TESTUL 1 *)
1)
1XFRQVWLWXLHRFRPSRQHQW DDYX LHLQD LRQDOH
a) b) c) d) e) 2)
fondul funciar; mijloacele fixe; 9HQLWXO1D LRQDO3URGXVXO,QWHUQ%UXW
resursele minerale atrase în circuitul economic; stocurile de materiale.
0XO LPHDYDORULORUFRHILFLHQWXOXLGHFRUHOD LHFDOFXODWvQFD]XOGHSHQGHQ HORUOLQLDUHGLUHFWHHVWH
a) b) c) d) e)
[-1, 1] ; [-1, 0) ; PXO LPHDQXPHUHORUUHDOH
(0, 1] ; [-3, 3] .
3) Într-R SRSXOD LH VWDWLVWLF
VWUXFWXUDW SH JUXSH FODVH UHODWLY RPRJHQH VH FDOFXOHD] GLVSHUVLD
general ( σ 2 ); media dispersiilor ( σ 2 úL GLVSHUVLD GLQWUH JUXSH δ 2 (VWH DGHY
UDW vQ RULFH
VLWXD LHUHOD LD
a) δ 2 > σ 2 ; b) δ 2 ≤ σ 2 ; c) δ 2 = σ 2 + σ 2 ; d) δ 2 < 0 ; e) comparabilitatea dintre δ 2 úL σ 2 nu are sens. 4) În cazul tabelelor Input - Output, ramurile se delimiteaz dup : a) b) c) d) e)
FULWHULXODFWLYLW
LLSUHSRQGHUHQWH
FULWHULXOIXQF LRQDO XQLWDWHDLQVWLWX LRQDO VHFWRUXOLQVWLWX LRQDO GXS IOX
xurile monetare din economie.
5) 5DWD úRPDMXOXL vQ VHQVXO %LURXOXL ,QWHUQD LRQDO DO 0XQFLL VH FDOFXOHD] 1XP
UXOGHúRPHUL
a) b) c) d) e)
3RSXOD LDFXUHQWDFWLY 3RSXOD LDRFXSDW 5HVXUVHOHGHPXQF 5H]HUYHOHGHPXQF 3RSXOD LDvQYkUVW GHPXQF
6XELHFWOD H[DPHQXO GHOLFHQ
*)
1997
SURFHQWXDO UDSRUWkQG
la:
)DFXOWDWHD&LEHUQHWLF 6WDWLVWLF úL,QIRUPDWLF (FRQRPLF VHVLXQHDLXOLH
6) Fenomenele social-HFRQRPLFHGHPDV
VWXGLDWHGHVWDWLVWLF QXVHFDUDFWHUL]HD]
a) SULQYDULDELOLWDWHvQWLPSúLvQVSD LX b) printr-R OHJH GH DSDUL LH FDUH VH PDQLIHVW FD WHQGLQ FH QX SRDWH IL FXQRVFXW úL YHULILFDW GHFkWODQLYHOXODQVDPEOXOXLúi nu în fiecare caz în parte; c) printr-ROHJHGHDSDUL LHFDUHVHPDQLIHVW FDWHQGLQ FHSRDWHILFXQRVFXW úLYHULILFDW vQ fiecare caz în parte; d) SULQIRUPHLQGLYLGXDOHGHDSDUL LHDVHP Q WRDUH e) SULQ IDSWXO F HOH VXQW VSHFLILFH OHJLORU VWDWLVWLFH - legi FDUH VH PDQLIHVW VXE IRUP GH WHQGLQ ID GH FDUH DEDWHULOH vQWkPSO WRDUH vQWU-XQ VHQV VDX DOWXO VH FRPSHQVHD] reciproc. 7)
5HSUH]HQWDWLYLWDWHDHVWHXUP ULW vQPRGGHRVHELWvQFD]XOFXOHJHULLGDWHORUSULQ
a) b) c) d) e)
UHFHQV PkQW
sondaje statistice; anchete statistice; rapoarte statistice; monografii statistice;
8) Deflatorul Produsului Intern Brut este: a) LQGLFHOHGHSUH XULGHWLS/DVSH\UHV b) indicele volumului fizic de tip Paasche; c) LQGLFHOHGHSUH XULGHWLS)LVKHU d) LQGLFHOHGHSUH XULGHWLS3DDVFKH e) indice al valorii. 9)
([SUHVLDVLQWHWL] ULLYDORULORULQGLYLGXDOHDOHXQHLYDULDELOHVWDWLVWLFHDWRWFHHDFHHHVHQ LDOWLSLF úLRELHFWLYvQWU XQVLQJXUQLYHOUHSUH]HQWDWLYHVWHGDW GH
-
a) medie; b) PHGLDQ c) YDORDUHPRGDO d) FRHILFLHQWXOGHFRUHOD LH e) coeficientul de varia LH 10) &DUH LQGLFDWRU VWDWLVWLF QX DUH VHQV V
VH FDOFXOH]H SHQWUX DQDOL]D VHULLORU GH UHSDUWL LH IRUPDWH
GXS RYDULDELO DOWHUQDWLY "
a) IUHFYHQ HOHUHODWLYH b) media; c) dispersia; d) coeficientul de asimetrie. 11) Într-R SRSXOD LH VWDWLVWLF
V
-au cules date despre doX
YDULDELOH QXPHULFH GLVWLQFWH 6HULLOH
IRUPDWHvQXUPDVLVWHPDWL] ULLVXQW
; }. {xi }i =1,7 = {2;2;2;10;18;18;18} {yi }i =1,7 = {9;9;9;10;11;1111 úL
2EVHUYkQGYDULDQWHOHFHORUGRX VHULLVHFRQVWDW F
a)
VHULDIRUPDW GXS <HVWHPDLRPRJHQ GHFkWFHDIRUPDW GXS ;
b) serLDIRUPDW GXS ;HVWHPDLRPRJHQ GHFkWFHDIRUPDW GXS < c) FHOHGRX VHULLSUH]LQW DFHHDúLRPRJHQLWDWHGHRDUHFHDXDFHHDúLPHGLHúLPHGLDQ HJDOH cu 10; d) QXDUHVHQVFRPSDUDELOLWDWHDRPRJHQLW LLGLQFHOHGRX VHULLGHRDUHFHVXQWIRUPDWHGXS variabile distincte; e) VHULD IRUPDW GXS ; HVWH PDL RPRJHQ GHRDUHFH DEDWHULOH LQGLYLGXDOH ID GH YDORDUHD PHGLDQ VXQWPDLPDUL
12) Un circuit economic este considerat circuit închis pentru sectorul A când: a) QXH[LVW LQWU ULvQ$ b) QXH[LVW LHúLULGLQ$ c) QXH[LVW QLFLLQWU ULúLQLFLLHúLULSHQWUXVHFWRUXO$ d) VXPDIOX[XULORUGHLQWUDUHHVWHHJDO FXVXPDIOX[XULORUGHLHúLUH e) fluxurile monetare sunt identice cu fluxurile de bunuri. 13)
ÌQXUPDREVHUY ULLXQHLYDULDELOHQXPHULFH;vQWU RSRSXOD LHVWDWLVWLF V
-
x2, …, xn0HGLDDULWPHWLF
DDFHVWRUD
x HVWHFDOFXODW
-au înregistrat variantele: x1,
vQWU RSULP HWDS GXS UHOD LD
-
1 n ∑ xi (1). În n i =1
SURFHVXOSUHOXFU ULLYDULDQWHOHFXOHVHVXQWJUXSDWHvQ³U´LQWHUYDOHRE LQkQGX
-se o serieGHUHSDUWL LHGH
IUHFYHQ H3HED]DVHULHLIRUPDWHV DUHFDOFXODWQLYHOXOPHGLXXWLOL]kQGUHOD LD
-
r
r
∑ xi ni
∑ ni i =1 i =1
5H]XOWDWXOXWLOL] ULLFHORUGRX UHOD LLHVWHLGHQWLF
a) b) c) d) e)
1
vQRULFHVLWXD LH QLFLRGDW DWXQFLFkQGSHQWUXDSOLFDUHDUHOD
iei (2) s-au luat în considerare mijloacele intervalelor;
DWXQFLFkQGLQWHUYDOHOHGHJUXSDUHSUH]LQW IUHFYHQ HHJDOH DWXQFL FkQG IUHFYHQ HOH VXQW QRUPDO UHSDUWL]DWH vQ ILHFDUH LQWHUYDO FkQG IUHFYHQ HOH LQWHUYDOHORU VXQW HJDOH vQWUH HOH úL FkQG vQ UHOD L
a (2) se iau în considerare centrele
intervalelor. 14) 6ROGXOFRQWXOXL³0RGLILFDUHDSDWULPRQLXOXL´UHSUH]LQW
a) economiile nete; b) VROGXOILQDQ ULL c) amortizarea; d) LQYHVWL LLOHEUXWH e) venitul disponibil 15) $PSOLWXGLQHDLQWHUFXDUWLOLF a) b) c) d) e)
vQWU RUHSDUWL LHQRUPDO FRQ LQH
-
GLQQXP UXOREVHUYD LLORU GLQQXP UXOREVHUYD LLORU GLQQXP UXOREVHUYD LLORU WRDWHREVHUYD LLOH QXPDLYDULDQWHOHH[WUHPHDOF URUQXP UHVWHPDLPDUHGHFkWGLQPDVDREVHUYD LLORU
16) În cadrul conturilor macroeconomice, trecereD GH OD FRQFHSWXO ³LQWHUQ´ OD FRQFHSWXO ³QD LRQDO´ se realizeaz în cadrul contului:
a) b) c) d) e)
contul 2 - “Crearea veniturilor”; contul 1 -³3URGXF LH´ contul 3 -³5HSDUWL LDYHQLWXULORU´ contul 4 - “Redistribuirea veniturilor”; vQQLFLXQXOGLQFRQWXULOHPHQ LRQate.
17) Într-R SRSXOD LH VWDWLVWLF
VH XUP UHVF YDULDELOHOH ; < úL = vQWUH FDUH H[LVW UHOD LD <
;=
0HGLDDULWPHWLF DYDULDELOHL<HVWHHJDO FXSURGXVXOPHGLLORUYDULDELOHORU;úL=
a) b) c) d) e)
vQRULFHVLWXD LH
forma Z = α + βX ; GHIRUPD X = α + βZ ;
FkQGvQWUH;úL=H[LVW RGHSHQGHQ
OLQLDU GH
FkQGvQWUH;úL=H[LVW RGHSHQGHQ
OLQLDU
FkQGFRYDULDQ DGLQWUH;úL=HVWHQXO FkQGVHULLOHIRUPDWHGXS ;<=VXQWGLVWULEX LLGHIUHFYHQ HUHODWLYH
18) ,QGLFDWRUXO³3RSXOD LDFXUHQWDFWLY
´QXFXSULQGH
a) VDODULD LLSUH]HQ LODOXFUX b) VDODULD LLDEVHQ LWHPSRUDUGHODOXFUX c) úRPHULL d) patronii; e) HOHYLLúLVWXGHQ LLGHODFXUVXULOHGH]L 19) ÌQ XWLOL]DUHD PHWRGHL UHVWXOXL QHGHVFRPSXV SHQWUX P unui fenomen complex sunt luate în considerare:
VXUDUHD LQIOXHQ HORU L]RODWH DOH IDFWRULORU
a) ponderile perioadei curente ale factorului calitativ; b) SRQGHULOHGLQSHULRDGDGHED] DOHIDFWRUXOXLFDQWLWDWLY c) SRQGHULOHGLQSHULRDGDGHED] DOHIDFWRUXOXLFDOLWDWLY d) SRQGHULOHGLQSHULRDGDFXUHQW DOHIDFWRUului calitativ; e) SRQGHULOH GLQSHULRDGD GHED] LQGLIHUHQW GHQDWXUDFDQWLWDWLY izolat. 20) Într-R
VDXFDOLWDWLY DIDFWRUXOXL
VHULH GH YDORUL LQGLYLGXDOH DOH XQHL YDULDELOH QXPHULFH REVHUYDW vQWU R SRSXOD LH
-
VWDWLVWLF YDORDUHDPRGDO HVWH
a) varianta pozLWLY FHDPDLPDUH b) YDULDQWDQHJDWLY GDUPD[LP vQYDORDUHDEVROXW c) YDULDQWDSR]LWLY VDXQHJDWLY FXFHDPDLPDUHIUHFYHQ d) YDULDQWDFDUHPLQLPL]HD] GLVSHUVLD e) YDULDQWDFDUHvQUHJLVWUHD] FHDPDLPDUHDEDWHUHDEVROXW
GHDSDUL LH
ID
GHPHGLH
21) Se cunosc datele: 3HUED]
INDICATORII - Salariul nominal (mii lei) - Structura cheltuielilor familiilor (%): -P UIXULDOLPHQWDUH -P UIXUL nealimentare - servicii - Modificarea
3HUFXUHQW
600
900
ÌQSHULRDGDFXUHQW ID
GH
SHULRDGD GH ED] VDODULXO
real: D FUHúWHFX
b) scade cu 18,6 %; 60 25
62 20
15
18
0 0
+25 +40
0
+10
F FUHúWHFX G FUHúWH
de 18,6 ori;
H FUHúWH FX PLL
lei.
SUH XULORUvQ
-P UIXULDOLPHQWDUH -P UIXUL nealimentare - servicii 22) &DUHGLQXUP a) b) c) d) e)
WRDUHOHUHOD LLH[SULP ³)RUPDUHDEUXW DFDSLWDOXOXL´
,QYHVWL LLQHWHGHFDSLWDOIL[SOXVDPRUWL]DUHD ,QYHVWL LLEUXWHGHFDSLWDOIL[SOXVSURILWSOXVPRGLILFDUHDVWRFXULORU )RUPDUHDQHW DFDSLWDOXOX
i fix plus modificarea stocurilor;
)RUPDUHDEUXW DFDSLWDOXOXLIL[SOXVPRGLILFDUHDVWRFXULORU )RUPDUHDEUXW DFDSLWDOXOXLIL[SOXVDPRUWL]DUHDSOXVPRGLILFDUHDVWRFXULORU
23) /D RSW PXQFLWRUL FDUH HIHFWXHD] DFHOHDúL RSHUD LL vQ FDGUXO XQXL variabilele timp nelucratúLQXP UXOGHRSHUD LL'DWHOHVXQWXUP WRDUHOH Nr. curent Timp nelucrat (u.m.) 1URSHUD LL
1 7 4
2 1 10
3 2 9
4 5 6
5 8 4
6 6 5
7 3 9
VFKLPE V
-au observat
8 4 8
7HQGLQ DOHJ WXULLGLQWUHYDULDELOHHVWHH[SULPDW SULQIXQF LD
a) Yxi = 11,2 − 0,96 xi ; b) Yxi = 11,2 + 0,96 xi ; c) Yxi = −0,96 xi ; d) Yxi = 11,2 + 0,96 xi + 0,04 xi2 ; e) Yxi = 0,96 xi . 24) ÌQ6&1FKHOWXLHOLOHSHQWUXvQO
WXUDUHDGDXQHORUDGXVHPHGLXOXLVXQWFRQVLGHUDWH
a) &RVWGHSURGXF LH b) ,QYHVWL LLQHWH c) ,QYHVWL Li brute; d) Venituri ale consumatorilor; e) Venituri ale statului. 25) 6H FXQRVF GDWHOH FUHúWHUHD SURGXFWLYLW SURGXFWLYLW
LL PHGLL LQGLFHOH SURGXFWLYLW
LL PHGLL SH VHDPD
LLLQGLYLGXDOH,QGLFHOHLQIOXHQ HLVWUXFWXULLDVXSUDSURGXFWLYLW
LLPHGLLHVWH
:
a) b) c) d) e)
100%; 91,7%; 132%; 110%; 85%;
26) ÌQDFWLYLWDWHDGHVWDWLVWLF a) b)
DQDOL]DGLVSHUVLRQDO QXVHXWLOL]HD] SHQWUX
YHULILFDUHDQRUPDOLW
LLUHSDUWL LLORU
HYLGHQ LHUHD P VXULL vQ FDUH XQXO VDX PDL PXO L IDFWRUL VDX R FRPELQD LH D DFHVWRUD LQIOXHQ HD] vQPRGHVHQ LDOYDULD LDXQHLYDULDELOHUH]XOWDWLYH
c)
DQDOL]DP VXULLvQFDUHYDORULOHUHDOHDOHXQHLFDUDFWHULVWLFLVHDEDWGHODYDORULOHWHRUHWLFH FDOFXODWHGHUHJXO VXEIRUP GHP ULPLPHGLLVDXHFXD LLGHUHJUHVLH
d)
DQDOL]DP VXULLvQFDUHYDULD LLOHXQHL
variabile rezultative sunt sau nu sunt dependente de
factorul de grupare; e)
YHULILFDUHDYDOLGLW
LLPRGHOHORUGHUHJUHVLHVLPSO úLPXOWLSO
27) 'LVWULEX LDDGHIDPLOLLGXS Nr. copii Nr. familii
0 20
1 65
2 70
QXP UXOGHFRSLLVHSUH]LQW DVWIHOGDWHFRQYHQ LRQDOH
3 30
4 10
5 5
Total 200
9DORDUHDPHGLDQ vQVHULDSUH]HQWDW HVWH
a) b) c) d) e)
1 copil; 2 copii; 70 familii; 3 copii; 5 copii;
28) 'DF VWUXFWXUD SH UDPXUL D 3URGXVXOXL ,QWHUQ %UXW VH PRGLILF vQ IDYRDUHD UDPXULORU FX “necesarul de mijloace fixe pentru RE LQHUHD XQHL XQLW L GH SURGXF LH´ PDL PLF GHFkW QLYHOXO mediu al acestui indicator, atunci, ca urmare a modific ULLIDFWRUXOXLVWUXFWXUDOHILFLHQ DXWLOL] rii PLMORDFHORUIL[HODQLYHOXOHFRQRPLHLQD LRQDOH
a) FUHúWH b) scade; c) U PkQHQHPRGLILFDW d) nu se SRDWHSUHFL]DVHQVXOPRGLILF e) SRDWHV VFDG 29) 2 VRFLHWDWH FRPHUFLDO
ULL
D vQUHJLVWUDW OD FLIUD GH DIDFHUL vQ SHULRDGD 6HSW µ
- Dec. ‘ 96 o -a modificat în de 1,17 ori. În perioada Sept. ‘ 96 - Mai ‘ 97 cifra medie de afaceri a crescut în
FUHúWHUHPHGLHOXQDU FXÌQSHULRDGD'HFµ 0DLµDFHODúLLQGLFDWRUV PHGLH SH OXQ
PHGLHGHODROXQ ODDOWDFX
a) b) c) d) e)
13,5% ; 2,98% ; 3,2% ; 113,4% ; 27%.
30) 7UHL DQJDMD L GH DFHHDúL SURIHVLH úL FDOLILFDUH SHQWUX HIHFWXDUHD XQHL RSHUD LL LGHQWLFH FRQVXP timpiLvQPLQXWH XUP WRUL7LPSXOPHGLXFRQVXPDWHVWH a) 21,7 min./pers. ;
b) c) d) e)
20 min./pers. ; 22,5 min./pers. ; 18,5 min./pers. ; 19 min./pers.
31) &XQRDúWHP GDWHOH 3URGXVXO JOREDO EUXW XP SRQGHUHD FRQVXPXOXL LQWHUPHGLDU vQ produsul global bruWFRQVXPXOSULYDW FRQVXPXOSXEOLFIRUPDUHDEUXW DFDSLWDOXOXL ½ consumul privat=10.000 u.m. În aceste condi LL a) Exportul = Importul; b) Exportul > Importul; c) PIB > 100.000 u.m.; d) PIN > 80.000 u.m.; e) Exportul < Importul. 32) În perioada T0 - T1 Produsul Intern Brut a crescut cu 20%, mijloacele fixe cu 30%, iar ponderea
PLMORDFHORU IL[H DFWLYH vQ PLMORDFHOH IL[H VFDGH GH OD OD (ILFLHQ D PLMORDFHORU IL[H
active: a) scade cu 105,4% ; b) scade cu 92,3% ; c) FUHúWHFX d) FUHúWHFX e) scade cu 7,7%. 33) Într-RSRSXOD LHVWDWLVWLF
GHXQLW
LFRPHUFLDOHV DXREVHUYDWYDULDELOHOHYDORDUHDDG XJDW
-
úLYROXPXOPLMORDFHORUIL[HSHQWUXFDUHV DXGHWHUPLQDWGLVSHUVLLOHúLUHVSHFWLY6H
-
FXQRDúWHGHDVHPHQHDF WHQGLQ DOHJ WXULLHVWHH[SULPDWDSULQIXQF LD
Yxi = 119,42 + 0,44 xi .
