Statistics 2

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Statistics 2 as PDF for free.

More details

  • Words: 1,441
  • Pages: 18
BUSINESS MATHEMATICS

AND

STATISTICS - 523

Q.1

(a)

Ans.

TIME SERIES:

SECOND

ASSIGNMENT

What is a time series?  Why time series analysis is  of interest to the business?

A   “time   series”   consists   of   numerical   data   collected,  observed   or   recorded   at   regular   intervals   of   time   each  hour, day, month, quarter or year.  More specifically, it is  any set of data in which observations are arranged in a  chronological order. Examples   of   time   series,   the   weekly   prices   of   wheat   in  Lahore,   the   monthly   consumption   of   electricity   in   a  certain town, the monthly total of passengers carried by  rail, the quarterly sales of a certain fertilizers, the annual  rainfall at Karachi for a number of years, the enrolment of  students in a college or university over a number of years  and so forth. The observations in a time series, denoted by y1, y2....., 

yt, are usually made at equidistant points of time or they  are associated with equal intervals of time (t).  In order to  examine a time series, the first step is to plot the given  series on a graph, taking time intervals (t) along the X­ axis,   as   the   independent   variable,   and   the   observed  values (yt) on the Y­axis, as the dependent variable.  Such  a graph will show various types of fluctuations and other  points of interest. INTEREST TO THE BUSINESS Time   series   is   very   useful   in   business   to   observe   the  outcomes of distinct causes of variation.  For example the  following table shows the number of bags (in hundreds) of  fertilizer sold by a certain dealer.

Ejaz Alam Khan - H 5279752

# 1

BUSINESS MATHEMATICS

AND

STATISTICS - 523

Year 1995 1996 1997 1998

I 72 79 94 125

SECOND

Quarters II III 98 79 122 101 141 128 143 135

ASSIGNMENT

IV 106 143 160 187

  Now   in   the   following   lines   the   data   as   a   time   series   is  plotted and comment made.

Ejaz Alam Khan - H 5279752

# 2

BUSINESS MATHEMATICS

AND

STATISTICS - 523

SECOND

ASSIGNMENT

The above historigram obtained by plotting the given time 

Ejaz Alam Khan - H 5279752

# 3

BUSINESS MATHEMATICS

AND

STATISTICS - 523

SECOND

ASSIGNMENT

series,   shows   that   the   sales   have   risen   for   the   second  quarter, have fallen for the third quarter and then have  risen to a higher point for the fourth quarter every year.  This graph also reveals that the sales, on the whole, have  risen over 4 years.   The graph further suggests that by  smooting out the irregularities, the annual rate at which  the sales have increased, may be ascertained.

Ejaz Alam Khan - H 5279752

# 4

BUSINESS MATHEMATICS

AND

STATISTICS - 523

SECOND

ASSIGNMENT

COMPONENTS OF A TIME SERIES: A typical time series may be regarded as composed of four  basic types: •

Secular   Trend   ­   this   is   a   long   term   movement   that  persists   for   many   years   and   indicates   the   general  direction of the change of observed values.   In other  words,   it   refers   to   the   smooth,   broad,   steady   and  regular   movement   of   a   time   series   in   the   same  direction,   showing   a   gradual   rise   or   fall   within   the  date.   In the following graph, the long term trend of  sales is shown which measures the trend and helps in  ascertaining the rate of change to be used for further  estimates.   It  also  heps to  business planning  and  in  studying the other variations:

Ejaz Alam Khan - H 5279752

# 5

BUSINESS MATHEMATICS

AND

STATISTICS - 523

Ejaz Alam Khan - H 5279752

SECOND

ASSIGNMENT

# 6

BUSINESS MATHEMATICS

AND

STATISTICS - 523

Ejaz Alam Khan - H 5279752

SECOND

ASSIGNMENT

# 7

BUSINESS MATHEMATICS

AND

STATISTICS - 523

SECOND

ASSIGNMENT



Seasonal   Variations.     The   seasonal   variations   which  are mainly caused by the change in seasons, are short  term movements occurring in a periodic manner.   In  the following graph the fluctuations are repeated with  more or less the same intensity within a specific period  of  one  year  or  shorter  based on  causes  for seational  variation such as weather conditions. etc.



Cyclical   Fluctuations.   ­   These   are   the   long   period  oscillations about the long term trend, which tend to  occur in a more or less regular pattern over a period of  certain number of years.



Irregular   or   Random  Variations.    These   are  irregular  and   unsystematic   in   nature.     They   occur   in   a  completely   unpredictable   manner   as  they   are  caused  by   some   sporadic   or  unusual   events   such  as  floods, 

Ejaz Alam Khan - H 5279752

# 8

BUSINESS MATHEMATICS

AND

STATISTICS - 523

SECOND

ASSIGNMENT

droughts, strikes, fires, etc.

Ejaz Alam Khan - H 5279752

# 9

BUSINESS MATHEMATICS

Q.1

(b)

AND

STATISTICS - 523

SECOND

ASSIGNMENT

Sales   of   electronic   coffee   makers   at   a   discount  department store over the last five years are shown  below.     Using   weights   of   0.1,   0.2,   0.3   and   0.4  prepare a forecast for next year.

