ) = np = (500) (0.1) = 50 Var ( X ) = npq

= ( 500 ) ( 0.1) ( 0.9 ) = ( 50 ) ( 0.9 ) = 45

σ = 45 c .c P ( X > 60 )  → P ( X > 60.5 )

 X − µ 60.5 − 50  = P >  = P ( Z > 1.57 ) = 0.5 − 0.4418 = 0.0582 45   σ Question # 8 n = 400 Var ( X ) = npq ∴σ = Var ( X ) p = 0.10 µ = np q = 0.90 µ = 400 × 0.1 = 40 Var ( X ) = npq = ( 400 ) ( 0.1) ( 0.9 ) = 36

σ = 36 = 6 c .c . P ( X ≥ 35 )  → P ( X > 34.5 ) i. 34.5 − 40   = PZ >  = P ( Z > −0.92 ) = 0.3212 + 0.5 = 0.8212* 6   ii.

c .c . P ( 40 ≤ X ≤ 50 )  → P ( 39.5 < X < 50.5 )

50.5 − 40   39.5 − 40 = P
c .c . P ( 34 < X < 48 )  → P ( 34.5 < X < 47.5 )

47.5 − 40   34.5 − 40 = P
Question # 9

Page 5

n = 45 p = 0.28 q = 0.72 µ = E ( X ) = np = 45 × 0.28 = 12.6 Var ( X ) = npq = ( 12.6 ) ( 0.72 ) = 9.072

σ = 9.072 = 3.01 c .c . P ( X > 15 )  → P ( X > 15.5 ) i. 15.5 − 12.6   = PZ >  = P ( Z > 0.96 ) = 0.5 − 0.3315 = 0.1685 3.01   c .c . P ( 10 < X < 20 )  → P ( 10.5 < X < 19.5 ) ii. 19.5 − 12.6   10.5 − 12.6 = P
ii.

c .c . P ( X > 30 )  → P ( X > 30.5 )

30.5 − 25   = PZ >  = P ( Z > 1.1) = 0.5 − 0.3643 = 0.1357 5   P ( 23 ≤ X ≤ 29 ) → P ( 22.5 < X < 29.5 ) 29.5 − 25   22.5 − 25 = P
Question # 11

λ = 36 i.

Var ( X ) = 36

σ =6

P ( X < 30 ) → P ( X < 29.5 ) c .c .

29.5 − 36   = PZ <  = P ( Z < −1.08 ) = 0.5 − 0.3599 = 0.1401 6   ii.

c .c . P ( X > 40 )  → P ( X > 40.5 )

40.5 − 36   = PZ >  = P ( Z > 0.751) = 0.5 − 0.2734 = 0.2266 6   iii.

c .c . P ( 30 ≤ X ≤ 40 )  → P ( 29.5 < X < 40.5 )

40.5 − 36   29.5 − 36 = P
Page 6

Related Documents