0 ULPHDFRHILFLHQWXOXLGHFRUHOD LDOLQLDU HVWH
a) b) c) d) e)
0,72 ; -0,75 ; 0,27 ; 0,95 ; 0,44 ;
34) 'HVSUHHYROX LDFLIUHLGHDIDFHULDXQHLVRFLHW ANI PRGLILF ULLUHODWL GH
DIDFHUL
ID
ve a cifrei GH
LFRPHUFLDOHVHFXQRVFGDWHOH
1993 +3
1994 +4
1995 +2
1996 +4
DQXO
precedent ùWLLQG F FLIUD GH DIDFHUL GLQ D IRVW GH POG OHL PRGLILFDUHD PHGLH DQXDO DEVROXW vQ
perioada 1992 - 1996 a fost de: a) b) c) d) e)
1,2 mld. lei/an; 1,2 %/an; 2,5 mld. lei/an; 210 %/an; 3 mld. lei/an;
35) 7HQGLQ DOHJ
WXULLGLQWUHGRX YDULDELOHVHH[SULP SULQIXQF LD
OHJ WXULLGLQWUHFHOHGRX YDULDELOHVHFDUDFWHUL]HD] SULQ
a) FRHILFLHQWXOGHFRUHOD LHOLQLDU b) coeficientul lui Spearman;
Yx = a + bx + cx 2 . Intensitatea
c) coeficientul lui Kendall; d) coeficientul lui Bowley; e) UDSRUWXOGHFRUHOD LH 36) 5H]XOWDWHOH H[DPLQ
ULL XQHL VHPLJUXSH OD SUREHOH WHRUHWLFH úL SUDFWLFH DOH XQHL GLVFLSOLQH GH
VSHFLDOLWDWHVXQWXUP WRDUHOH
Studentul TEORIE
A 8 9
35$&7,&
B 3 5
C 9 10
D 2 1
E 7 8
F 10 7
G 4 3
H 6 4
I 1 2
J 5 6
'HSHQGHQ D GLQWUH YDORULOH FHORU GRX YDULDELOH VH P VRDU FX DMXWRUXO FRHILFLHQWXOXL GH FRUHOD LHDUDQJXULORUDOOXL6SHDUPDQDF UXLP ULPHHVWH
a) b) c) d) e)
0,855; -0,855; 1,00; -1,00; 0,225;
37) 6HFXQRVFGDWHOH 3URGXVXO1D LRQDO%UXWODSUH XULOHSLH HLXPDORFD LD SHQWUX FRQVXPXO GHFDSLWDOIL[XPúLYHQLWXOQD LRQDOXP0 ULPHD,PSR]LWHORU,QGLUHFWH1HWHHVWH
a) b) c) d) e)
300 u.m.; 400 u.m.; 200 u.m.; 700u.m.; 500 u.m.
38) 3HQWUXRE LQHUHD9HQLWXOXLSHUVRQDODOPHQDMHORUGLQ3URGXVXO1D LRQDO1HWODSUH XULOHSLH HLQX se scad: a) &RQWULEX LLOHOD$VLJXU ULOH6RFLDOH b) Impozitele Indirecte Nete; c) $MXWRDUHOHGHúRPDM d) 3URILWXOQHGLVWULEXLWDOVRFLHW LORU e) ,PSR]LWXOSHYHQLWXOSURILWXO VRFLHW 39) 6HFXQRVFXUP Departamente
A B
LORUILUPHORU
WRDUHOHGDWH
Procentul programat (al sarcinii de plan) al cifrei de afaceri (%) 105 115
Procentul îndeplinirii programului la cifra de afaceri (%) 110 118
Structura cifrei de afaceri (%) Perioada de Perioada ED]
40 60
FXUHQW
35 65
&DUHLQIRUPD LHVLQWHWLF GLQFHOHSUH]HQWDWHPDLMRVHVWHIDOV "
a) Procentul mediu al îndeplinirii programului la cifra de afaceri a fost de 115,1%; b) Procentul mediu programat (al sarcinii de plan) al cifrei de afaceri a fost de 111%; c) Pe ansamblu cifra de afaceri a crescut în SHULRDGD FXUHQW ID GH SHULRDGD GH ED] FX 27,8%; d) 3H DQVDPEOX FLIUD GH DIDFHUL UHDOL]DW vQ SHULRDGD FXUHQW D IRVW PDL PDUH GHFkW FHD SURJUDPDW FX
e)
,QGLFHOHGHGLQDPLF SHDQVDPEOXOGHSDUWDPHQWHORUDIRVWGH
40) /D RVRFLHWDWHFRPHUFLDO
GLQ
vânzarea unui produs s-a realizat în luna mai 1997 o încasare de
PLOLRDQH OHL &D XUPDUH D PDMRU ULL SUH XOXL ID
GH PDL vQFDV ULOH OXQLL PDL DX
FUHVFXWFXOHL&DUHDUILIRVWvQFDV ULOHOXQLLPDLGDF SUH XOQXV
a) b) c) d) e)
4,5 mil. lei; 3,5 mil. lei; 4 mil. lei; 8 mil. lei; 5 mil. lei.
-ar fi modificat?
TESTUL 2 *)
1) Pe baza unei serii cronologice din perioada 1987- IRUPDW
GLQ WHUPHQL FRQVHFXWLYL V
-a
DMXQV OD FRQFOX]LD F WHQGLQ D GH HYROX LH D XQHL YDULDELOH HVWH H[SULPDW SULQ IXQF LD
Yt = 400 + 60t vQ FRQGL LLOH vQ FDUH ∑ t = 0 ). Valorile estimate ale variabilei analizate pentru
úLvQDFHDVW RUGLQHVXQW
a) b) c) d) e) 2)
1300; 1480; 1600; 1120; 1180; 1240; 340; 280; 220; 460; 520; 580; 760; 820; 880.
3HQWUX GHVFRPSXQHUHD XQXL IHQRPHQ FRPSOH[ SH IDFWRUL GH LQIOXHQ
FX DMXWRUXO LQGLFLORU VH
SRDWH DSHOD OD PHWRGD VXEVWLWX LHL vQ ODQ VDX OD PHWRGD UHVWXOXL QHGHVFRPSXV 0HWRGD UHVWXOXL QHGHVFRPSXVVSUHGHRVHELUHGHPHWRGDVXEVWLWX LHLvQODQ
a) exagerHD] LQIOXHQ DIDFWRUXOXLFDOLWDWLY b) H[DJHUHD] LQIOXHQ DIDFWRUXOXLFDQWLWDWLY c) HVWH PDL FRUHFW GHRDUHFH QX LQH VHDPD GH QDWXUD FDOLWDWLY VDX FDQWLWDWLY D IDFWRUXOXL izolat; d) HVWHPDLFRUHFW GHRDUHFHL]ROHD] QXPDLIDFWRUXOFDOLWDWLYODQLYHOXOSHULRDGHLGHED] e) HVWH PDL FRUHFW GHRDUHFH HD RSHUHD] DWkW FX PRGLILF UL DEVROXWH FkW úL FX PRGLILF UL relative. 3)
5HSUH]HQWDWLYLWDWHDPHGLHLFDOFXODW SHQWUXXQúLUGHYDORULLQGLYLGXDOHHVWHDVLJXUDW
a)
GDF vQ GHWHUPLQDUHD PHGLHL VH LDX vQ FRQVLGHUDUH IUHFYHQ HOH DEVROXWH GH DSDUL LH DOH
valorilor individuale; b) c) d) e) 4)
GDF YDORULOHLQGLYLGXDOHGLQFDUHVHFDOFXOHD] PHGLDVXQWRPRJHQH GDF VHXWLOL]HD] PHGLDDULWPHWLF GDF úLUXOGHYDORULLQGLYLGXDOHHVWHVWUXFWXUDWSHLQWHUYDOHHJDOH GDF VXPDDOJHEULF DDEDWHULORULQGLYLGXDOHGHODPHGLHHVWHQXO
6H FXQRVF GDWHOH 31% OD SUH XO SLH HL XP DORFD LD SHQWUX FRQVXPXO GH FDSLWDO IL[ XPLPSR]LWHOHLQGLUHFWHXPúLVXEYHQ LLGHH[SORDWDUHXP 9HQLWXOQD LRQDOHVWH
a) b) c) d) e)
700 u.m.; 600 u.m.; 660 u.m.; 960 u.m.; 1340 u.m.
6XELHFW OD H[DPHQXO GH OLFHQ
*)
februarie 1998.
)DFXOWDWHD &LEHUQHWLF 6WDWLVWLF úL ,QIRUPDWLF (FRQRPLF VHVLXQHD
5)
ÌQ VWXGLXO GHSHQGHQ HORU VWDWLVWLFH GLQWUH YDULDELOH VH FXQRDúWH IDSWXO F VXQW DQDOL]DWH DEDWHULOH GLQWUH YDORULOH HPSLULFH úL FXUED GUHDSWD GH UHJUHVLH
yi − y x ) evaluate sintetic prin dispersia
σ 2y / r DEDWHULOH GLQWUH YDORULOH DMXVWDWH úL PHGLD FDUDFWHULVWLFLL GHSHQGHQWH y x − y HYDOXDW sintetic prin dispersia σ 2y / x GLVSHUVLD WRWDO
D YDULDELOHL UH]XOWDWLYH HVWH
σ 2y . În orice sitXD LH
HVWHDGHY UDW UHOD LD
a) σ 2y / x > σ 2y ; b) σ 2y / x < σ 2y ; c) σ 2y / r > σ 2y ; d) σ 2y = σ 2y / r − σ 2y / x ; e) 6)
σ 2y / x σ 2y
> 1.
)HQRPHQHOH GH PDV vQ JHQHUDO DSDU FD R PXO LPH GH IRUPH LQGLYLGXDOH GLIHULWH FX H[LVWHQ
diferiW
FRQVWDW F DXDFHHDúLHVHQ
a) b)
DSDUHQW I U QLFL R OHJ WXU GH OD R IRUP OD DOWD GDU FDUH DQDOL]DWH FRPSDUDWLY VH &HHDFHQXH[SOLF DFHDVW DILUPD LHHVWHF
IRUPHOHLQGLYLGXDOHVXQWJHQHUDWHGHFDX]HFDUHVHPDQLIHVW GHUHJXO vQFRQGL LLGLIH
rite;
IRUPHOHLQGLYLGXDOHGHPDQLIHVWDUHGLIHU GHODRXQLWDWHODDOWDvQIXQF LHGHPRGXOFXP VH DVRFLD] úL VH FRPELQ IDFWRULL VLVWHPDWLFL FX FHL vQWkPSO WRUL FHL RELHFWLYL FX FHL
subiectivi; c) formele individuale de manifestare analizate la nivelul anVDPEOXOXL SDU DVHP
Q WRDUH
vQWUHHOHILLQGJHQHUDWHGHFDX]HHVHQ LDOHFRPXQH
d)
IRUPHOH LQGLYLGXDOH GH PDQLIHVWDUH VH VXSXQ DFHOHLDúL OHJL GH DSDUL LH úL GH]YROWDUH FXQRVFXW úLYHULILFDW ODQLYHOXOILHF UHLXQLW
LGHREVHUYDUH
e) formele individuale de maQLIHVWDUH VH VXSXQ DFHOHLDúL OHJL VWDWLVWLFH FDUH OD QLYHOXO DQVDPEOXOXLVHPDQLIHVW FDWHQGLQ
7)
6WDELOLUHD SUHFLV úL FODU D VFRSXOXL XQHL REVHUY UL VWDWLVWLFH WRWDO VDX SDU LDO QX SUH]LQW LPSRUWDQ
SHQWUX
a) delimitarea obiectului de observare; b) GHILQLUHDXQLWD LORUGHREVHUYDUH c) VWDELOLUHDVFRSXOXLFHUFHW ULLVWDWLVWLFH d) stabilirea programului propriu-]LVDOREVHUY ULL e) GHOLPLWDUHD RELHFWLYHORU SDU LDOH DOH FHUFHW ULL FDUH vQ FD]XO REVHUY ODYROXPXOúLFDOLWDWHDGDWHORUQHcesare.
ULL VH UHIHU FRQFUHW
8) Contul sintetic de bunuri: a) b) c) d) e)
are ca sold consumul intermediar; are ca sold consumul final; DUHFDVROGYROXPXOLQYHVWL LLORUEUXWH
nu are sold; are ca sold exportul net.
$QDOL]D L XUP WRDUHOH QR LXQL P VXUDUHD DQDOL]D úL VLQWH]D HVW LSRWH]HORUúLVDXWHVWDUHDVHPQLILFD LLORU HODERUDUHDGHFL]LLORU
imarea; 4) verificarea
3ULQFLSDOHOHIXQF LLDOHLQGLFDWRULORUVWDWLVWLFLVXQW
a) b) c) d) e)
úL úL úL úL úL
10) 6HQRWHD]
FX(i
( i = 1,80 P
ULPHD³H[WUDVXOXL GHFRQW´VROLFLWDW OD GH GHFOLHQ L
ODJKLúHXO$ %DOE QFLL$OID9DULDELODXUP ULW SUH]LQW YDORULOHSHRVFDO
-
a) de rapoarte; b) de intervale; c) FRQWLQX d) GLVFUHW e) RUGLQDO 11) 'DF
vQWU R GLVWULEX LH XQLGLPHQVLRQDO IRUPDW GXS R YDULDELO QXPHULF ; YDORULOH
-
LQGLYLGXDOHVXQWHYLGHQWGHSODVDWHF WUHYDORULOHPDULDWXQFL
a) b) c) d) e)
x < Me < Mo ; x > Me > Mo ; x = Me = Mo ; x < Mo < Me ; x − Me = Mo − x .
12) 9DORDUHD PHGLDQ
vQ FRPSDUD LH FX YDORDUHD PHGLH LQGLFDWRUL FDOFXOD L SHQWUX FDUDFWHUL]DUHD
WHQGLQ HLFHQWUDOHvQWU RVHULHGHUHSDUWL LHSUH]LQW DYDQWDMXOXUP WRU
-
a) b) c) d)
vQFDOFXOXOV XVHLDXWRDWHYDORULOHLQGLYLGXDOHvQUHJLVWUDWH YDORDUHDVDQXHVWHLQIOXHQ DW GHSUH]HQ DYDORULORULQGLYLGXDOHH[WUHPHDEHUDQWH HDVHSUHWHD] XúRUODHIHFWXDUHDRSHUD LLORUDOJHEULFH GHWHUPLQDUHDVDVHUHDOL]HD] vQIXQF LHGHOLPLWDLQIHULRDU DLQWHUYDOXOXLPHGLDQúLQXvQ IXQF LHGHFHQWUXOLQWHUYDOXOXLHYLWkQGX
e)
-se astfel ipoteza nRUPDOLW
LLUHSDUWL LHL
HDSRDWHILXWLOL]DW vQFRPSDUDUHDWHQGLQ HORUFHQWUDOHDOHYDULDELOHORUGLVWLQFWHvQGLIHULWH SRSXOD LLVWDWLVWLFH
13) ,QGLFDWRULL VWDWLVWLFL SRW IL RE LQX L SULQ P
VXUDUH úL HVWLPDUH 1R LXQHD GH HVWLPDUH QX VH
FDUDFWHUL]HD] SULQIDSWXOF
a)
HVWLPDUHDSUHVXSXQHRFDUDFWHUL]DUHVWDWLVWLF XWLOL]kQGXQPRGHOVDXRLSRWH] VWDWLVWLF SULQFDUH SHED]DGDWHORUSDU LDOHGHFDUHVHGLVSXQHVHGHWHUPLQ RVHULHGHLQGLFDWRULJHQHUDOL]DWRUL
b)
HVWH OHJDW vQWRWGHDXQD vQ VWDWLVWLF GH XWLOL P ULPHDLQGLFDWRUXOXLHVWLPDWV QXDLE
c) d)
HVWHOHJDW QHPLMORFLWGHQR LXQHDGHPRGHOVWDWLVWLF HVWH OHJDW vQWRWGHDXQD GH RE LQHUHD YDORULL LQGLFDWRULORU VLQWHWLF
printr-RPHWRG e)
zarea unui interval de eroare, ceea ce face ca RYDORDUHFHUW FLSODVDW vQWU-un interval; i pe baza datelor culese
GHREVHUYDUHWRWDO
HVWH XWLOL]DW SHQWUX FD]XULOH vQ FDUH QX H[LVW XQ PRGHO GH WUHFHUH GH OD XQ HúDQWLRQ OD SRSXOD LD JHQHUDO LDU SHQWUX GHWHUPLQDUHD YDORULL XQXL LQGLFDWRU VH IDF UD LRQDPHQWH
logice, calculul direct nefiind posibil. 14) 'HVSUH HYROX LD PLMORDFHORU IL[H OD VIkUúLWXO DQXOXL vQ 5RPkQLD vQ SHULRDGD -1997 se FXQRVFGDWHOHFRQYHQ LRQDOH
Anii 0RGLILFDUHDID
GHDQXOSUHFHGHQWPOGOHL
1994 194,3
1995 189,8
1996 177,2
ùWLLQGF vQYDORDUHDDEVROXW DXQXLSURFHQWGHFUHúWHUHID
1997 166,9
GHDPLMORDFHORUIL[H
DIRVWGHPOGOHLPRGLILFDUHDPHGLHUHODWLY DQXDO vQSHULRDGD
- 1997 a fost de :
a) b) c) d) e)
114,7 %; 182,05 mld. lei/an; 4,7 %; - 4,7 %; 14,7 %.