Ans. Year

Sales

Weights

Forecast

Percentage

0.0

­ ­

­ ­

1992

9,000

1993 1994 1995 1996

7,000 8,000 8,500 8,200

0.1 0.2 0.3 0.4

700 1,600 2,550 3,280

10% 20% 30% 40%

Total

40,700

1.0

8,130

100%

Base year

 

Ejaz Alam Khan - H 5279752

# 10

BUSINESS MATHEMATICS

Q.2

AND

STATISTICS - 523

(a)

SECOND

ASSIGNMENT

If U = {1,2,3,4,5,6,7,8,9,10} A = {1,2,3,4} B = {3,5,6} Then show A ↔ Β by Venn diagram.

Ans.

A ↔ Β = { 3 }

Ejaz Alam Khan - H 5279752

# 11

BUSINESS MATHEMATICS

AND

STATISTICS - 523

Ejaz Alam Khan - H 5279752

SECOND

ASSIGNMENT

# 12

BUSINESS MATHEMATICS

Q.2

(b)

AND

STATISTICS - 523

SECOND

ASSIGNMENT

Solve the following system of equations:    

Ans.              

Ejaz Alam Khan - H 5279752

# 13

BUSINESS MATHEMATICS Q. 3

AND

STATISTICS - 523

SECOND

ASSIGNMENT

A manufacturer makes two types of products, I and II, at two plants  x   and   y.     In   the   manufacture   of   these   products   the   following  pollutants   result.     Sulphur   dioxide,   carbon   monoxide,   and  particulate   matter.     At   either   plant,   the   daily   pollutants   resulting  from the production of product I are: 300 pounds of sulphur dioxide 100 pounds of carbon monoxide 200 pounds of particulate matter and of product II are: 400 pounds of sulphur dioxide 50 pounds of carbon monoxide 300 pounds of particulate matter To   satisfy   the   federal   regulations,   these   pollutants   are   removed.  Suppose that the daily cost in rupees for removing each pound of  pollutant at plant x is: 5 rupees/pound of sulphur dioxide 3 rupees/pounds of carbon monoxide 2 rupees/pounds of particulate matter and at plant y is: 8 rupees/pound of sulphur dioxide 4 rupees/pounds of carbon monoxide 1 rupees/pounds of particulate matter Using matrices,  calculate  the  daily  cost  of  removing  all pollutants  from one of the plants in the manufacture of one of the products.

Ans.   Cost of removal of Product I at Plant X =Rs. 2200 Cost of removal of Product I at Plant Y =Rs. 3000 Cost of removal of Product II at Plant X =Rs. 2750 Cost of removal of Product II at Plant Y =Rs. 3700

Ejaz Alam Khan - H 5279752

# 14

BUSINESS MATHEMATICS

Q. 4

(a)

AND

STATISTICS - 523

SECOND

ASSIGNMENT

Suppose   a   manufacturer   finds   that   the   cost   (in  rupees) making x units of a product is given by:   If   the   rate   of   production   is   maintained   at   a  constant units per day, find the rate at which the  cost   is   changing   with   time   when   the   level   of  production is x = 36 units.

Ans.

By derivative

 

Ejaz Alam Khan - H 5279752

# 15

BUSINESS MATHEMATICS

Q.4

(b)

AND

STATISTICS - 523

SECOND

ASSIGNMENT

Suppose   a   manufacturer   is   limited   by   the   firm’s  production facilities to a daily output of at the most  80   units   and   suppose   that   the   daily   cost   and  revenue functions are   (rupees)   (rupees) Assuming   that   all   units   produced   are   sold,   how  many   units   should   be   manufactured   daily   to  maximize the profit?

Ans.

Maximum profit is obtained  =  Marginal Revenue = Marginal Cost

 

Ejaz Alam Khan - H 5279752

# 16

BUSINESS MATHEMATICS

Q.5

(a)

AND

STATISTICS - 523

SECOND

ASSIGNMENT

A manufacturer determines that the marginal cost  in rupees is given by:   Find the cost function C(x), assuming that the fixed  cost (cost when x = 0 units are produced) is Rs. 30.

Ans.

By antiderivative

 

Ejaz Alam Khan - H 5279752

# 17

BUSINESS MATHEMATICS

Q.5

(b)

AND

STATISTICS - 523

SECOND

ASSIGNMENT

In   the   beginning   of   1984   (t=0)   zinc   was   being  consumed at a rate of 578,850 short tons per year  and the consumption rate was increasing at 4.5%  per   year.     If   we   assume   an   exponential   growth  model for the rate of consumption, then   Estimate the total amount of zinc that will be used  from 1984 to 1994.

Ans.

 

Ejaz Alam Khan - H 5279752

# 18

Related Documents

Statistics 2
October 2019 4
Statistics
May 2020 22
Statistics
May 2020 15
Statistics
July 2020 19
Statistics
November 2019 16
Statistics
November 2019 25