15) Ajustarea (determinarea trendului) seriilor cronologice prin metoda mediilor mobile se UHDOL]HD] DWXQFLFkQG
a) IHQRPHQXOSUH]LQW RHYROX LHDSUR[LPDWLYH[SRQHQ LDO b) LQGLFLLGHGLQDPLF FXED] PRELO SUH]LQW YDORULDSURSLDWHvQWUHHL c) YDULD LDWHUPHQLORUVHULHLSUH]LQW HYLGHQWHUHJXODULW LFLFOLFH d) nu se pot aplica metodele analitice de ajustare; e) YDULD LDWHUPHQLORUVHULHLSUH]LQW RHYLGHQW OLQLDULWDWH 16) ÌQ DQDOL]D GLVSHUVLRQDO VH XWLOL]HD] SHQWUX XQ SUDJ GH VHPQLILFD LH úL QXP UXO JUDGHORU GH libertate (r-1 úLn-r WHVWXO)LVKHU'DF Fcalculat > Fα , r −1,n − r (din tabel), atunci: a)
OHJ WXUD HVWH VHPQLILFDWLY úL FDUDFWHULVWLFD GXS FDUH V
-a efectuat gruparea este într-
DGHY UGHWHUPLQDQW SHQWUXYDULD LDFDUDFWHULVWLFLLUH]XOWDWLYH
b) se respinge ipoteza cu privire la eJDOLWDWHDPHGLLORUGHJUXS c) WR L FHLODO L IDFWRUL GH LQIOXHQ FX H[FHS LD DFHOXLD GH JUXSDUH GHWHUPLQ
VHPQLILFDWLY
YDULD LDYDULDELOHLUH]XOWDWLYH
d) e)
IXQF LDGHUHJUHVLHHVWHOLQLDU SHQWUX WHVWDUHD VHPQLILFD LHL IDFWRUXOXL GH LQIOXHQ
DVXSUD YDULD LH
i variabilei rezultative
VHXWLOL]HD] 7HVWXO6WXGHQW³W´
17) ÌQ GHFXUVXO XQHL SHULRDGH SURGXFWLYLWDWHD PXQFLL D FUHVFXW FX LDU vQ]HVWUDUHD WHKQLF
D
PXQFLLDFUHVFXWFX(ILFLHQ DXWLOL] ULLPLMORDFHORUIL[H
a) a crescut cu 1,2%; b) a crescut cu 23,2%; c) DVF ]XWFX d) DVF ]XWFX e) a crescut cu 1,8%. 18) ,QGLFHOHPHGLXGHGLQDPLF a) b) c)
VHFDOFXOHD] FD
PHGLHJHRPHWULF LQGLIHUHQWGHYDORULOHLQGLFLORUGHGLQDPLF FXED] PRELO PHGLHJHRPHWULF QXPDLGDF LQGLFLLGHGLQDPLF FXED] IL[ SUH]LQW YD
PHGLH JHRPHWULF QXPDL GDF LQGLFLL GH GLQDPLF FX ED] PRELO SUH]LQW YDORUL
aproximativ egale între ele; d) e)
PHGLHDULWPHWLF DLQGLFLORUGHGLQDPLF FXED] PRELO PHGLHDUPRQLF DLQGLFLORUGHGLQDPLF FXED] PRELO
19) Un circuit economic este considerat circuit închis pentru sectorul A când: a) b)
lori apropiate;
QXH[LVW LQWU ULvQ$ QXH[LVW LHúLULGLQ$
c) QXH[LVW QLFLLQWU ULúLQLFLLHúLULSHQWUXVHFWRUXO$ d) fluxurile financiare sunt egale cu fluxurile reale; e) VXPDIOX[XULORUGHLQWUDUHHVWHHJDO FXVXPDIOX[XULORUGHLHúLUH 20) Într-R SRSXOD LH VWDWLVWLF
V
-au înregistrat pentru variabila X valorile x1, x2, …, xn 5HOD LD
RELHFWLY GLQWUH DFHVWH GDWH FRQGXFH OD FRQFOX]LD F WHQGLQ D FHQWUDO SRDWH IL FHO PDL ELQH H[SULPDW SULQ PHGLD DULWPHWLF D F UHL YDORDUH FDOFXODW HVWH
x ÌQ XUPD YHULILF
ULL GDWHORU úL
FDOFXOHORU VH FRQVWDW F ILHFDUH YDORDUH LQGLYLGXDO vQUHJLVWUDW GLQ DQXPLWH PRWLYH D IRVW PLFúRUDW FX$GHY UDWDYDORDUHDPHGLHLHVWH
a) 0,85 x ;
x = 6,67 x ; 0,15 c) 1,15 x ; d) 1,51 x ; b)
e)
HVWHHJDO FXPHGLDFDOFXODW DQWHULRU
21) Într-R SRSXOD LH VWDWLVWLF
V DX XUP ULW GRX YDULDELOH XQD QXPHULF [ úL XQD QHQXPHULF $
-
6LVWHPDWL]DUHDGDWHORUGXS FHOHGRX YDULDELOHVHSUH]LQW vQIRUPDJHQHUDO DVWIHO
X
x1
...
xj
...
xp
Total
A A1 ... ... Ai ... ... Ak Total
ni1
...
...
...
... ... ... nij ... ... ... n.j
...
nip
...
...
... ... ... ni. ... ... ... n..
'LVWULEX LDDO WXUDW FRQ LQH D GRX GLVWULEX LLPDUJLQDOH E GRX GLVWULEX LLPDUJLQDOHúLSGLVWULEX LLFRQGL LRQDWHGH$ F GRX GLVWULEX LLPDUJLQDOHúLNGLVWULEX LLFRQGL LRQDWHGH; G GRX GLVWULEX LLPDUJLQDOHúLNSGLVWULEX LLFRQGL LRQDWH
e)
GRX GLVWULEX LLPDUJLQDOHGXS $úLGXS ;NSGLVWULEX LLXQLGLPHQVLRQDOHFRQGL LRQDWH GH;úL$úLRGLVWULEX LHELGLPHQVLRQDO
22) O întreprindere de transport auto-F O WRULDORF DXWREX]HSHQWUXWUDVHXO0-1DF UXLGLVWDQ este D. Datele referitoare la vitezele medii înregistrate de autovehicule într-R]LVXQWXUP WRDUHOH Viteza medie (km/h) Nr. de autovehicule ÌQPHGLHXQDXWRYHKLFXODSDUFXUVvQ]LXDFRQVLGHUDW
a) 56 km/h; b) 53,5 km/h; c) 60 km/h; d) 70 km/h; e) 56,7 km/h.
40 3
60 70 5 2 WUDVHXO0-1GHGLVWDQ
'FXRYLWH] GH
23) ÌQ FD]XO DJUHJ ULL WUDQ]DF LLORU vQ 6&1 WUDQ]DF LLOH HIHFWXDWH vQWUH VXELHFWHOH HFRQRPLFH GLQ sectoare diferite: D VHFRQVROLGHD] E VHvQVXPHD]
c) se scad; G XQHOHVHvQVXPHD] LDURDOW FDWHJRUL
e se scad;
H DJUHJDUHDQXVHUHIHU ODWUDQ]DF LL
24) 6WUXFWXUD FRQVXPXOXL SRSXOD LHL vQ SHULRDGD GH ED]
HVWH P UIXUL DOLPHQWDUH P UIXUL
QHDOLPHQWDUH VHUYLFLL ÌQ SHULRDGD FXUHQW SUH XULOH DX FUHVFXW DVWIHO P UIXUL DOLPHQWDUHP UIXULQHDOLPHQWDUHVHUYLFLL5DWDLQIOD LHLDIRVW
a) 25%; b) 23,25%; c) 125%; d) 123,25%; f) 3,25%. 25) 3HQWUX RFXSDUHD XQXL ORF GH PXQF YDFDQW GH VWHQRGDFWLORJUDI V-au prezentat la concurs opt candidate. Testul propus a constat din dactilografieUHD XQXL WH[W GH DFHHDúL P ULPH úL GLILFXOWDWH 'DWHOH FX SULYLUH OD QXP UXO GH HURULFRPLVH úL WLPSXO GH GDFWLORJUDILHUH VH SUH]LQW
astfel: Candidata Nr. erori Timp dactilo (minute)
A 9 13
B 8 11
C 6 12
D 4 15
E 5 14
F 10 9
G 12 8
H 7 10
'HSHQGHQ D GLQWUH FHOH GRX YDULDELOH VH P VRDU FX DMXWRUXO FRHILFLHQWXOXL GH FRUHOD LH DO UDQJXULORUDOOXL.HQGDOODF UXLP ULPHHVWH
a) 0,71; b) -0,30; c) -1,00; d) -0,71; e) 1,00. 26) De la un punct de desfacere s-DXFXOHVGDWHOHXUP Produse
9DORDUHDYkQ] ULORUvQLDQXDULH
A B
(mil. lei) 18 20
WRDUH
PRGLILF ULLYROXPXOXLIL]LFvQ LDQXDULHID
0RGLILFDUHD DEVROXW WRWDO D YkQ] ULORU vQ LDQXDULH ID PRGLILF ULLYROXPXOXL
fizic este:
a) 500 mii lei; b) 1,30 mil. lei; c) -500 mii lei; d) 38 mil. lei; e) 20,76 mil. lei.
GHLDQXDULH
+5 -2 GH LDQXDULH FD XUPDUH D
27) &RQVWLWXLHHOHPHQWDOFRPSHQV
ULLIDFWRUXOXLPXQF FRPSRQHQW D3,%
a) profitul; E VXPHOHSO WLWHDWkWvQEDQLFkWúLvQQDWXU
c) dividendele; d) renta; H QXPDLVDODULLOHSO WLWHvQEDQL
28) 6H FXQRDúWH IDSWXO F
vQ VWXGLXO GHSHQGHQ HORU VWDWLVWLFH GLQWUH YDULDELOHOH QXPHULFH < úL ; VH
XWLOL]HD] úL LQGLFDWRUXO PRPHQW FHQWUDW GH RUGLQXO QXPLW úL FRYDULDQ
Valoarea absoluW
QRWDW FRY[\
PD[LP DDFHVWXLLQGLFDWRUHVWH
a) 1; b) σ x ; c)
σ 2x
; σ 2y d) σ y ; e) σ x σ y . 29) ÌQFDOFXOXO3URGXVXOXL,QWHUQ%UXWH[SRUWXOQHWVHFDOFXOHD]
a) Export-Impozite; b) Export-Import; c) Export-Amortizarea; d) Export+Impozite indirecte-6XEYHQ LL e) Export+Import. 30) $QFKHWDVWDWLVWLF
D HVWHRPHWRG GHREVHUYDUHWRWDO
b)
HVWH R PHWRG GH REVHUYDUH SDU LDO FDUH QXPDL vQWkPSO WRU SRDWH V vQGHSOLQHDVF FRQGL LDGHUHSUH
c)
zentativitate;
HVWH R PHWRG GH REVHUYDUH SDU LDO FDUH vQ PRG REOLJDWRULX WUHEXLH V vQGHSOLQHDVF FRQGL LDGHUHSUH]HQWDWLYLWDWH
d)
HVWH R PHWRG GH REVHUYDUH SDU LDO FDUH VH ED]HD] SH REOLJDWLYLWDWHD FRPSOHW ULL
chestionarelor; H PDLHVWHGHQXPLW ú
i sondaj statistic.
31) 2 SRSXOD LH VWDWLVWLF
HVWH VWUXFWXUDW GXS R DQXPLW YDULDELO vQ GRX VXESRSXOD LL $ úL % ÌQ
ILHFDUH GLQ FHOH GRX VXESRSXOD LL V D XUP ULW DFHHDúL YDULDELO QXPHULF ; LDU FHOH GRX
-
GLVWULEX LLVHSUH]LQW JUDILFDVWIHO
Observându-VHJUDILFXODO
WXUDWVHSRDWHDILUPD
ni A
B
x MoA a)
MoB
LQGLFDWRULL WHQGLQ HL FHQWUDOH SUH]LQW YDORUL GLIHULWH vQ FHOH GRX VXESRSXOD LL LDU GLVWULEX LDJHQHUDO HVWHDVLPHWULF
b)
H[LVW YDORUL PRGDOH SDU LDOH GLIHULWH GDU UHOD LD GH D
ditivitate a acestora permite
GHWHUPLQDUHDYDORULLPRGDOHGLQGLVWULEX LDJHQHUDO
c) YDORULOHLQGLYLGXDOHGLQFHOHGRX VXESRSXOD LLDXDFHODúLJUDGGHGLVSHUVDUH d) YDORDUHDPRGDO DGLVWULEX LHLJHQHUDOHHVWHFXSULQV vQWUH0RAúL0RB; e) valorile mediane ale FHORUGRX VXESRSXOD LL0HAúL0HB) sunt identice. 32) $SOLFDUHDXQXLPRGHOGHDQDOL]
GLVSHUVLRQDO FXXQVLQJXUIDFWRUSHQWUXVHULLVLPSOHSUHVXSXQH
r
FDOFXOXO úL LQWHUSUHWDUHDLQGLFDWRULORU XUP WRUL
(
)
2
S1 = ∑ y i − y ni i =1
YDULD LH LQIOXHQ D vQ H[FOXVLYLWDWH D IDFWRUXOXL VLVWHPDWLF úL
S2 =
SHQWUX D HYDOXDFD VXUV GH
∑ ∑ (yij − y i ) n
r
2
pentru a
j =1i =1
HYDOXDLQIOXHQ DWXWXURUFHORUODO LIDFWRULFXH[FHS LDIDFWRUXOXLVLVWHPDWLFL]RODW3HQWUXDHYDOXD FRQWULEX LD IDFWRUXOXL VLVWHPDWLF OD YDULD LD YDULDELOHL GHSHQGHQWH VH FDOFXOHD] XQ LQGLFDWRU GH
forma:
S1 ; S2 S b) 2 ; S1 a)
c)
S1
∑ ∑ (yij − y) n
r
; 2
j =1i =1
d)
S2
∑ ∑ ( yij − y) n
r
j =1i =1
2
;
∑ (y i − y) r
e) i =1
2
r −1
∑ ∑ ( yij − y i ) r
ni :
n
2
i =1 j =1
n−r
.
33) 9HQLWXOQD LRQDOHVWHHJDOFX a) 31%ODSUH XULOHSLH HL b) 311ODSUH XULOHSLH HL c) PNN laSUH XULOHIDFWRULORU d) 3,1ODSUH XULOHIDFWRULORU e) 3,1ODSUH XULOHSLH HL 34) 3HQWUX LGHQWLILFDUHD úL GLPLQXDUHD HURULORU GH REVHUYDUH HVWH QHFHVDU FRQWUROXO GDWHORU FXOHVH Acest control nu presupune: a)
FDSULQVRQGDMV VHUHIDF DQXPLWHFDOFXOHGHRE LQHUHDYDORULORUXQRULQGLFDWRULvQVFULúL
în formulare; b)
FDODFHQWUHOHGHSUHOXFUDUHV VHYHULILFHGDF DXVRVLWWRDWHIRUPXODUHOHFXWRDWHUXEULFLOH
completate; c)
XWLOL]DUHD XQRU PRGHOH GH YHULILFDUH D LSRWH]HORU VWDWLVWLFH úL DSOLFDUHD GH WHVWH GH
verificaUHDOHVHPQLILFD LLORULQGLFDWRULORU d) e)
HIHFWXDUHDGHFRPSDU UL VXEQLFLRIRUP XWLOL]DUHDXQRUSURJUDPHLQIRUPDWLFHVSHFLDOHODERUDWH
35) 'HQVLWDWHDXQHLUHSDUWL LLVWDWLVWLFHHVWHYL]XDOL]DW
SULQ
a) KLVWRJUDP b) FXUEDFXPXODWLY GHIUHFYHQ H c) diagrama prin benzi; d) diagrama prin coloane; e) curba de concentrare a lui Lorentz. 36) ÌQ GRX
SRSXOD LL VWDWLVWLFH $ úL % GH DFHODúL YROXP R YDULDELO QXPHULF ; SUH]LQW DFHOHDúL
YDULDQWH3HQWUXFHOHGRX GLVWULEX LLGHIUHFYHQ HV
-au calculat mediile x A úL x B . Aceste medii
sunt egale deoarece: a) b)
YDORULOHLQGLYLGXDOHGLQ$úL%VXQWLGHQWLFH YDORDUHD ORU GHSLQGH QX QXPDL GH YDORULOH LQGLYLGXDOH FL úL GH IUHFYHQ HOH ORU GLIHULWH GH DSDUL LH
c) d)
VHFDOFXOHD] GXS DFHHDúLPHWRG LDUYROXPXOSRSXOD LLORUVWDWLVWLFHHVWHDFHODúL IUHFYHQ HOHGHDSDUL LHDOHYDORULORULQGLYLGXDOHGLQ$úL%VXQWLGHQWLFHGDUGLIHULWHGHOD RSRSXOD LHODDOWD
e)
vQ$úL%YDORULOHLQGLYLGXDOHVXQWLGHQWLFHúLDXDFHOHDúLIUHFYHQ HGHDSDUL LH
37) ,QGLFHOHSUH urilor consumatorului este calculat ca un indice de tip: a) b) c) d) e)
Paasche; Laspeyres; Fischer; indice al valorii; indice al volumului fizic.
38) 'RL VWDWLVWLFLHQL DX DQDOL]DW DFHOHDúL GDWH UHIHULWRDUH OD ³ vQGHSOLQLULL QRUPHORU´ D GH PXQFLWRUL GH DFHHDúL SURIHVLH 3HQWUX D FDUDFWHUL]D WHQGLQ D FHQWUDO D YDULDELOHL XQXO D FDOFXODW PHGLD DULWPHWLF RE LQkQG LDU FHO ODOW D FRQVLGHUDW RSRUWXQ PHGLD S WUDWLF RE LQkQG
107% (amândoi au efectuat corect calculele). Pentru a caracteriza omogenitatea datelor este QHFHVDU GHWHUPLQDUHDFRHILFLHQWXOXLGHYDULD LH9DORDUHDDFHVWXLDHVWH
a) b) c) d) e)
19,6%; 25%; -75%; SHUVRDQ
50%.
39) Într-XQ HúDQWLRQ GH GH DJHQ L HFRQRPLFL V-DX XUP
ULW GRX YDULDELOH GHSHQGHQWH VWDWLVWLF
SURILWXO QHW PLO OHL úL QXP UXO PHGLX GH VDODULD L 'HVSUH GLVWULEX LD FRPELQDW IRUPDW SH SDWUX LQWHUYDOH HJDOH GXS SURILW úL SH WUHL LQWHUYDOH GXS QXP UXO PHGLX GH VDODULD L VH FXQRVF XUP WRDUHOH GDWH SH vQWUHJXO HúDQWLRQ SURILWXO PHGLX D IRVW GH PLO OHL LDU FRHILFLHQWXO GH YDULD LHDIRVW GH SURILWXO PHGLXDIRVW GH PLO OHL OD JUXSD DJHQ LORU HFRQRPLFLFX QU PHGLXGHVDODULD LVXESHUVRDQHPLOOHLODJUXSD QUPHGLXGHVDODULD LúLPLOOHL
-
OD JUXSD úL SHVWH QU PHGLX GH VDODULD L QXP UXO GH DJHQ L HFRQRP
ici pe cele trei grupe sunt
úL 0 VXUD vQ FDUH PRGLILFDUHD QXP UXOXL PHGLX GH VDODULD L FRQWULEXLH OD YDULDELOLWDWHD SURILWXOXLDJHQ LORUHFRQRPLFLDIRVWGH
a) b) c) d) e)
46,6%; 53,4%; -10%; 110%; 100%.
40) ÌQDQDOL]DVHULLORUGHGDWHVWDWLVWLFHVHXWLOL]HD] QR LXQLOH 1. YDULDELOLWDWHDLQGHSHQGHQ DLQWHUGHSHQGHQ DFRQFHQWUDUHD RPRJHQLWDWHDIRUPDGHUHSDUWL LHSHULRGLFLWDWHD 3URSULHW
a) b) c) d)
LOHSDUWLFXODULW úL úL úL úL
7.
LOH VHULLORUFURQRORJLFHVXQW
TESTUL 3
1)
6H GDX GDWHOH UHIHULWRDUH OD UHSDUWL LD VDODULD LORU XQHL VRFLHW
L FRPHUFLDOH GXS YHFKLPHD vQ
PXQF
1UVDODULD L
Grupe (ani)
(0 − 5]
(5 − 10] (10 − 15] (15 − 20] (20 − 25] (25 − 30]
15
peste 30 TOTAL
3 n=49
9HFKLPHDPHGLHDXQXLVDODULDWvQFDGUXOVRFLHW
a) b) c) d) e) 2)
3 5 9 9 5
LLFRPHUFLDOHHVWH
12,5 ani; 21,5 ani; 9,75 ani; 17,5 ani; 24,5 ani.
$JUHJDWHOH PDFURHFRQRPLFH VH GHWHUPLQ OD SUH XULOH SLH HL VDXOD SUH XULOHIDFWRULORU 7UHFHUHD GHODRFDWHJRULHGHSUH XULODDOWDVHUHDOL]HD]
a) b) c) d) e)
SUH XOIDFWRULORU
SUH XOSLH HL
SUH XOIDFWRULORU
SUH XOSLH HLLPSR]LWHOHLQGLUHFWH
SUH XOIDFWRULORU
SUH XOSLH HL
SUH XOIDFWRULORU
SUH XOSLH HLVXEYHQ LLOH
SUH XOIDFWRULORU
SUH XOSLH HL VXEYHQ LLOH
- impozitele indirecte; - impozitele indirecte nete; -
3) Indicatorii de rezultate macroeconomice (agregatele macroeconomice) se pot calcula ca LQGLFDWRULGHQDWXU EUXW úLGHQDWXU QHW &DOFXOXOLQGLFDWRULORUvQYDULDQWDQHW VHIDFH
a)
,QGLFDWRULL GH QDWXU QHW
,QGLFDWRULL GH QDWXU EUXW $ORFD LD SHQWUX FRQVXPXO GH
capital fix; b)
,QGLFDWRULL GH QDWXU QHW UDSRUWFXVWU LQ WD
c)
,QGLFDWRULL GH QDWXU EUXW 6ROGXO YDORULL DG XJDWH EUXWH vQ
-
tea;
,QGLFDWRULL GH QDWXU QHW
,QGLFDWRULL GH QDWXU EUXW 6ROGXO YDORULL DG XJDWH EUXWHvQ
UDSRUWFXVWU LQ WDWHD
d)
,QGLFDWRULL GH QDWXU QHW
,QGLFDWRULL GH QDWXU EUXW
- $ORFD LD SHQWUX FRQVXPXO GH
capital fix; e) 4)
,QGLFDWRULLGHQDWXU QHW
,QGLFDWRULLGHQDWXU EUXW
- Exportul net.
9HQLWXO SHUVRQDO GLVSRQLELO 93' H[SULP YHQLWXULOH JRVSRG ULLORU PHQDMHORU FH SRW IL XWLOL]DWHSHQWUXDFRSHULUHDFKHOWXLHOLORUSHUVRQDOHúLSHQWUXHFRQRPLVLUH 9HQLWXO3HUVRQDO'LVSRQLELOVHFDOFXOHD]
a) VPD = Veniturile personale + Impozitele personale; b) 93' 9HQLWXO1D LRQDO-6ROGXOYDORULLDG XJDWHEUXWHvQUDSRUWFXVWU LQ WDWHD c) VPD = Veniturile personale - Impozitele personale; d) 93' 9HQLWXO1D LRQDO - Impozitele pe veniturile firmelor + Transferurile de la Guvern úLILUPH
e) 5)
93'
9HQLWXO1D LRQDO,PSR]LWHOHSHQWUXDVLJXU ULVRFLDOH'REkQ]LOHSULPLWHGHSRSXOD LH
,QGLFDWRULL PDFURHFRQRPLFL GH UH]XOWDWH DJUHJDWHOH VH GHWHUPLQ FD LQGLFDWRUL QRPLQDOL vQ SUH XUL FXUHQWH úLVDX FD LQGLFDWRUL UHDOL vQ SUH XUL FRPSDUDELOH VDX FRQVWDQWH &DOFXOXO vQ H[SUHVLHUHDO VHHIHFWXHD]
a) Agregat real = Agregat nominal -$ORFD LDSHQWUXFRQVXPXOGHFDSLWDOIL[$&&) b) Agregat real =
$JUHJDW QRPLQDO
Indicele preturilor producatorilor (Laspeyres) $JUHJDW QRPLQDO
c) Agregat real =
Indicele pretului DJUHJDWXOXL (deflatorul PIB) d) $JUHJDWUHDO $JUHJDWQRPLQDO[,QGLFHOHSUH XOui agregatului (deflatorul PIB); e) Agregat real = Agregat nominal x Indicele Paasche.
6)
2VHULHGHWLPSVHUHSUH]LQW JUDILFSULQWU
a) b) c) d) e) 7)
-o:
FRUHORJUDP GLDJUDP GHVWUXFWXU FURQRJUDP KLVWRULRJUDP FDUWRJUDP FDUWRGLDJUDP
'DF VH QRWHD]
x a - PHGLD DULWPHWLF
x g - PHGLD JHRPHWULF
x h - PHGLD DUPRQLF
xp-
PHGLDS WUDWLF UHOD LDGHRUGLQHGLQWUHPHGLLHVWHXUP WRDUHD
a) x p ≤ x a ≤ x h ≤ x g ; b) x a ≤ x h ≤ x g ≤ x p ; c) x h ≤ x a ≤ x g ≤ x p ; d) x g ≤ x p ≤ x a ≤ x h ; e) x h ≤ x g ≤ x a ≤ x p . 8)
'DF VH QRWHD]
x a - PHGLD DULWPHWLF
[mo
- YDORDUHD PRGDO
VHULHGHUHSDUWL LHFHLWUHLLQGLFDWRULVXQWHJDOL
a) seria este de tip calitativ; b) VHULDHVWHOHSWRFXUWLF c) VHULDHVWHSODWLFHQWLF d) VHULDHVWHSHUIHFWVLPHWULF e) seria este de tip normal. 9)
[me
- YDORDUHD PHGLDQ
vQWU
-o
x a =xmo = xme) atunci când:
9HULILFDUHD FRQFRUGDQ HL GLQWUH UHSDUWL LD H[SHULPHQWDO ³HPSLULF ´ RE LQXW vQWU
-o cercetare
FRQFUHW úL UHSDUWL LD WHRUHWLF SUHVXSXV GH H[HPSOX QRUPDO VH HIHFWXHD] FX DMXWRUXO PDL
multor teste.
Expresia: k
(ni − n ⋅ pi )2
i =1
n ⋅ pi
∑
UHSUH]LQW VWDWLVWLFDWHVWXOXL
a) b) c) d) e)
Shapiro - Wilk; Lalliefors; Hi-S WUDWχ2); Kolmogorov-Smirnov; Gnedenko.
10) 3HQWUXDGLPLQXDHURDUHDVLVWHPDWLF
LQWURGXV ODFDOFXOXOGLVSHUVLHLvQWU RVHULHGHUHSDUWL LHSH
-
LQWHUYDOH SULQ IRORVLUHD FHQWUHORU GH LQWHUYDO :)6KHSSDUG D SURSXV R FRUHF LH DVWIHO vQFkW UHOD LDGHFDOFXOHVWH
a) σ ’2 =
∑ xi’ f i ⋅ h 2 − ( x − h ) 2 ; ∑ fi h2 ; 12 p(1 − p) ;
b) σ ’2 = σ 2 − c) σ ’2 =
x i2 fi ∑ x i fi ∑ 2 d) σ ’ = − fi fi ∑ ∑ e) σ ’2 =
∑ (x i − x)
2
100
fi
2
;
.
Unde σ ’2 - YDORDUHD UHFDOFXODW D GLVSHUVLHL h - P ULPHD LQWHUYDOXOXL GH JUXSDUH xi - valorile caracteristicii; x - media; fi -IUHFYHQ HOHp - media caracteristicii binare. 11) 'HWHUPLQDUHD
YROXPXOXL HúDQWLRQXOXL vQ YDULDQWD ³DOHDWRU VLPSOX UHSHWDW´ VH HIHFWXHD]
XWLOL]kQGUHOD LD
a) n =
b) n =
zα2 ⋅ σ 2 z 2 ⋅σ 2 ∆2 + α x N 2 n ⋅ N j ⋅ σ 2j k
∑ N j ⋅σ j =1
;
;
2 j 2
zα + z β k 2 ; c) n = z − z ⋅ 1 + 2 p2 p1
1 − p1 1 − p2 d) n = ; p2 1 − p2 lg − lg p1 1 − p1 lg
z2 ⋅σ 2 . e) n = α ∆2
x
12) ,QGLFLL SUH XULORU PHGLL OD SULQFLSDOHOH SURGXVH YkQGXWH SH SLD D varianta: a) b) c) d) e)
U QHDVF VH GHWHUPLQ vQ
Laspeyres; Edgeworth; Fischer; Paasche; Marschal.
13) 3H ED]D XQXL VRQGDM Q
VWXGHQ L HIHFWXDW DOHDWRU vQ FDGUXO IDFXOW
LL V
-au înregistrat diferite -
FDUDFWHULVWLFL 3UHOXFUkQG GDWHOH UHIHULWRDUH OD GRX GLQWUH DFHVWH FDUDFWHULVWLFL V DX RE LQXW XUP WRDUHOHUH]XOWDWH
Culoarea ochilor GHVFKLV
Culoarea S UXOXL
deschis închis
Total &RHILFLHQWXOGHDVRFLHUHFRQFRUGDQ
a) b) c) d) e)
vQFKLV
6 19 25
23 28 51
vQWUHFHOHGRX FDUDFWHULVWLFLDUHYDORDUHD
0,243; 0,713; 0,980; 0,01; 0,901.
14) 9DORDUHDUDSRUWXOXLGHFRUHOD LHHVWHHJDO a) b) c) d) e)
17 9 26
FXYDORDUHDFRHILFLHQWXOXLGHFRUHOD LHDWXQFLFkQG
UHSDUWL LDHVWHXQLPRGDO UHSDUWL LDHVWHVLPHWULF OHJ WXUDGLQWUHYDULDELOHHVWHOLQLDU OHJ WXUDGLQWUHYDULDELOHHVWHLQYHUV OHJ WXUDGLQWUHYDULDELOHHVWHGLUHFW
15) Produsul Intern Brut a fost 109.515 mld. lei în anul 1996, respectiv de 249.750 mld. lei în 1997, VF GHUHD UHFDOFXODW vQ SUH XUL FRPSDUDELOH ILLQG GH - 5DWD LQIOD LHL vQ DQXO comparativ cu 1996 a fost: a) 244,16%; b) 109,20%;
c) 344,16%; d) 57,20%; e) 144,16%. 16) ,QGLFLLSUH XULORUGHFRQVXPDOSRSXOD LHLvQDQXOID • ODP UIXULDOLPHQWDUe 251,4%; • ODP UIXULQHDOLPHQWDUH • la servicii 276,5%. Ponderile celor trei grupe în totalul cheltuielilor au fost: • P UIXULDOLPHQWDUH • P UIXULQHDOLPHQWDUH • servicii 12%; &XQRVFkQG IDSWXO F vQ ID
GHDXIRVW
GH FkúWLJXO VDODULDO PHGLX QR
minal net a fost de
GLQDPLFDVDODULLORUUHDOHDIRVWvQHJDO FX
a) b) c) d) e)
77,6%; 112,5%; 177,6%; 100,0%; 47,6%.
17) /DRILUP vQGHFXUVXOXQHLSHULRDGHV-DXvQUHJLVWUDWXUP WRDUHOHGDWH • LQGLFHOHvQ]HVWU ULLWHKQLFHDPXQFLL • modificarea prRFHQWXDO DHILFLHQ HLFDSLWDOXOXLIL[-5%; • LQGLFHOHQXP UXOXLGHVDODULD L 0RGLILFDUHDSURGXF LHLHVWHHJDO FX
a) b) c) d) e)
100%; 0,9576; -7,5%; +12,3%; 112,3%.
18) ,QGLFHOHVLQWHWLFGHJUXS VWDELOLWFDPHGLHDUPRQLF a)
b)
c)
d)
∑ x1 f 1 : ∑ x 0 f 0 ; ∑ f1 ∑ f 0 ∑ x1 ( f 1 + f 0 ) ; ∑ x0 ( f1 + f 0 ) ∑ x 0 f 1 ⋅ ∑ x1 f 1 ∑ x 0 f 0 ∑ x1 f 0
∑ x1 f 1 ∑
1
;
x1 f 1 ix q q q e) n : n −1 = n . q0 q0 q n −1
;
DLQGLFLORULQGLYLGXDOLHVWH
19) Într-RVHULHGHLQGLFLSHQWUXIDFWRUXOFDOLWDWLY[ YDULDQWD³ED] este: a)
b)
c)
d)
e)
PRELO ´úL³SRQGHUHYDULDELO ´
∑ x1 f 0 ; ∑ x2 f 1 ;...; ∑ xi f i −1 ;...; ∑ xn f n−1 ; ∑ x0 f 0 ∑ x1 f 1 ∑ xi −1 f i −1 ∑ xn−1 f n−1 ∑ x1 f 1 ; ∑ x2 f 2 ;...; ∑ xi f 1 ;...; ∑ xn f n ; ∑ x0 f 0 ∑ x1 f 1 ∑ xi −1 f i −1 ∑ xn−1 f n−1 ∑ x0 f 0 ; ∑ x1 f 1 ;...; ∑ xi −1 f i −1 ;...; ∑ xn−1 f n−1 ; ∑ x1 f 1 ∑ x2 f 2 ∑ xi f i ∑ xn f n ∑ x1 f 1 ; ∑ x 2 f 2 ;...; ∑ xi f i ; ...; ∑ x n f n ; ∑ x 0 f 1 ∑ x1 f 2 ∑ xi −1 f i ∑ x n−1 f n ∑ x1 f 1 ; ∑ x1 f 2 ;...; ∑ x1 f i ;...; ∑ x1 f n . ∑ x 1 f 1 ∑ x1 f 2 ∑ x1 f i ∑ x1 f n
20) 5HIHULWRUODDFWLYLWDWHDHFRQRPLF
DXQHLVRFLHW
LFRPHUFLDOHVHFXQRVFXUP WRDUHOHGDWH
9DORDUHDSURGXF LHLPLOOHL
Unitatea
3HUGHED]
3HUFXUHQW
Modificarea valorii pe seama modiILF ULL SUH XULORUPLOOHL
A B
1200 875
1850 1600
0RGLILFDUHD UHODWLY D YDORULL OD QLYHOXO vQWUHJLL VRFLHW
350 275 L FDX]DW GH PRGLILFDUHD YROXPXOXL
IL]LFDOSURGXF LHLvQWUHFHOHGRX SHULRDGHDIRVWHJDO FX
a) b) c) d) e) 21) ÌQ
-12,5%; +100,0%; +36,1%; +136,1%; -112,5%.
VWDELOLUHD WUHQGXOXL ³DMXVWDUHD´ VHULHL SHQWUX LGHQWLILFDUHD WHQGLQ HL FHQWUDOH PHWRGD
PRGLILF ULLPHGLLDEVROXWHVHDSOLF DWXQFL
a) b) c) d) e)
FkQGHYROX LDHVWHH[SRQHQ LDO FkQGPRGLILF ULOHFXED] PRELO VXQWDSUR[L
mativ egale;
FkQGVHULDHVWHIRUPDW GLQWU XQQXP ULPSDUGHWHUPHQL
-
FkQGVHULDHVWHIRUPDW GLQP ULPLUHODWLYH FkQGVHULDHVWHGHPRPHQWHLQHJDOGLVWDQ DWH
22) 0HWRGDLQIOXHQ HORUL]RODWH³UHVWXOXLQHGHVFRPSXV´ QXVHSRDWHDSOLFDDWXQFLFkQG a) b) c) d) e)
x1 x1 x1 x1 x1
= x0 ; f1 < x0 ; f1 < x0 ; f1 > x0 ; f1 > x0 ; f1
= < > < =
f0; f0; f0; f0; f0.
23) 6HFXQRVFXUP
WRDUHOHGDWH
Ramuri economice
'LQDPLFD9$%ID
Industrie $JULFXOWXU 6LOYLFXOWXU &RQVWUXF LL
Servicii 0RGLILFDUHDSRSXOD LHLRFXSDWHvQID 'LQDPLFDSURGXFWLYLW
GH
(%) 95,0 101,4 78,2 88,8
Structura VAB pe ramuri (%) 36,8 20,8 7,9 34,5
GHDIRVWGH
-2%.
LLVRFLDOHDPXQFLL DIRVWHJDO FX
a) 94,76%; b) 102,51%; c) 104,76%; d) 2,51%; e) 194,76%. 24) Cunoscând valorile observate (Yi úLFHOHDMXVWDWHUHFDOFXODWHSULQWU-un model analitic ( Yi ):
Yi : 98; 109; 121; 145; 152 Yi: 99; 108; 119; 147; 152 &RHILFLHQWXOGHGHWHUPLQD LHDOPRGHOXOXLGHUHJUHVLHSULQFDUHV
a) b) c) d) a)
-a realizat ajustarea este egal cu:
1,215; 0,095; 0,875; 0,962; 0,715.
25) Pentru estimarea fondului de salarizare necesar într-R OXQ OD R 6& FX GH DQJDMD L GLQ FDUH DQJDMD L SHUPDQHQW úL FRODERUDWRUL V-a organizat un sondaj aleator stratificat SURSRU LRQDOI U UHYHQLUHGHYROXPGLQFROHFWLYLWDWHDJHQHUDO 'LQSUHOXFUDUHDGDWHORUGLQ HúDQWLRQDUH]XOWDWXQVDODULXPHGLXDODQJDMD LORUFXFRQWUDFWGHPXQF GHPLOOHLúLXQVDODULX PHGLXDODQJDMD LORUvQUHJLPGHFRODERUDUHGHPLO
lei, iar dintr-RFHUFHWDUHDQWHULRDU
VHúWLHF
IDFWRUXO ÄUHJLPXO GH DQJDMDUH´ LQIOXHQ HD] YDULD LD VDODULXOXL vQ SURSRU LH GH )RQGXO GH
salarizare estimat pentru întreaga S.C. (pentru o probabilitate de 0,9973, z =3), este:
a) b) c) d) e)
(3,32 mil. lei; 4,28 mil. lei); (2568 mil. lei; 3504 mil. lei); (2656 mil. lei; 3424 mil. lei); (3,21 mil. lei; 4,38 mil. lei); (2800 mil. lei; 3280 mil. lei).
26) 2FUHúWHUHDHILFLHQ HLDFWLYLW LLHFRQRPLFHQXVHUHDOL]HD] GDF a) LQGLFHOHGHGLQDPLF DHILFLHQ HLIRORVLULL fondurilor fixe este supraunitar; b) GLQDPLFDSURGXF LHLPDUI GHYDQVHD] GLQDPLFDFDSLWDOXOXLIL[ c) LQGLFHOHGHGLQDPLF DQHFHVDUXOXLGHPLMORDFHIL[HHVWHVXSUDXQLWDU d) indicele de dinaPLF DSURGXFWLYLW LLPXQFLLHVWHVXSUDXQLWDU e) GLQDPLFDSURGXF LHLPDUI GHYDQVHD] GLQDPLFDQXP UXOXLGHVDODULD L
27) ÌQOXQDLDQXDULHvQGRX -
ILOLDOHDOHXQHLILUPHV DXvQUHJLVWUDWXUP WRDUHOHGDWH
vQ ILOLDOD $ FHL DQJDMD L UHSUH]HQWkQG GLQ WRWDOXO DQJDMD LORU ILUPHL PDX UHDOL]DW R SURGXF LHGHPLOOHL
-
-
;
în filiala B s-a realizat o productivitate medie a muncii de 3,1 mil. lei.
ùWLLQG F vQ OXQD IHEUXDULH SURGXFWLYLWDWHD PHGLH D PXQFLL SH DQVDPEOX FHORU GRX ILOLDOH D IRVW GH PLOLRDQH OHL LDU QXP UXO WRWDO GH DQJDMD L D IRVW GH PRGLILFDUHD DEVROXW D SURGXF LHL vQ OXQDIHEUXDULHID
GHLDQXDULHSHDQVDPEOXOILUPHLGDWRUDW PRGLILF ULLQXP UXOXLWRWDOGHDQJDMD L
a fost: a) 178,44 mil. lei; b) 195,96 mil. lei; c) 138 mil. lei; d) 170,4 mil. lei; e) 374,4 mil lei. 28) ÌQDQDOL]DVWDWLVWLF
DVH]RQDOLW
LLXQHL6&5LQGLFLLGHVH]RQDOLWDWHVHGHWHUPLQ DWXQFLFkQG
a)
IHQRPHQXODUHRHYROX LHSHWHUPHQOXQJDVHP Q WRDUHXQHLSURJUHVLLJHRPHWULFH
b)
vQ VHULD FURQRORJLF VH FRQVWDW F PRGLILF ULOH DEVROXWH FX ED] PRELO VXQW DSUR[LPDWLY
egale; c) s-a utilizat pentru deteUPLQDUHDWUHQGXOXLRPHWRG d) s-DXWLOL]DWSHQWUXGHWHUPLQDUHDWUHQGXOXLRPHWRG e)
PHFDQLF DQDOLWLF
FRPSRQHQWHOHGHWUHQGRVFLODWRULHúLDOHDWRDUHVHFRPSXQGXS XQPRGHOPXOWLSOLFDWLY
29) ,QGLFDWRUXOVWDWLVWLFÄHQHUJLDLQIRUPD LRQDO a)
REOLFLW
b)
WHQGLQ HLFHQWUDOH
c)
YDULD LHL
d)
FRQFHQWU ULLGLYHUVLILF ULL
e)
EROWLULLDSODWL] ULL
2QLFHVFX´HVWHXWLOL]DWvQDQDOL]DVWDWLVWLF D
LL
30) ÌQFRQVWUXF LDFRQWXULORUPDFURHFRQRPLFHGLQFDGUXO6&1QXDUHVROG a)
FRQWXOGHUHSDUWL LHDYHQLWXULORU
b) contul de creare a veniturilor; c)
FRQWXOGHSURGXF LH
d) contul sintetic de bunuri;
e) contul de modificare a patrimoniului. 31) 'DF
GLVWULEX LDXQXLORWGHPLQJLFRQIHF LRQDWHGLQDFHODúLPDWHULDO vQIXQF LHGHGLPHQVLXQH
HVWHQRUPDO úLSHUIHFWVLPHWULF DWXQFLGLVWULEX LDORWXOXLGXS YROXPHVWH
a)
SHUIHFWVLPHWULF
b)
DVLPHWULF vQFDUHSUHGRPLQ YDORULOHPDUL
c)
DVLPHWULF vQFDUHSUHGRPLQ YDORULOHPLFL
d)
vQIRUP GHÄ8´
e)
QXVHSRDWHSUHFL]DIRUPDGLVWULEX LHL
32) ÌQGHWHUPLQDUHDDJUHJDWHORUPDFURHFRQRPLFHLQGLFDWRULLFDUHH[SULP
S
rodusul domestic iau în
calcul: a)
UH]XOWDWXODFWLYLW
LLSURGXFWLYHDWXWXURUDJHQ LORUGLQLQWHU RUXO
b)
UH]XOWDWXO DFWLYLW
LL SURGXFWLYH D WXWXURU DJHQ LORU QD LRQDOL FDUH úL DX GHVI úXUDW DFWLYLWDWHD
SHWHULWRULXO
c)
d)
e)
-
LL SURGXFWLYH D DJHQ LORU QD LRQDOL FDUH úL DX GHVI úXUDW DFWLYLWDWHD QXPDL
-
ULL
UH]XOWDWXO DFWLYLW WHULWRULXO
ULLQD LRQDOLVDXVWU LQL
ULLVDXvQVWU LQ WDWH
UH]XOWDWXO DFWLYLW SHWHULWRULXO
i
LL SURGXFWLYH D DJHQ LORU QD LRQDOL FDUH úL DX GHVI úXUDW DFWLYLWDWHD SH
ULLFHOSX
-
in 11 luni, în cadrul unui an;
SURGXF LDPHQDMHORUSHQWUXFRQVXPXOSURSULX
TESTUL 4
1)
ÌQ6LVWHPXO&RQWXULORU1D LRQDOHLPSR]LWHOHLQGLUHFWHQHWHIDFRELHFWXO
a) GHELWXOXLFRQWXOXL³3URGXF LH´ b) FUHGLWXOXLFRQWXOXL´3URGXF LH´ c) VROGXOXLFRQWXOXL³3URGXF LH´ d) soldului contului “Venituri”; e) debitului contului de “Modificare a patrimoniului sectorului firme”. 2)
3UHVXSXQHPF VXQWH LLQWHUHVD LvQHIHFWXDUHDWHVWXOXLVWDWLVWLF
H 0 : m = 200 H a : m > 200
úL XWLOL]D L UHJXOD GH GHFL]LH ³6H UHVSLQJH +0 GDF PHGLD HúDQWLRQXOXL GH GH XQLW
L HVWH PDL
PDUHGH´'HYLD LDVWDQGDUGvQSRSXOD LHHVWHGH3UREDELOLWDWHDFRPLWHULLXQHLHURULGHJHQXO
întâi este: a) b) c) d) e) 3)
13,36%; 6,68%; 43,32%; 0,4332; 3,34%.
6DODULD LL XQHL VRFLHW
L FRPHUFLDOH DX XQ VDODULX PHGLX GH PLL OHL 3DWURQXO KRW U úWH V
P UHDVF VDODULXOILHF UXLDQJDMDWGHRUL1RXOVDODULXPHGLXYDIL
a) b) c) d) e) 4)
750 mii lei; 780 mii lei; 975 mii lei; 576,9 mii lei; 880 mii lei.
,QFOXGHUHD UHVXUVHORU PLQHUDOH vQ DYX LD QD LRQDO VH UHDOL]HD] SULQ FRQVWLWXLUHD XQRU
trepte de
DWUDJHUHvQFLUFXLWXOHFRQRPLFDODFHVWRUUHVXUVHGLQSXQFWGHYHGHUHDOJUDGXOXLGHFXQRDúWHUHD DFHVWRUD úL DO SRVLELOLW
LORU GH H[SORDWDUH 1XP UXO GH WUHSWH vQ FDUH VH FXSULQG DFHVWH UHVXUVH
minerale sunt: a) b) c) d) e) 5)
2; 4; 3; 5; 8.
1XP UXO DQJDMD LORU XQHL FRPSDQLL FDUH DEVHQWHD] OXQHD DUH DSUR[LPDWLY R GLVWULEX LH 3RLVVRQ LDUQXP UXOPHGLXGHDEVHQ LGLQDFHDVW ]LDV SW PkQLLHVWH3UREDELOLWDWHDFDPDLSX LQGH DQJDMD LV DEVHQWH]HvQWU R]LGHOXQLDV SW PkQLLHVWH
-
a) 25,10%; b) 19,31%; c) 2,6%;
d) 51,84; e) 26,74%. 6)
)LH R FROHFWLYLWDWH VWDWLVWLF VLVWHPDWL]DW vQ JUXSH GXS YDORULOH FDUDFWHULVWLFLL GH JUXSDUH ; úL
r
în mJUXSHGXS
YDORULOHYDULDELOHLDQDOL]DWH<úLSHQWUXFDUHV
σ i2
GLVSHUVLD WRWDO
GLVSHUVLLOH GH JUXS
i = 1, r ), σ
2
-au calculat dispersiile: σ 2 =
PHGLD GLVSHUVLLORU GH JUXS
δ 2=
dispersia dintre grupe. &RQWULEX LDIDFWRUXOXLGHJUXSDUH;ODYDULD LDJHQHUDO DYDULDELOHL<VHP VRDU FXLQGLFDWRUXO
a) R = 2
2
σ
;
σ2 δ2 ; b) R 2 = σ2 δ2 c) R 2 = 1 − ; σ2 r
∑
d) R 2 = i =1
∑ (y j − y ) m
σ i2 ni . :
r
j =1
∑ ni .
e) R =
j =1 2
m
i =1 j =1
r
;
m
∑ ∑ (y j − y i ) 2
n. j
∑ n. j
i =1
r
2
∑ (y j − y ) m
nij :
m
j =1
2
n. j .
m
∑ ∑ nij
∑ n. j
i =1 j =1
j =1
/HJ WXULOHGLQWUHIHQRPHQHOHHFRQRPLFR VRFLDOHGHPDV VXQW
-
a) b) c) d) e)
OHJ WXULIXQF LRQDOH OHJ WXULFDUHVHVXSXQDF LXQLLOHJLORUVWRFKDVWLFH OHJ WXULFHSRWILSXVHvQHYLGHQ
ODQLYHOXOILHF UHLXQLW
LvQSDUWH
OHJ WXULFDUHVHVXSXQDF LXQLLOHJLORUGLQDPLFH OHJ WXULXQLYRFGHWHUPLQDWH
6HFRQVLGHU XQWDEHOGHFRQWLQJHQ
{[(x , y )n ]; j ∈ J , k ∈ K} j
k
FRUHOD LH vQIRUPDVDJHQHUDO
:
jk
&RYDULDQ DGLQWUHYDULDELOHOH;úL<&RY;< FDOFXODW SHED]DWDEHOXOXLHVWH
(
)(
)
a) Cov( X , Y ) =
1 ∑ ∑ x j − x y k − y n. j ; n j k
b) Cov ( X , Y ) =
1 ∑ ∑ x j yk n jk − xy ; n j k
c) Cov( X , Y ) = d) Cov ( X , Y ) =
(
)(
)
1 ∑ ∑ x j − x yk − y ; n j k
xj − x 1 nij ; ∑∑ n j k yk − y
∑ ∑ (x j − x)(y j − y)nij j
e) Cov ( X , Y ) =
9) 'DF
k
.
nσ x σ y
vQ WDEHOXO GH FRQWLQJHQ
GHILQLW OD SUREOHPD QRW P
Uj =
xj − x
σx
úL
Vk =
yk − y , σy
atunci: a) Cov ( X , Y ) = σ x σ y Cov (U ,V ) ; b) Cov ( X , Y ) ≠ σ x σ y Cov (U ,V ) ; c) Cov ( X , Y ) =
Cov (U ,V ) ; σ xσ y
d) Cov ( X , Y ) − Cov (U ,V ) = σ xσ y ; e) Cov ( X , Y ) = σ U σ V Cov (U ,V ) .
10) 3UHFL]LDHVWLP
ULLSDUDPHWULORU SRSXOD LHLJHQHUDOH SHED]DGDWHORUGH VRQGDMGHSLQGHGHHURULOH
GHvQUHJLVWUDUHúLGHHURULOHGHUHSUH]HQWDWLYLWDWH3HQWUXDPD[LPL]DSUHFL]LDHVWLP ULORU
a)
HVWH VXILFLHQW V VH HOLPLQH VXUVHOH HURULORU GH vQUHJLVWUDUH SULQ GLIHULWH PRGDOLW
verifLFDUHDYHULGLFLW b) c)
L GH
LLGDWHORUFXOHVH
HVWHVXILFLHQWV DFRUG PXQLW
LORUSRSXOD LHLVWDWLVWLFHúDQVHHJDOHGHDILLQFOXVHvQHúDQWLRQ
HVWH QHFHVDU V HOLPLQ P HURULOH GH UHSUH]HQWDWLYLWDWH SULQ UHVSHFWDUHD SULQFLSLLORU VHOHF LHLDOHDWRDUH
d) este necesar
V HOLPLQ P HURULOH GH vQUHJLVWUDUH VXUVHOH HURULORU VLVWHPDWLFH GH
UHSUH]HQWDWLYLWDWHúLV PLQLPL] PHURULOHDOHDWRDUHGHUHSUH]HQWDWLYLWDWH
e)
HVWH QHFHVDU V HOLPLQ P HURULOH GH vQUHJLVWUDUH úL QRQU VSXQVXULOH OD vQWUHE ULOH GLQ
chestionare.
11) ClasifiFDUHD DFWLYLW
LORU HFRQRPLFR VRFLDOH GLQ HFRQRPLD QD LRQDO VH UHDOL]HD] SH FDWHJRULL
-
GLYL]LXQLJUXSHúLVDXFODVH
a) b) c) d) e)
2FDWHJRULHHVWHPDLRPRJHQ GHFkWRGLYL]LXQHJUXS VDXFODV *UXSDGHDFWLYLW
LSUH]LQW FHDPDLPDUHRPRJHQLWDWHvQUDSRUWFXFHO
elalte;
2JUXS HVWHPDLRPRJHQ GHFkWRFDWHJRULHVDXGLYL]LXQHGDUPDLHWHURJHQ GHFkWRFODV &ODVDGHDFWLYLW
LHVWHPDLHWHURJHQ GHFkWRFDWHJRULHGLYL]LXQHVDXJUXS
'LYL]LXQHD HVWH PDL RPRJHQ GHFkW R JUXS VDX FODV GDU PDL HWHURJHQ GHFkW R FDWHJRULHGHDFWLYLW
L
&RQGL LD QHFHVDU FD H[SUHVLD
F (β 0 , β 1 ) = ∑ (yi − β 0 − β 1xi ) β0úLβ1V
GHULYDWHOHVDOHSDU LDOHvQIXQF LHGH
i
ILHHJDOHFX]HUR
2
V ILH PLQLP HVWH DFHHD FD
dF =0 dβ 0 dF =0 dβ 1 12) 6ROX LDDFHVWXLVLVWHPGHHFXD LLHVWHFXSOXOGHYDORri (b0, b1)FRUHVSXQ]
WRUSDUDPHWULORU
β0, β1)
definit prin:
a) b1 = b) b1 =
Cov(x , y)
σ 2x Cov(x , y ) nσ x σ y
úL
b0 = y − b1 x ;
úL
b0 = y − b1 x ;
c) b1 = y − b0 x úL b0 =
Cov(x , y )
σ 2x
;
d) b1 = b0 = y ; Cov(x , y ) e) b1 = b0 = . σ 2x 13) 6H
úWLH
F
σ 2y =
Yi = b0 + b1 xi 'DF
(
)
( ) (1 − r ) (1 − r ) (1 − r ) (1 − r )
úL
b) σ 2y.x > σ 2y
2
úL
σ 2y = σ 2y .x + σ Y2 ;
2
úL
σ 2y = σ 2y .x + σ Y2 ;
2
úL
σ 2y < σ 2y .x + σ Y2 ;
2
úL
σ 2y > σ 2y .x + σ Y2 .
d) σ 2y.x > σ 2y e) σ 2y.x < σ 2y 14) 2 YDULDELO
)
úL
σ Y2 =
(
)
2 1 Yi − y ∑ n i
unde
UHVWHFRHILFLHQWXOGHFRUHOD LHGLQWUHYDULDELOHOH<úL;DWXQFL
a) σ 2y .x = σ 2y 1 − r 2
c) σ 2y.x = σ 2y
(
2 2 1 1 yi − y ;σ 2y.x = ∑ yi − Yi ∑ r i n i
σ 2y < σ 2y .x + σ Y2 ;
FRPSOH[ < HVWH H[SULPDW vQ IXQF LH GH IDFWRULL DEFGHIJK D F URU LQIOXHQ
WUHEXLH L]RODW 5HOD LD GLQWUH < úL IDFWRULL V L ILLQG PXOWLSOLFDWLY SHUPLWH R GHVFRPSXQHUH vQ
trepte de forma:
P este par
Calcularea unei a doua sume mobile (de ordinul 2)
Divizarea prin 2 P
$IODUHDQXP UXOXLGH
termeni din care se FDOFXOHD] PHGLLOH
mobile (ordinul de filtraj = p∈ N)
Calculul sumelor mobile
P este impar
b)
Aflarea valorilor DMXVWDWHúLWUDVDUHD
trendului pe grafic
Divizarea prin 2 P
'DF S HVWH SDU HVWH QHFHVDU V FDOFXO P PHGLL PRELOH SDU LDOH GH RUGLQXO DSRL SH ED]D DFHVWRUD PHGLL PRELOH SDU LDOH GH RUGLQXO úDPG SkQ DMXQJHP OD PHGLLOH
finale (valorile ajustate) plasate în dreptul termenilor reali;
p + 1 2 termeni reali;
c)
'DF SHVWHLPSDUVHSLHUGSULQDMXVWDUHXQQXP UGH
d) e)
'DF SHVWHSDUVHSLHUGSULQDMXVWDUHXQQXP UGHSWHUPHQLUHDOL 1XP UXOYDORULORUDMXVWDWHHVWHDFHODúLLQGLIHUHQWGHQDWXUDOXL
17) ,QGLFHOHPHGLXGHGLQDPLF
SHQWUXXQRUL]RQW
p ∈N .
de timp 1, T VHFDOFXOHD]
LQGLFLORUGHGLQDPLF FXED] PRELO GLQRUL]RQWXO
FDPHGLHJHRPHWULF D
1, T FXFRQGL LDFDDFHúWLDV
SUH]LQWHYDORUL
DSURSLDWHV ILHRPRJHQL $FHDVW FRQGL LH
a) HVWHIDFXOWDWLY b) este LPSRUWDQW úLWUHEXLHUHVSHFWDW GHRDUHFHLQGLFHOHPHGLXVHSRDWHFDOFXODúLvQIXQF LH doar de termenii extremi (y1 úL \T I U V VH LQ VHDPD GH HYROX LD IHQRPHQXOXL vQ interiorul orizontului de timp; c) QXHVWHQHFHVDU GHRDUHFHHDH[FOXGHQHFHVLWDWHDUHSUH]HQWDWLYLW LLPHGLHLFDOFXODWHvQWU-o serie de date statistice; d) QX HVWH QHFHVDU GHRDUHFH vQ RULFH VHULH FURQRORJLF PHGLD JHRPHWULF VW OD ED]D GHWHUPLQ ULLLQGLFHOXLPHGLXGHGLQDPLF
e)
WUHEXLH UHVSHFWDW QXPDLDWXQFLFkQG RUL]RQWXO GHWLPS
1, T al seriei cronologice nu este
mai mic de 5 ani. 18) 3HQWUX GHWHUPLQDUHD DJUHJDWHORU PDFURHFRQRPLFH VH XWLOL]HD]
GDWH GLQ XUP WRDUHOH FRQWXUL
QD LRQDOH FRQWXO VLQWHWLF GH EXQXUL FRQWXOPRGLILF ULL SDWULPRQLXOXL FRQWXO GH FUHDUH D
vHQLWXULORU FRQWXO SURGXF LH FRQWXO GH UHSDUWL LH D YHQLWXULORU FRQWXO GH UHGLVWULEXLUH D YHQLWXULORU FRQWXOGHILQDQ DUHDPRGLILF ULLSDWULPRQLXOXL FRQWXOXWLOL] ULLYHQLWXULORU &DUHGLQWUHYDULDQWHOHGHPDLMRVHVWHIDOV
a) Soldul contului 4) este produsul intern brut; b) 3URGXVXOLQWHUQEUXWODSUH XOIDFWRULORUHVWHVROGXOFRQWXOXL c) 9HQLWXOQD LRQDOHVWHVROGXOFRQWXOXL
d) 9HQLWXOQD LRQDOGLVSRQLELOHVWHVROGXOFRQWXOXL e) 9HQLWXOQD LRQDOGLVSRQLELOHVWHUHVXUV SHQWUXFRQWXO . 19) Pe baza tabelului de date punctuale prezentat mai jos: i xi
1 1
2 2
3 1
4 3
5 2
6 1
7 1
8 2
FDOFXOD LFXDUWLOHOH
Q1, Q2úLQ3. Valorile acestora sunt:
a) b) c) d) e)
Q1=1; Q2=2; Q3=3; Q1=1; Q2=(1,2); Q3=2; Q1=3; Q2=(1,2); Q3=2; Q1=1; Q2=3; Q3=2; altele decât cele prezentate în variantele anterioare;
20) Într-o colectivitate s-DXFXOHVGDWHOHSHQWUXGRX {xi }i =1,8 = {4;1;1;5;6;3;2;1}
YDULDELOHVWDWLVWLFHRE LQkQGX
-se:
{yi }i =1,8 = {100;90;40;80;70;50;100;70}
ÌQSULYLQ DRPRJHQLW
a) b) c) d) e)
LLFHORUGRX VHULLVHSRDWHDILUPD
VHULDDOF WXLW GXS YDULDELOD;HVWHPDLRPRJHQ GHFkWFHDGXS < VHULDIRUPDW GXS <HVWHPDLRPRJHQ GHFkWFHDGXS ; VHULDDOF WXLW GXS YDULDELOD;HVWHPDLRPRJHQ GHRDUHFHYDORULOHVXQWPDLPLFL QXVHSRDWHFRPSDUDRPRJHQLWDWHDFHORUGRX VHULLILLQGYRUEDGHYD
riabile diferite;
ILLQGYRUEDGHDFHHDúLFROHFWLYLWDWHRPRJHQLWDWHDFHORUGRX VHULLHVWHDFHHDúL
21) $QDOL]D LXUP
WRDUHOHFDWHJRULLGHSHUVRDQHGHDQLúLSHVWHGLQWU RSHULRDG GHUHIHULQ
-
SHUVRDQH FDUH QX OXFUHD] QHDYkQG XQ ORF GH PXQF SHUVRDQH FDUH VXQW vQ F XWDUHD XQXL ORF GH PXQF SHUVRDQH FRQFHGLDWH SHUVRDQH FDUH VXQW GLVSRQLELOH V vQFHDS LPHGLDW F XWDUHDXQXLORFGHPXQF SHUVRDQHvQF XWDUHDSULPXOXLORFGHPXQF SHUVRDQHFDUHGXS RvQWUHUXSHUHYROXQWDU DDFWLYLW
LLVROLFLW UHOXDUHDDFHVWHLD SHUVRDQHVH]RQLHURFXSDWHDIODWHvQ
RFXSDUHDXQXLSHUPDQHQWORFGHPXQF ÌQ GHWHUPLQDUHD QXP UXOXL GH úRPHUL vQ VHQVXO GHILQL LHL GDWH GH %LURXO ,QWHUQD LRQDO DO 0XQFLLGHILQL LDVWDQGDUG VHFXSULQGH
a) úL b) 1,úL c) úL d) úL e) úL /X P vQ FRQVLGHUDUH WDEHOXO GH FRQWLQJHQ
GLVWULEX LLOH FRQGL LRQDWH DOH OXL < GH ; FXQRVFPHGLLOHúLGLVSHUVLLOH
y (x j ) =
1 ∑ n jk yk n j. k
úL
σ 2y (x j ) =
{(y
k
FRUHOD LH
{[(x , y )n ]; j ∈ J , k ∈ K} j
}
)
, n jk , j fixat , k ∈ K
[
jk
úL
3HQWUX DFHVWHD GLQ XUP VH
]
2 1 y k − y ( x j ) n jk , ∑ n j. k
IUHFYHQ D PDUJLQDO DVRFLDW YDULDQWHL
k
cu
n j . = ∑ n jk efectivul k
xj.
Dispersia variabilei Y ( σ 2y vQIXQF LHGHHOHPHQWHSUH]HQWDWHvQLSRWH]
VHSUH]LQW DVWIHO
[
]
a) σ 2y =
2 1 1 n j .σ 2y (x j ) + ∑ n j . y ( x j ) − y ; ∑ n j n j
b) σ 2y <
2 1 n j. y( x j ) − y ; ∑ n j
c) σ 2y <
1 ∑ n j.σ 2y ( x j ) ; n j
d) σ 2y =
2 1 1 n j.σ 2y ( x j ) − ∑ n j. y ( x j ) − y ; ∑ n j n j
e) σ 2y >
1 1 n j .σ 2y ( x j ) + ∑ n j . y ( x j ) − y ∑ n j n j
[
]
[
GHLQIOXHQ
]
[
]
2
FX FRYDULDQ D GLQWUH < úL FHLODO L IDFWRUL
FXH[FHS LDIDFWRUXOXL;
23) Luându-se în considerare elementele prezentate în ipoteza pUREOHPHL SURSRU LD YDULD LHL PHGLLORUFRQGL LRQDWHvQGLVSHUVLDJHQHUDO DYDULDELOHL<HVWHQXPLW JUDGGHGHWHUPLQD LHúLHVWH QRWDW FX
R y2.x &DUHGLQXUP
WRDUHOHDILUPD LLQXHVWHDGHY UDW
a) 0 ≤ R y2.x ≤ 1 ; b) R y2.x = 0 GDF c) R y2.x = 1 GDF
WRDWHPHGLLOHFRQGL LRQDWHDOHOXL\vQIXQF LHGH[VXQWHJDOHvQWUHHOH ILHF UHLYDORUL[jvLFRUHVSXQGHRXQLF YDORDUHDYDUDELOHL\
d) R y2.x = 0 GDF
PHGLLOH FRQGL LRQDWH DOH OXL \ vQ IXQF LH GH [ VXQW GLVWLQFWH GRX FkWH
GRX
e) R y2.x H[SULP
P VXUDvQFDUHIDFWRUXOGHLQIOXHQ
H[SOLF YDULD LDYDULDELOHL\
24) (URULOHDOHDWRDUHGHUHSUH]HQWDWLYLWDWHvQWkOQLWHvQFD]XORUJDQL] fi evitate ci diminuate: a)
GHRDUHFH XQLW
ULLRULF UXLWLSGHVRQGDMQX
pot
LORU GLQ SRSXOD LLOH VWDWLVWLFH OL VH DFRUG DFHHDúL úDQV GH DSDUL LH vQ
HúDQWLRDQH
b)
GHRDUHFH vQ HúDQWLRDQH VH FXSULQG QXPDL S U L GLQ SRSXOD LL VWDWLVWLFH úL SULQ XUPDUH QX
pot reproduce identic, decât întâmpO extrase; c) d) e)
WRU VWUXFWXULOH SRSXOD LLORU GLQ FDUH DFHVWHD DX IRVW
DWXQFLFkQGFRQWUROXOGDWHORUFXOHVHVHUHDOL]HD] SULQFHOHPDLDGHFYDWHPHWRGH DWXQFLFkQGVHXWLOL]HD] ED]HGHVRQGDMDFWXDOL]DWHFRUHVSXQ] WRU DWXQFL FkQG VH IRUPHD] GLQ DFHHDúL SRSXOD LH WRDWH HúDQWLRDQHOH SRVLELOH FKLDU GDF HOH DXDFHODúLYROXP
25) 3HQWUX FRPSDUDUHD SUH XULORU SURGXVHORU GLQWU-R LQGLFHGHJUXSGHSUH
DU FX FHOH GLQWU R DOW DU VH XWLOL]HD] XQ
-
a) de tip Laspeyres; b) de tip Paasche; c) de tip Fischer; d) IRUPDWGXS PHWRGDVXEVWLWXLULLvQO Q XLWH e) IRUPDWGXS PHWRGDUHVWXOXLQHGHVFRPSXV 26) Estimatorul unui parametru θVHQRWHD] θ $FHVWHVWLPDWRUHVWHQHGHSODVDWGDF a)
GLIHUHQ DGLQWUHPHGLDVDúLYDORDUHDSDUDPHWUXOXLHVWHGLIHULW GH]HUR
b)
GDF PHGLDVDHVWHHJDO FXYDORDUHDSDUDPHWUXOXL
( M (θ ) = θ );
D(θ ) → 0 FkQG YROXPXO HúDQWLRQXOXL SRSXOD LHLJHQHUDOH n → N ); d) dispersia sa este miniP SHQWUXXQYROXPIL[DWDOHúDQWLRQXOXL e) GLVSHUVLDHVWLPDWRUXOXLHVWHPD[LPDO c)
GLVSHUVLD VD HVWH PLQLP
27) ÌQFDOFXOXOSURGXFWLYLW
( M (θ − θ ≠ 0) ;
WLQGH F WUH YROXPXO
LLVRFLDOHDPXQFLLVHLDvQFRQVLGHUDUH
a) b) c) d)
SRSXOD LDRFXSDW WRWDO
e)
SRSXOD LDRFXSDW WRWDO GLPLQXDW FXVDODULD LLRUJDQL]D LLORUSROLWLFHúLREúWHúWL
SRSXOD LDDFWLY SRSXOD LDRFXSDW WRWDO GLQFDUHVHVFDGHSRSXOD LDGLQDUPDW SRSXOD LD RFXSDW WRWDO GLPLQXDW FX SRSXOD LD RFXSDW vQ DUPDW úL FX VDODULD LL RUJDQL]D LLORUSROLWLFHúLREúWHúWL
28) 3HQWUX D VWXGLD HYHQWXDOD LQIOXHQ
a culorii
DPEDODMXOXL DVXSUD XQXL QRX WLS GH V SXQ VH
VWXGLD] XQ HúDQWLRQ GH PHQDMH 6H WULPLW ILHF UXL PHQDM GLQHúDQWLRQ SDWUX EXF
L GH V SXQ
GHDFHHDúLFRPSR]L LHGLQWLSXODQDOL]DWGDUDPEDODWHvQFXORULGLIHULWHURúXDOEEOHXúLYHUGH
Pentru a testDSUHIHULQ DPHQDMHORUROXQ
PDLWkU]LXILUPDSURGXF WRDUHRIHU JUDWXLWEXF
LFX
FXORDUHD GRULW D DPEDODMXOXL ÌQ XUPD VLVWHPDWL] ULL GDWHORU REVHUYDWH V D RE LQXW XUP WRDUHD
-
serie: Culoarea Nr. menaje
5RúX
Alb 74
51
Bleu 30
Verde 45
TOTAL 200
Pentru o probabilitate 0,1%: a)
VH UHVSLQJH LSRWH]D SRWULYLW F UHLD FXORDUHD DPEDODMXOXL QX DU LQIOXHQ D YROXPXO YkQ] ULORUGHRDUHFH
b)
χ 2calc. = 20,04 > χ 20,1%;3 = 16,3 ;
VHDFFHSW LSRWH]DSRWULYLWF UHLDFXORDUHDDPEDODMXOXLQXDULQIOXHQ DYROXPXOYkQ] ULORU
2 2 deoarece χ calc . = 20,04 > χ 0,1%; 3 = 16,3 ; 2 2 c) nu se poate lua nici o decizie deoarece χ calc . = χ 0,1%;3 = 16,3 ; d) VH UHVSLQJH LSRWH]D DEVHQ HL LQIOXHQ HL FXORULL DPEDODMXOXL DVXSUD YROXPXOXL YkQ] 2 2 GLQWLSXOGHV SXQDQDOL]DWGHRDUHFH χ calc. = 10 < χ 0,1%;3 = 16,3 ; e) nu se poate lua o decizie deoarece testul χ2 nu poate fi utilizat.
29) 1XP
ULORU
UXO PD[LP GH HúDQWLRDQH GH DFHODúL YROXP Q FDUH SRW IL IRUPDWH SULQ DFHODúL SURFHGHX
DOHDWRUvQYDULDQW QHUHSHWDW I U UHYHQLUH GLQWU RSRSXOD LHVWDWLVWLF GHYROXP1HVWH
-
a) nN; b) Nn;
c) ANn ; n d) C N ; e) n!.
30) 6H QRWHD]
HVWLPDWRUXO SDUDPHWUXOXL
[]
[]
θ cu θ LDU PHGLD úL GLVSHUVLD HVWLPDWRUXOXL FX M θ
respectiv cu D θ . Estimatorul θ este abVROXWFRUHFWGDF
(
a) este nedeplasat M (θ ) = θ
)
úLFRQYHUJHQW
úL
D(θ ) → 0 GDF n → N );
b) M (θ ) → θ úL D(θ ) → 0 când n → N ; c) D θ este minim , dar nenul SHQWUXXQYROXPIL[DWDOHúDQWLRQXOXL
[]
n→ N; ( ) D(θ ) → 0 e) ( M (θ ) = θ ) , indiferent de valoarea dispersiei estimatorului (pentru orice D[θ ] ). d) M (θ ) − θ ≠ 0
úL
GDF
31) Statisticianul enJOH] <XOH SUHFL]HD]
FRQGL LLOH SH FDUH WUHEXLH V OH vQGHSOLQHDVF
LQGLFDWRULLVLQWHWLFLDLUHSDUWL LLORUVWDWLVWLFHúLDQXPH
1) 2) 3) 4) 5) 6)
V ILHGHILQLWvQPRGRELHFWLY V GHSLQG GHWRDWHREVHUYD LLOHGLQVHULH V DLE RVHPQLILFD LHFRQFUHW V ILHVLPS
lu de calculat;
V ILHSX LQVHQVLELOODIOXFWXD LLOHGHVHOHF LH V VHSUHWH]HXúRUODFDOFXOHDOJHEULFH
$FHVWHFRQGL LLvQWRWDOLWDWH
a) sunt respectate de medie; b) sunt respectate de dispersie; c) VXQWUHVSHFWDWHGHFRYDULDQ d) sunt respectate de valoarea PRGDO e) QXVXQWUHVSHFWDWHGHQLFLXQLQGLFDWRUDOWHQGLQ HLFHQWUDOHVDXDOYDULD LHL 32) Media ( x D XQXL HúDQWLRQ GH PDUH YROXP n SRDWH IL FRQVLGHUDW QRUPDO GHPHGLH
x 0 úLDEDWHUHPHGLHS
WUDWLF HURDUHPHGLH
F XUPHD] R GLVWULEX LH
σ , în cazul unui sondaj simplu n
cu revenire. Pentru o probabilitate 1-α intervalul de estimare (sau de încredere) a parametrului x 0 este:
x − x 0 ≤ zα
UHODWLY
σ n
Pentru ca preciziD HVWLPD LHL V ILH PDL PLF GLQ x 0 YROXPXOHúDQWLRQXOXLHVWH
z σ a) n ≤ α ⋅ 2
2
k 2 x 20
;
VDX HJDO FX N SUHFL]LH IL[DW vQ YDORDUH
b) n ≥ c) n =
zα2 2
⋅ (CV )
2
XQGH&9
FRHILFLHQWXOGHYDULD LH
k σ2
;
k 2 x0
d) n =
zα2 k 2 σ 2
;
x0 e)
PDLPDUHGHGHXQLW
L
33) 8Q FRQWURORU GH FDOLWDWH úWLH F YL]LELOHGHVXSUDID V J VHDVF H[DFW
a) b) c) d) e)
SUREDELOLWDWHD FD SH XQ QRX DXWRPRELO V J VHDVF GHIHFWH
]JkULHWXUL HVWHGH
‰. Probabilitatea ca dintr-un lot de 2500 de automobile 2 automobile cu defecte vizibile este:
7,5%; 3,66%; 92,5%; 7,32%; 15%.
34) Într-un proces de verificare a ipotezelor statistice nivelul de încredere reprezint probabilitatea: a) b) c) d) e)
α; 1-α; β; 1-β; α+β.
35) &RQWXO³3URGXF LH´DOVHFWRUXOXLILUPHVHSUH]LQW 1.
Cheltuieli
pentru
produse
LQWHUPHGLDUHúLGHLQYHVWL LLGLQLPSRUW
2. Amortizarea capitalului fix 3. Impozite indirecte brute 6XEYHQ LLGHH[SORDWDUH
5. Salarii 'REkQ]LúLUHQWH
VLQWHWL
c astfel:
ÌQFDV ULGLQYkQ]DUHDGHEXQXULF WUHDOWHVHFWRDUH
-YkQ] -YkQ] -YkQ]
ULGHEXQXULGHFRQVXPF WUHPHQDMH ULGHSURGXF LHLQWHUPHGLDU F WUHVHFWRUXOSXEOLF ULSULQH[SR
rt
,QYHVWL LLEUXWHLQFOXVLYLPSRUWXULOH
-LQYHVWL LLEUXWHvQEXQXULGHFDSLWDO -LQYHVWL LLEUXWHvQVWRFXUL
7. Profitul din DFWLYLWDWHDGHSURGXF LH 3HED]DHOHPHQWHORUDFHVWXLFRQWVHSRWFDOFXODPDLPXO LLQGLFDWRUL&DUHUHOD LHGLQFHOHSUH]HQWDWH PDLMRVHVWHIDOV
a)
9DORDUHDDG XJDW ODSUH XOSLH HL
9DORDUHDDG XJDW QHW ODSUH XOIDFWRULORU
impozitele indirecte nete (3-4) + amortizarea capitalului fix (2); b)
9DORDUHD DG XJDW EUXW OD SUH XO IDFWRULORU
YDORDUHD DG XJDW OD SUH XO IDFWRULORU
(5+6+7) + amortizarea (2); c) 9DORDUHDDG XJDW QHW ODSUH XOSLH HL 9DORDUHDDG d) Soldul contului: (1+2+3+4+5+6+7)-(8+9)=0; e) Soldul contului: (1+2+3+4+5+6+7)-(8+9)≠ 0.
XJDW EUXW ODSUH XOSLH HL
- amortizarea;
36) 6
VH SUHFL]H]H FDUH GLQ VHULLOH GH UHSDUWL LH FDUDFWHUL]DWH SULQ XUP WRDUHOH VHWXUL GH YDORUL
SUH]LQW RDVLPHWULHSR]LWLY
a) b) c) d) e)
x = 31,2 ; Me=31,2; Mo=31,2; x = 2850 ; Me=3150; Mo=3300; x = 151,25 ; Me=138,75; Mo=112,58; x = 180 0H 0R úL x = 0 ; Me=0; Mo=0.
,QGLFLLDQXDOLDLSUH XULORUGHFRQVXPODP UIX
Anul Indice (an precedent = 100)
1991 286,2
rile alimentare în perioada 1991-1994 au fost: 1992 336,6
1993 348,9
1994 236,2
Sursa: Anuarul Statistic al României, 1995, pag. 411 ,QGLFHOHPHGLXDOSUH XULORUGHFRQVXPODP UIXULOHDOLPHQWDUHvQDFHDVW SHULRDG DIRVW
a) 1,985; b) 298,50%; c) 301,975; d) 261,2%; e) 2,612. 'DF vQWU R VHULH GH UHSDUWL LH UHOD LD RELHFWLY GLQWUH GDWH [i FRQGXFH OD GHFL]LD FD WHQGLQ D
-
FHQWUDO V RFDUDFWHUL] PFXPHGLDJHRPHWULF
-
FHQWUDO HVWHDFHDYDORDUH
x g ) atXQFLDEDWHUHDPHGLHS
WUDWLF ID
GHWHQGLQ D
σ x pentru care avem: g
2
a) log σ x = g
x 1 log i ; ∑ n i xg
(
)
b) σ x = g
2 1 xi − x g ; ∑ n i
c) σ x = g
1 1 1 − ∑ n i xi x g
d) σ x = g
1 ∑ xi − x g ; n i
e) σ x = g
1 xi ∑ . n i x g
(
2
;
)
&LUFXLWXOHFRQRPLFUHIOHFW vQHVHQ
WUDQ]DF LLOHGLQWUHVXELHFWHOHHFRQRPLFHÌQFDGUXODFHVWRUD
XQORFLPSRUWDQWvORFXS WUDQ]DF LLOHGHSLD
$FHVWHDVXQW
a) transferuri curente (impozite, pensii, ajutoare sociale, etc.); E VXEYHQ LL
c) transferuri de patrimoniu; d) transferuri unilaterale; e) transferuri bilaterale.
*UDILFHOHVWDWLVWLFHvQFRRUGRQDWHSRODUHVHXWLOL]HD] vQPRGFXUHQWSHQWUXYL]XDOL]DUHD D RULF UHLVHULLGHGDWHVWDWLVWLFH E VHULLORUGHUHSDUWL LH
c) eYROX LHLWUHQGXOXLGLQHYROX LDXQXLIHQRPHQ G HYROX LHLXQXLIHQRPHQDIHFWDWGHRVFLOD LLVH]RQLHUH H WHQGLQ HLOHJ WXULLGLQWUHYDULDELOHúLDOHJHUHDPRGHOXOXLGHUHJUHVLH
TESTUL 5 5DWDúRPDMXOXLVHFDOFXOHD] FXUHOD LD
ocupati ; ocupati + neocupati neocupati b) ; forta de munca neocupati c) ; ocupati neocupati d) ; populatia in varsta mai mare de 15 ani
a)
H QLFLXQDGLQWUHUHOD LLOHSUHFHGHQWH 6H FXQRVFXUP WRDUHOH GDWHSULYLQGQXP UXOGHIDFWXULvQWRFPLWHGH6&$QRQLPXV 65/vQ
luna noiembrie 1997: Data Nr. facturi 1 6 2 10 3 12 4 10 5 8 6 9 7 10 8 11 9 12 10 9
Data 11 12 13 14 15 16 17 18 19 20
Nr. facturi 10 14 6 18 13 9 14 12 17 12
I Grupe de zileGXS nr. de facturi 0-5 6 - 11 11 - 15 15 - 20
Data 21 22 23 24 25 26 27 28 29 30
II Nr. zile
Grupe de ]LOHGXS
nr. de facturi 0 -5 6 - 10 11 - 15 16 - 20
1 13 13 3
A. QXP
III Nr. zile
Intervale de timp
Nr. facturi
1 16 10 3
0-6 7 - 14 15 - 22 23 - 30
55 90 103 82
IV
Intervale ale UXOXL
zilnic de facturi (0-5] ( 5 - 10 ] (10 - 15 ] (15 – 20]
B. Nr. de zile 1 13 13 3
Nr. facturi 14 12 11 10 8 4 12 9 12 16
V
Intervale ale QXP
UXOXL
de facturi [0-5) [ 5 - 10 ) [10 - 15 ) [15 – 20)
3RSXOD LDVWDWLVWLF VWXGLDW HVWHVWUXFWXUDW úLSUH]HQWDW vQ
Nr. de zile 1 9 17 3
a) Tabelul I; b) Tabelul II; c) Tabelul III; d) Tabelul IV; e) Tabelul V. 3) Cadranul II al Tabelului Input- Output cuprinde: D YDORDUHDDG XJDW EUXW E SURGXF LDILQDO F SURGXF LDLQWHUPHGLDU G FRHILFLHQ LLF
heltuielilor totale;
H FRHILFLHQ LLFKHOWXLHOLORUGLUHFWH
4) 3HQWUXGHVDODULD LDLXQHLVRFLHW
LFRPHUFLDOHIRQGXOGHVDODUL]DUHDIRVWvQWU ROXQ GH
-
PLOLRDQH OHL ùWLLQG F FHL PDL PXO L GLQWUH VDODULD L DX DYXW XQ VDODULX GH PLL OHL L
ar
FRHILFLHQWXOGHDVLPHWULHDOUHSDUWL LHLGXS VDODULXDIRVWGH FRHILFLHQWXOGHYDULD LHDIRVW
-
a) 24,5%; b) 200%; c) -25,52%; d) 37,5%; e) 26,67%.
5) 'LVWULEX LDXQXLORWGHDXWRPRELOHGXS
FRQVXPXOGHFDUEXUDQWODNPSDUFXUúLHVWH
IQWHUYDOHGHYDULD LHDFRQVXPXOXLO 6,2 - 6,6 6,6 - 7,0 7,0 - 7,4 7,4 - 7,8 7,8 - 8,2 8,2 - 8,6 8,6 - 9,0 9,0 - 9,4 9,4 - 9,8 Total Utilizând
testul
χ2
SHQWUX
YHULILFDUHD
Nr. automobile 4 12 44 90 107 86 36 15 6 400 FDUDFWHUXOXL
UHSDUWL LHL
H
mpirice,
pentru
χ α2 = 0,05;l = 6 = 12 ,5916 se poate afirma: 2 a) χ 2calc > χ tab ;
b) QX VH DFFHSW FRQFRUGDQ
LSRWH]D FRQIRUP F UHLD vQWUH GLVWULEX LD HPSLULF úL FHD WHRUHWLF H[LVW
c) χ 2calc = 3,44 ; d) χ 2calc = 8,12 ; e) χ 2calc = 12 ,5916.
6) 2 FRPSDQLH FDUH SURGXFH XQ QRX WLS GH vQJU
ú PkQW DJULFRO HVWH LQWHUHVDW vQ VWXGLHUHD UHOD LHL
GLQWUHSURGXF LDGHURúLL< úLFDQWLWDWHDGHvQJU ú PkQWDSOLFDW; 2VXSUDID RSWSDUFHOHGHP ULPLHJDOHSHFDUHVXQWDSOLFDWHFDQWLW URúLLNJ úLFDQWLW
HVWHGLYL]DW vQ
LGLIHULWHGHvQJU ú PkQW3URGXF LLOHGH
LOHGHvQJU ú PkQWDSOLFDWNJ vQUHJLVWUDWHSHQWUXILHFDUHSDUFHO VXQW
xi yi
1 25
1,5 31
2 27
2,5 28
3 36
3,5 35
4 32
4,5 34
(FXD LDGHUHJUHVLHSHWQUXGHVFULHUHDGHSHQGHQ HLGLQWUHFHOHGRX YDULDELOHHVWH
a) b) c) d) e)
y = 24,45 − 2,38 x ; y = 2,38 + 24,45x ; y = 24,45 + 2,38 x ; y = 32 + 2,01x ; y = 32 − 2,01x ;
'LPLQXHD] DYX LDQD LRQDO
a) rezervele de devize; b) rezervele de aur; F UH]HUYHOHGHPRQHG QD LRQDO GH LQXWHGHDOWH G EXQXULOHQD LRQDOHDIODWHSHWHULWRULXODOWRU H FUHDQ HOHDVXSUDDOWRU
UL
8) Într-RUHSDUWL LHGHIUHFYHQ HIUHFYHQ DUHODWLY
a)
QXP UXOXQLW
E SRQGHUHDXQLW
UL
UL
FXPXODW FUHVF WRUDJUXSHL
iDUDW
LORUVWDWLVWLFHFDUHDXYDORULOHFDUDFWHULVWLFLLPDLPLFLVDXHJDOHFX LORUVWDWLVWLFHGLQJUXSD vQWRWDOXOFROHFWLYLW
i
LLVWXGLDWH
xi;
c) QXP UXOXQLW LORUVWDWLVWLFHFDUHDXYDORULOHFDUDFWHULVWLFLLPDLPDULVDXFHOSX LQHJDle cu xi; d) ponderea unit LORU VWDWLVWLFH FDUH DX QLYHOXO FDUDFWHULVWLFLL PDL PLF VDX HJDO FX xi, în WRWDOXOFROHFWLYLW
e)
SRQGHUHD XQLW
LLVWXGLDWH
LORU VWDWLVWLFH FDUH DX QLYHOXO FDUDFWHULVWLFLL PDL PDUH VDX HJDO FX
WRWDOXOFROHFWLYLW
LLVWXGLDWH
xi, în
.
9) 8Q DQDOLVW ILQDQFLDU HVWH LQWHUHVDW vQ D GHWHUPLQD VDODULXO PHGLX DFRUGDW DQJDMD LORU ILUPHL (O FXOHJH GDWH SULYLQG VDODULXO PHGLX SH ILHFDUH GLQ FHOH SDWUX ILOLDOH DOH ILUPHL úL IRQGXO GH
salarizare: Filiala 1 2 3 4
Salariul mediu (mii lei) 540 620 480 700
6DODULXOPHGLXSHvQWUHDJDILUP HVWH
a) 573,168 mii lei; b) 585,5 mii lei; c) 825,325 mii lei; d) 460,5 mii lei; e) 632,375 mii lei.
Fondul de salarizare (mil. lei) 45,90 33,48 16,80 19,60
5HSDUWL LDYHQLWXULORUHVWHHYLGHQ LDW vQFRQWXO
D SURGXF LH E ILQDQ DUH
c) modificarea patrimoniului; d) redistribuirea venitului; e) contul sintetic de bunuri.
11) 8QIDEULFDQWGHDXWRPRELOHGHWHUPLQ
F GLQUH]HUYRDUHOHGHEHQ]LQ PRQWDWHSHPRGHOXO
VXQW GHIHFWH 'DF PDúLQL VRVHVF SHQWUX UHYL]LH SUREDELOLWDWHD FD GLQ PDúLQL V
necesite înlocuirea rezervorului este: a) 22,69%; b) 9,72%; c) 12%; d) 30%; e) 70%. $QDOL]D LXUP WRDUHOHPRGDOLW
LGHFRQWURO
1) controlul de volum; 2) controlul cantitativ-numeric; 3) controlul financiar-contabil; 4) FRQWUROXO ORJLF FRQWUROXO &XU LL GH FRQWXUL WHVWH GH YHULILFDUH D VHPQLILFD LHL LQGLFDWRULORU FDOFXOD L ÌQ WRDWH HWDSHOH FHUFHW ULL VWDWLVWLFH HVWH QHFHVDU YHULILFDUHD DXWHQWLFLW
LL GDWHORU úL
eliminareaHURULORUGHREVHUYDUHFDOFXOúLHVWLPDUHÌQDFHVWVHQVHVWHQHFHVDU D úL E úL F úL G úL H úL
)DFSDUWHGLQIRU DGHPXQF
a) persoanele casnice; b) pensionarii; F úRPHULL G SHUVRDQHOHI U XQORFGHPXQF FHUHQXQ
V PDLFDXWHORFGHPXQF
H QLFLXQDGLQFDWHJRULLOHPHQ LRQDWH
14) 3HQWUX GLVWULEX LD XQHL YDULDELOH DOHDWRDUH ; VH FXQRDúWH F
P(x i ≤ 151,33) = 0,5 , valoarea
quartilei întâi este 105,86 iarYDORDUHDTXDUWLOHLWUHLHVWH6HULDGHGLVWULEX LH D HVWHSURIXQGDVLPHWULF VSUHYDORULOHPLFLDOHYDULDELOHL E DUHRDVLPHWULHPRGHUDW SR]LWLY F DUHRDVLPHWULHPRGHUDW QHJDWLY
d) nu se poate preciza felul asimetriei; e) este profXQGDVLPHWULF VSUHYDORULOHPDULDOHYDULDELOHL
15) 8QDQDOLVWGHPDUNHWLQJXUP
UHúWHvQOXQLHIHFWXOUHFODPHORUDVXSUDYHQLWXULORUGLQYkQ] UL(O
vQUHJLVWUHD] FKHOWXLHOLOH FX UHFODPD ; PLOLRDQH OHL úL YHQLWXULOH GLQ YkQ] UL < VXWH
milioane lei)ÌQXUPDSUHOXFU
∑ xi = 15;∑ yi = 10;∑ i
i
ULLGDWHORURE LQH
∑ xi yi = 37; (i = 1,5)
x i2 = 55;
i
ÌQ LSRWH]D XQHL GHSHQGHQ H OLQLDUH
i
HFXD LDGUHSWHLGHUHJUHVLHHVWH
a) b) c) d) e)
y = 0,7 − 0,1x ; y = −0,1 + 0,7 x ; y = 2 − 0,7 x ; y = 3,7 + 5,5x ; y = 0,7 x .
$QDOL]D LXUP WRDUHOHQR LXQL DXWRQRPLH FRQILGHQ LDOLWDWH WUDQVSDUHQ GHRQWRORJLH SURIHVLRQDO LQGHSHQGHQ
VSHFLDOL]DUH SURSRU LRQDOLWDWH
SROLWLF HODERUDUHD GHFL]LL
lor; 9) argumentarea
DF LXQLORUGXS GHFODQúDUHDORU SUHOXFUDUHDGDWHORU REVHUYDUH $FWLYLWDWHDVWDWLVWLFLLSXEOLFHWUHEXLHV VHGHVI úRDUHUHVSHFWkQGXUP WRDUHOHSULQFLSLL D úL E úL
c) 3, 4, 5, 6,úL G úL H úL 5HFHQV PkQWXOFDPHWRG GHREVHUYDUHVWDWLVWLF
a)
QXSUHVXSXQHFXOHJHUHDGDWHORUGHODWRDWHXQLW
LOHSRSXOD LHLVWDWLVWLFHELQHGHOLPLWDW
b) are exclusiv un caracter demografic; F VHvQFDGUHD] vQVIHUDREVHUY ULORUFXFDUDFWHUSHUPDQHQW G VHRUJDQL]HD] FXRDQXPLW SHULRGLFLWDWH
e)
VHRUJDQL]HD] RULGHFkWHRUL6WDWLVWLFD218GHFODQúHD] UHFHQV PLQWHvQ
18) ÌQPRGVLQWHWLFRIHUWDQD LRQDO
ULOHPHPEUH
GHEXQXULúLVHUYLFLLHVWHH[SULPDW GH
a) VN; b) PNNpp; c) PNBpp; d) PNBpf; e) PIBpf. )LH;úL<GRLYHFWRULFXQFRPSRQHQWH
X = (x i ) úL Y = (yi ) cu i = 1, n . ’
’
'LVWDQ DOXL0LQNRYVNLHVWHGDW GHUHOD LD
1
'DF S
n p p d ( X , Y ) = ∑ xi − y i cu p ∈ N * . i =1
VHRE LQHGLVWDQ DDEVROXW LDUGDF S
VHRE LQHGLVWDQ DHXFOLGLDQ
3ULQ H[WHQVLH V FRQVLGHU P R SRSXOD LH VWDWLVWLF FX Q XQLW
x1, x2, ... , xr0DWULFHDGLVWDQ HORUGLQWUHXQLW
(
)
L OD FDUH VH REVHUY YDULDELOHOH
LFDOFXODWHSHQWUXILHFDUHSHUHFKH
de forma d ij = d x i , x j : D QXSUH]LQW LQWHUHVSHQWUXDQDOL]DVWDWLVWLF
xi, yi), cu elemente
b) SUH]LQW
LQWHUHVSHQWUXDQDOL]DYDULD LHLúLDGHRVHELULORUGLVLPLODULW
LORU GLQWUHXQLW
L
c QXSUH]LQW LQWHUHVSHQWUXVWUXFWXUDGDWHORUFXOHVH d) are toate elementele nenule;
e)
DUHFRPSRQHQWHQXOHSHDPEHOHGLDJRQDOHúLHOHPHQWHOHVLPHWULFHID
20) 2YDULDELO
DOHDWRDUH;XUPHD] RUHSDUWL LHQRUPDO GHSDUDPHWULL
GHGLDJRQDOH
x úL σ 2 GDF
DUHGHQVLWDWHD
GHUHSDUWL LH
1
a)
σ
2
2 1 exp − x− x ; 2 2π 2σ
(
)
b)
2 1 1 exp − x− x ; σ 2σ 2
c)
2 1 exp − x− x ; σ 2π 2σ 2
d)
2 1 exp − x+ x ; 2 σ 2π 2σ
e)
2 1 exp 2 x − x . σ 2π 2σ
(
)
(
1
(
1
(
1
21) 6H FXQRDúWH IDSWXO F LQGLYLGXDOH ID
∑ (xi − x) = 0 ;
i =1
n 1
∑ x
i =1
i
n
c)
−
1 = 0; xh
∑ xi2 − x p = 0 ; 2
i =1 n
d)
x
∏ x gi
= 1;
i =1
e) x = x h = x p = x g . unde: x
)
PHGLD H[SULP WHQGLQ D FHQWUDO LDU SH DQVDPEOX DEDWHULOH YDORULORU
n
b)
)
GH HD VH FRPSHQVHD] UHFLSURF &DUH YDULDQW GH U VSXQV QX IRUPDOL]HD]
DILUPD LDHIHFWXDW
a)
)
PHGLDDULWPHWLF
xh
PHGLDDUPRQLF
xp
PHGLDS WUDWLF
xg
PHGLDJHRPHWULF
22) Trecerea de la venituOQD LRQDOODYHQLWXOGLVSRQLELOVHUHDOL]HD]
vQFDGUXOFRQWXOXL
a) repartizarea veniturilor; b) modificarea patrimoniului; F ILQDQ DUH
d) redistribuirea veniturilor; H QXVHUHDOL]HD] vQFDGUXOXQXLDQXPLWFRQWPDFURHFRQRPLF
23) Cifra de afaceriD XQHL VRFLHW
LFRPHUFLDOH DFUHVFXWvQSHULRDGDLDQ
GH OD R OXQ OD DOWD ÌQ SURJUDPXO VRFLHW
- dec. 1996 cu 10%
LL FRPHUFLDOH HVWH SUHY ]XW FD FLIUD GH DIDFHUL vQ
perioada ian. 1990 - GHF V vQUHJLVWUH]H XQ LQGLFH PHGLX DQXDO GH 3HQWru perioada ian. 1996 - dec. 1998 indicele mediu anual care trebuie realizat este: , 79 log 1,3 − 45 log 11 a) anti log ; 24 , log 1,3 − log 11 b) anti log ; 2 c) 120%; d) 95%; e) 118,1%.
24) 3HQWUX DSUHFLHUHD P
VXULL vQ FDUH XQ IDFWRU VHPQLILFDWLY GH LQIOXHQ
GHWHUPLQ R YDULDELO
GHSHQGHQW VHFDOFXOHD] DWkWFRHILFLHQWXOGHFRUHOD LHFkWúLUDSRUWXOGHFRUHOD LH9DORULOHFHORU GRLLQGLFDWRULILLQGLGHQWLFHDWXQFLOHJ WXUDVWDWLVWLF GLQWUHFHOHGRX YDULDELOHHVWH D OLQLDU E KLSHUEROLF F SDUDEROLF
d) logiVWLF
H H[SRQHQ LDO
25) 8QúRPHUFDUHFDXW
XQORFGHPXQF vQWU RDQXPLW LQGXVWULHFXOHJHLQIRUPD LLGHVSUHVDODULXO
-
RIHULW GH ILUPHOH GLQ DFHDVW LQGXVWULH 3UHVXSXQHP F GLVWULEX LD VDODULXOXL RIHULW DQJDMD LORU GH FDOLILFDUH VLPLODU SRDWH IL DSUR[LPDW FX R GLVWULEX LH QRUPDO GH PHGLH PLL OHL úL DEDWHUH PHGLH S WUDWLF GH PLL OHL ÌQ SOXV SUHVXSXQHP F PXQFLWRUXOXL L VH RIHU PLL OHL GH F WUH SULPD ILUP FRQWDFWDW 3URSRU LD RIHUWHORU VDODULDOH FDUH DU SXWHD V VH VLWXH]H SHVWH DFHVW
nivel este: a) 4,01%; b) 8,02%; c) 54,01%; d) 91,98%; e) 45,99%.
26) 6H FXQRDúWH IDSWXO F
vQWU R UDPXU GH DFWLYLWDWH YDULDELOD VDODULXO PHGLX EUXW < HVWH
-
GHSHQGHQW SULQWUHDOWHOH GHJUDGXO PHGLX GH vQGHSOLQLUH DO QRUPHORU ;1 úLJUDGXO PHGLX vQ]HVWUDUH WHKQLF D PXQFLL ;2 &RQWULEX LD FHORU GRL IDFWRUL ;1
PHGLXEUXW< HVWHHYDOXDW SULQ
a) R y2/ x ,x = ry2/ x + ry2/ x ; 1 2 1 2 b) R y / x1,x2 =
ry2/ x + ry2/ x − 2 ry / x ry / x 2 rx1x2 1 2 1 1 − rx2 x
1 2
;
de
úL ;2 OD YDULD LD VDODULXOXL
c) R y / x1,x2 = ry2/ x + ry2/ x − 2ry / x ry / x 2 rx1x2 ; 1 2 1 d) rx1x2 = 0 ; ry2/ x + ry2/ x 1 2
e) R y / x1,x2 =
1 − rx2 x
.
1 2
&RQVLGHU PGDWHOH 9DORDUHDDG
Ramura 1 2
XJDW
EUXW
POGOHL
(ILFLHQ DPLMORDFHORUIL[H
3000 1000
0,5 0,8
(ILFLHQ DPLMORDFHORUIL[HSHWRWDODIRVW
a) 0,5751; b) 0,6500; c) 0,5517; G QXSRDWHILFDOFXODW
e) 1,3.
28) ÌQ HYROX LD VD vQGHOXQJDW
VWDWLVWLFD V
-a dezvoltat continuu atât sub aspectul obiectului de
VWXGLX GDU PDL DOHV DO SHUIHF LRQ ULL úL GLYHUVLILF ULL PHWRGHORU GH DERUGDUH DOH RELHFWXOXL ÌQ WRDWHPRPHQWHOHGH]YROW ULLVWDWLVWLFDVHRFXS GHDFHO
e fenomene:
D FDUHVHSURGXFODRDQXPLW XQLWDWHGHREVHUYDUH
b) care se produc în mod identic; c) exclusiv tehnice; d) care se produc într-XQ QXP UHJXODULW
U PDUH GH FD]XUL SUH]LQW vQ SURGXFHUHD ORU DQXPLWH
LúLFDUHSRWILGHQXPLWHIHQRPHQHGHPDV
H FDUHDXODRULJLQHXQVLQJXUIDFWRUGHLQIOXHQ
;
29) 8QHOHPHQWLPSRUWDQWDOXQXLSURJUDPGHREVHUYDUHHVWHWLPSXOREVHUY
ULL$FHVWD
D HVWHWLPSXOODFDUHVHUHIHU GDWHOHVDXWLPSXOvQUHJLVWU ULLGDWHORU
b) nu este altceva decât timpul la care se reIHU
GDWHOH FXOHVH FDUH SRDWH IL XQ VLQJXU
PRPHQWSHQWUXvQUHJLVWU ULOHVWDWLFH VDXRSHULRDG SHQWUXvQUHJLVWU ULOHGLQDPLFH F QXHVWHDOWFHYDGHFkWSHULRDGDvQFDUHVHvQUHJLVWUHD] GDWHOHVWDWLVWLFH
d) HVWH SULYLW úL SULQ XUPDUH SUHFL]DW FD WLPS ODFDUH VH UHIHU
GDWHOH FXOHVH úL FD LQWHUYDO GH
WLPSvQFDUHVHUHDOL]HD] vQUHJLVWUDUHDGDWHORU
e) nu este altceva decât data la care operatorii statistici trebuie s prezinte datele culese. 'LVSHUVLDFDOFXODW SULPPHWRGDPRPHQWHORUHVWH
a) momeQWXOLQL LDOGHRUGLQXOGRL
b) PRPHQWXOLQL LDOGHRUGLQXOSDWUXvPS
U LWODPRPHQWXOLQL LDOGHRUGLQXOGRLODS WUDW
F PRPHQWXOFHQWUDWGHRUGLQXOGRLODS WUDW
d) PRPHQWXOLQL LDOGHRUGLQXOGRLPLQXVPRPHQWXOLQL LDOGHRUGLQXOvQWkLODS WUDW e) momentulFHQWUDWGHRUGLQXOGRLPLQXVPRPHQWXOLQL LDOGHRUGLQXOXQXODS WUDW 31) Scala de interval: D DUHWRDWHFDUDFWHULVWLFLOHVFDOHORURUGLQDOHúLGHUDSRUW
b) DUH WRDWH FDUDFWHULVWLFLOH VFDOHL RUGLQDOH úL vQ SOXV GLVWDQ D VDX GLIHUHQ D GLQWUH GRX numereDOHVFDOHLDUHVHPQLILFD LHFRQFUHW
c)
HVWH R VFDO QXPHULF úL vQ SOXV UDSRUWXO GLQWUH GRX SXQFWH DOH VFDOHL HVWH LQGHSHQGHQW GHXQLWDWHDGHP VXU
G SUH]LQW PXOWHGLQFDUDFWHULVWLFLOHVFDOHLRUGLQDOH H PDLHVWHQXPLW úLVFDO GHUDSRUWVDXVFDO GLVFUHW
32) Într-R UHSDUWL LH QRUPDO
YDORDUHD ID
GH FDUH GLQ YDORULOH LQGLYLGXDOH VXQW PDL PLFL LDU
75% din valorile individuale sunt mai mari este: a) cuartila a doua; b) cuartila a treia; c) cuartila întâi; G YDORDUHDPRGDO
e) valoareaPHGLDQ
33) 2 DJHQ LH GH vQFKLULDW DXWRPRELOH KRW
U úWH V
timp de un an. Managerul firmei presupune c
-VL YkQG
DXWRPRELOHOH GXS XWLOL]DUHD DFHVWRUD
GLVWDQ DSDUFXUV GHPDúLQLLQIOXHQ HD] FRVWXOGH
vQWUH LQHUHDODXWRYHKLFXOHORUúLGHFLSUH XOGHYkQ]DU
e al acestora. Pentru a verifica presupunerea
VD VH vQUHJLVWUHD] SHQWUX GH PDúLQL GLVWDQ D SDUFXUV vQ XOWLPXO DQ PLL NP úL FRVWXO GH vQWUH LQHUHVXWHPLLOHL 6HDOF WXLHVFDVWIHOJUXSHGXS GLVWDQ DSDUFXUV VXEPLLNP
60 mii km, 60 - PLL NP úL VDX SHVWH PLL NP ÌQ XUPD VLVWHPDWL]
-
ULL GDWHORU VH RE LQ
XUP WRDUHOHLQIRUPD LL *UXSHGXS SDUFXUV
GLVWDQ D
&RVWXOvQWUH LQHULLVXWHPLLOHL
Total
PLLNP
5-7 16 10%
sub 40 40 - 60
7-9 32 25%
ÌQ JUXSD D WUHLD GXS GLVWDQ D SDUFXUV
9 - 11 12 35%
11 - 13 30%
60 100%
-80 mii km) s-au înregistrat date pentru 40 de
PDúLQLFRVWXOPHGLXGHvQWUH LQHUHILLQGOHLFXXQ FRHILFLHQWGH YDULD LHGHLDU vQ JUXSD D SDWUD úL SHVWH PLL NP V
-au îQFDGUDW GLQ PDúLQL FKHOWXLHOLOH WRWDOH DX IRVW
OHLLDUDEDWHUHDPHGLHS WUDWLF PLLOHL 'LVWDQ DSDUFXUV LQIOXHQ HD] YDULD LDFKHOWXLHOLORUGHvQWUH LQHUHvQSURSRU LHGH
a) 51,04%; b) 71,44%; c) 48,96%; d) 69,97%; e) 28,56%.
34) ÌQ XWLOL]DUHD PHWRGHL WDEHOXOXL GH FRUHOD LH SHQWUX DQDOL]D OHJ
WXULORU GLQWUH IHQRPHQH GDF
IUHFYHQ HOHVXQWDSUR[LPDWLYHJDOUHSDUWL]DWHvQLQWHULRUXOWDEHOXOXLDWXQFL D OHJ WXUDHVWHQHOLQLDU E OHJ WXUDHVWHOLQLDU GLUHFW F OHJ WXUDHVWHLQYHUV G OHJ WXUDHVWHGLUHFW H OHJ WXUDHVWHVODE VDXQXH[LVW OHJ WXU
35) Într-R VHULH VWDWLVWLF
între variabile.
vQWUH SULQFLSDOHOH WLSXUL GH PHGLL PHGLD DULWPHWLF PHGLD DUPRQLF
PHGLDS WUDWLF PHGLDJHRPHWULF H[LVW XUP WRDUHDUHOD
a) x h ≤ x g ≤ x ≤ x p ; b) x g ≤ x h ≤ x ≤ x p ;
ie:
c) x h ≤ x ≤ x p ≤ x g ; d) x ≤ x h ≤ x g ≤ x p ; e) x = x h = x g = x p GDF
VHULDHVWHSHUIHFWVLPHWULF
36) 3HQWUX R VHULH GH GLVWULEX LH GH IUHFYHQ H FX WHQGLQ ( d x ID GHDEDWHUHDWLS σ x ) este:
GH QRUPDOLWDWH DEDWHUHD PHGLH OLQLDU
a) d x > σ x ; b) d x = σ x ; 4 c) d x ≈ σ x ; 5 2 d) d x ≈ σ x ; 3 e) d x ≈ σ 2x . 37) VHQLWXOEUXWGLVSRQLELOODQLYHOXOHFRQRPLHLQD LRQDOHVHFDOFXOHD]
a) VN+Amortizarea; E 916ROGXOYHQLWXULORUGLQWUDQVIHUXULvQUDSRUWFXVWU LQ WDWHD
c) b) + Amortizarea; d) a) -6ROGXOYHQLWXULORUGLQWUDQVIHUXULvQUDSRUWFXVWU e) PIB - b).
38) 8QGLVWULEXLWRUGHVXFXULOLYUHD]
LQ WDWHD
FDUWRDQHGHFkWHVWLFOHúLFXQRDúWHSUREDELOLWDWHDS
FD
R VWLFO V VH VSDUJ SH GXUDWD WUDQVSRUWXOXL 'DF VH WUDQVSRUW GH FDUWRDQH QXP UXO FDUWRDQHORUvQFDUHVHYRUJ VLGRX
sau mai multe sticle sparte este de aproximativ:
a) 85; b) 14; c) 3960; d) 41; e) 40. &DUHGLQREVHUY ULOHVWDWLVWLFHSUHFL]DWHPDLMRVQXDXXQFDUDFWHUSHUPDQHQW D EXJHWHOHGHIDPLOLHVDXDQFKHWHOHLQWHJUDWHvQJRVSRG ULL
b) rapoartele statistice; c) statisticile fiscale; G vQUHJLVWU ULOHF V WRULLORUQDWDOLW H UHFHQV PLQWHOHVWDWLVWLFH
LLPRUWDOLW
LLHWF
TESTUL 6
1)
ÌQWUH3,%úL31%H[LVW QXPDLUHOD LD
a) b) c) d) e)
>; <; =;
≥; ≤ ≥.
2) Într-o serie de reparWL LH SH LQWHUYDOH IRUPDW
GXS R DQXPLW YDULDELO YDORDUHD VD PRGDO HVWH
LQIOXHQ DW GH
a)
OLPLWHOHLQIHULRDUHúLVXSHULRDUHDOHLQWHUYDOHORUH[WUHPH
b)
GHIUHFYHQ HOHGHDSDUL LHDOHLQWHUYDOHORUHJDOHVDXQHHJDOH
c)
GHP ULPHDHJDO VDXQHHJDO DLQWHUYDOHORUGHYDULD LH
d)
GHOLPLWDLQIHULRDU DLQWHUYDOXOXLPRGDO
e)
GHOLPLWDLQIHULRDU GHIUHFYHQ HOHLQWHUYDOXOXLPRGDOSUHPRGDOúLSRVWPRGDO
3) Într-XQ VSLWDO GLQ SDFLHQ LL LQWHUQD L P
QkQF UHJLP I U VDUH $OF WXLQG JUXSXUL GH FkWH
SDFLHQ LSUREDELOLWDWHDFDH[DFWSDFLHQ LV LQ UHJLPI U VDUHHVWH
a) b) c) d) e) 4)
0,015625; 0,2344; 0,9375; 0,50; 0,0468.
3UHFL]D LFDUHQXHVWHSULQFLSDO IXQF LHDLQGLFDWRULORUVWDWLVWLFL
a) GHP VXUDUH b) GHDQDOL] VDXVLQWH] c) GHYHULILFDUHDLSRWH]HORUúLVDXGHWHVWDUHDVHPQLILFD LHLSDUDPHWULORUXWLOL]D L d) de fundamentare a deciziilor; e) de estimare. 5)
3URGXVXO JOREDO EUXW FUHúWH vQWU R SHULRDG FX LDU SRQGHUHD FRQVXPXOXL LQWHUPHGLDU vQ
produsul global brut scade de la 64% la 60%. Produsul intern brut: a) FUHúWHFX b) scade cu 28,8%; c) FUHúWHFX d) FUHúWHFX e) FUHúWHFX
6)
ÌQWHVWDUHDLSRWH]HLVWDWLVWLFHSULYLWRDUHODSDUDPHWUXO³PHGLDSRSXOD LHL´
H0 : m = m0 Ha : m < m0
FkQGGDWHOHSURYLQGHODXQHúDQWLRQGHYROXPUHGXVUHJLXQHDFULWLF HVWHGDW GH
a) z < − zα ; b) z < − zα / 2 ; c) t < − tα , n ; d) t < − tα / 2, n ; e) t < − tα , n − 1 . 7)
&DUHGLQXUP WRDUHOHDILUPD LLSULYLQGPHGLDDULWPHWLF HVWHDGHY UDW
a)
VXPD S WUDWHORU WXWXURU DEDWHULORU LQGLYLGXDOH DOH WHUPHQLOR
r seriei de la media lor
DULWPHWLF HVWH]HUR
b)
P ULPHD PHGLHL DULWPHWLFH HVWH FXSULQV vQWUH [min úL [max GRDU GDF VHULD SUH]LQW R WHQGLQ
c)
FODU GHVLPHWULH
SHQWUXRVHULHGHGLVWULEX LHGHIUHFYHQ HPHGLDDULWPHWLF FDOFXODW SHED]DIUHFYHQ HORU
reGXVHGHFRULHVWHPDLPLF d)
GHFkWPHGLDVHULHLLQL LDOHGHFRUL
PHGLD SURGXVXOXL D GRX YDULDELOH DOHDWRDUH HVWH HJDO FX SURGXVXO PHGLLORU FHORU GRX
variabile; e)
SHQWUX R VHULH GH GLVWULEX LH GH IUHFYHQ H PHGLD FDOFXODW SH ED]D IUHFYHQ HORU UHODWLYH
eVWHHJDO 8)
FXPHGLDDULWPHWLF GHWHUPLQDW SHED]DIUHFYHQ HORUDEVROXWH
$QDOL]D IHQRPHQXOXL GH FRQFHQWUDUH GLYHUVLILFDUH QX DUH VHQV DWXQFL FkQG JUXSDUHD XQLW FROHFWLYLW
LORU
LLV
-a efectuat:
a) pe variante; b) SHLQWHUYDOHHJDOHGHYDULD LH c) GXS RFDUDFWHULVWLF GHVSD LX d) GXS RFDUDFWHULVWLF DOWHUQDWLY e) GXS RFDUDFWHULVWLF QHQXPHULF 9)
7LPSXOREVHUY ULLVDXDOFXOHJHULLGDWHORUVHDOHJH
a) b)
vQWRWGHDXQDvQSHULRDGDvQFDUHSRSXOD LDVWDWLVWLF SUH]LQW XQPDUHJUDGGHVWDELOLWDWH vQIXQF LHGHVFRSXOFHUFHW ULLúLDOREVHUY ULLVWDWLVWLFHGXS FD]FkQGSRSXOD LDVWDWLVWLF SUH]LQW VDX QX XQ JUDG PDUH GH VWDELOLWDWH GH H[HPSOX UHFHQV PkQWXO SRSXOD LHL REVHUYDUHDFRWD LLORUODEXUV DXQRUDF LXQLHWF
c) vQIXQF LHGHSRVLELOLW LOHLQIRUPDWLFHGH prelucrare a datelor culese; d) DWXQFLFkQGVHGRUHúWHV VHMXVWLILFHRDQXPLW DF LXQHGHMDGHFODQúDW e) ODvQWkPSODUHI U FULWHULLSUHFL]DWHúLDQDOL]DWHDSULRULF 10) Într-R FROHFWLYLWDWH VWDWLVWLF GDF GLYHUVLILFDUHD HVWH PD[LP úL HYLGHQW FRQFHQWUDUHD este PLQLP DWXQFLFRHILFLHQWXOGHFRQFHQWUDUH&RUUDGR-Gini este:
a) G=1;
1 ; n 1 c) G = ; n b) G =
d) G=0; e) G =
n.
11) ÌQFRQWXOPDFURHFRQRPLF³9HQLWXUL´UHVXUVHOHVHIRUPHD]
GLQ
a) $PRUWL]DUHúL3,1pp; b) PIBppúLVXEYHQ iile de exploatare; c) PIBppúLLPSR]LWHOHLQGLUHFWH d) Amortizare, PIBppúLVXEYHQ LLOHGHH[SORDWDUH e) $PRUWL]DUHDLPSR]LWHLQGLUHFWHúLLPSR]LWHSHLPSRUWXUL 12) 6
VHSUHFL]H]HFDUHGLQXUP WRDUHOHDILUPD LLQXHVWHDGHY UDW
a) b) c) d) e)
x = Me = Mo ; într-RUHSDUWL LHXQLPRGDO XúRUDVLPHWULF PHGLDQDVHSODVHD] vQWUHPHGLHúLPRG într-RUHSDUWL LHXQLPRGDO XúRUDVLPHWULF PHGLDVHSODVHD] vQWUHPRGúLPHGLDQ într-RUHSDUWL LHXQLPRGDO SR]LWLYvQFOLQDW F tre valorile mici x < Me < Mo ; într-R UHSDUWL LH XQLPRGDO SR]LWLY vQFOLQDW F WUH YDORULOH PDUL PRGXO VH VLWXHD] vQRULFHUHSDUWL LHVLPHWULF XQLPRGDO
OD
VWkQJDPHGLDQHLúLDPHGLHL
13) 8Q DQDOLVW HFRQRPLF VWXGLD] GLVWULEX LD ILUPHORU GXS cercetare-GH]YROWDUH 3HQWUX D YHULILFD LSRWH]D QRUPDOLW χ2úLRE LQHSHQWUXXQQXP
UGHJUDGHGHOLEHUWDWHO
SURFHQWXO GLQ YHQLWXUL FKHOWXLW SHQWUX LL HPSLULFH RE LQXWH HO XWLOL]HD] WHVWXO
YDORDUHD
χ 2calc = 18,30 . Probabilitatea
PD[LP FXFDUHVHJDUDQWHD] UH]XOWDWXOHVWH
a) b) c) d) e)
75%; 90%; 95%; 99%; 97,5%.
14) &DUHGLQXUP WRDUHOHDILUPD LLUHIHULWRDUHODFRHILFLHQWXOGHYDULD LHQXHVWHDGHY UDW a) HVWHXQLQGLFDWRUVLQWHWLFDOvPSU úWLHULL b) HVWHH[SUHVLDUHODWLY DDEDWHULLPHGLLS WUDWLFH c) YDORUL PLFL DOH FRHILFLHQWXOXL GH YDULD LH VHPQLILF XQ JUDG PDUH GH UHSUH]HQWDWLYLWDWH D mediei caracteristicii studiate; d) YDORULPLFLDOHFRHILFLHQWXOXLGHYDULD LHUHIOHFW RWHQGLQ DFFHQWXDW GHVLPHWULHDGLVWULEX LHL e) YDORUL PLFL DOH FRHILFLHQWXOXL GH YDULD LH UHIOHFW RPRJHQLWDWHD FROHFWLYLW LL GLQ SXQFWXO de vedere al caracteristicii studiate. 15) 2 FDUDFWHULVWLF
LPSRUWDQW GH FDOLWDWH SHQWUX VXFXULOH GH IUXFWH vPEXWHOLDWH HVWH SURSRU LD GH
FRQFHQWUDW QDWXUDO SH FDUH R FRQ LQ ÌQWU XQ SURFHV GH IDEULFD LH D XQHL P UFL GH VXFXUL
-
presupunem c
SURFHQWXOGHFRQFHQWUDWQDWXUDOHVWHDSUR[LPDWLYQRUPDOGLVWULEXLWFXPHGLD
úL FRHILFLHQWXO GH YDULD LH 6WLFOHOH FDUH FRQ LQ PDL SX LQ GH FRQFHQWUDW QDWXUDO VXQW
UHVSLQVH FDOLWDWLY 'DF GH VWLFOH VXQW YHULILFDWH OD FRQWUROXO FDOLWD
tiv pot fi respinse
aproximativ: a) b) c) d) e)
2112 sticle; 4224 sticle; 1056 sticle; 124 sticle; 248 sticle.
16) 3HQWUXFDUDFWHUL]DUHDSURFHVHORUGHSURGXF LHVXELHFWHOHHFRQRPLFHVHDJUHJ
a) SHVHFWRDUHLQVWLWX LRQDOH b) GXS IRUPDMXULGLF c) pe ramuri; d) QXHVWHQHFHVDU RDJUHJDUHVSHFLDO SHQWUXDFHVWVFRS e) DWkWSHVHFWRDUHLQVWLWX LRQDOHFkWúLSHUDPXUL 17) 0HGLDDULWPHWLF
DS WUDWHORUDEDWHULORULQGLYLGXDOHGHODWHQGLQ DORUFHQWUDO VHQXPHúWH
a) DEDWHUHPHGLHDEVROXW b) DEDWHUHPHGLHS WUDWLF c) dispersie; d) PHGLDO e) moment centrat de ordin trei. 18) Într-R úFRDO
JHQHUDO VH RUJDQL]HD] XQ WHVW GH YHULILFDUH D DSWLWXGLQLORU HOHYLORU SHQWUX
LQIRUPDWLF 'LVWULEX LDHOHYLORUGXS SXQFWDMXORE LQXWHVWHDSUR[LPDWLYQRUPDO 3ULPLLGLQ FHL PDL SX LQ vQFOLQD L VSUH DFHDVW GLVFLSOLQ RE LQ SkQ OD SXQFWH LDU FHL PDL SHUIRUPDQ L RE LQ úL SHVWH GH SXQFWH 'DF YDORDUHD PHGLDQ HVWH GH GH SXQFWH LDU FHL PDL PXO LGLQWUHHOHYLRE LQGHSXQFWHFRHILFLHQWXOOXL%RZOH\HVWH
a) b) c) d) e)
0,4; 0,53; 0,07; - 0,4; - 0,53.
19) PenWUXVWXGLXOFDOLW
LLSURGXF LHLIDEULFDWHvQVHULHvQWU RXQLWDWHHFRQRPLF VHREVHUY SHULRGLF
-
XQORWGHH[HPSODUHSUHOHYDWHGLQSURGXVHOHDIODWHODVIkUúLWXOODQ XOXLGHIDEULFD LH3RSXOD LD VWDWLVWLF LQYHVWLJDW HVWH
a) SURGXF LDWRWDO UHDOL]DW b) ansamblul loturilor de produse; c) lotul format prin prelevare; d) SURGXF LDQHWHUPLQDW e) SURGXF LDUHDOL]DW IDFWXUDW úLOLYUDW 20) 'DF
EHQHILFLDULORU
VH XUP UHúWH FXQRDúWHUHD FRPSRUWDPHQWXOXL vQ GRPHQLXO YHQLWXULORU FKHOWXLHOLORU úL
RSHUD LXQLORUILQDQFLDUHVXELHFWHOHHFRQRPLFHVHDJUHJ GXS FULWHULXO
a) b) c)
DFWLYLW
LLGHSXVH
LQVWLWX LRQDO GHUDPXU
d) IRUPDMXULGLF e) a)+b)+c)+d).
GHRUJDQL]DUH
21) 6DODULD LL XQHL ILUPHDX VDODULXO PHGLX PLL OHLFX R DEDWHUHPHGLH S WUDWLF D VDODULLORU mii lei. PatroQXO ILUPHL KRW U úWH V P UHDVF ILHFDUH VDODULX LQGLYLGXDO GH RUL 'LVSHUVLD QRLORUVDODULLID
GHVDODULXOPHGLXYDIL
a) 150; b) 22500; c) 29250; d) 253,5; e) 38025. 22) ÌQ PRGHOXO GH DQDOL]
GLVSHUVLRQDO XQLIDFWRULDO GLVSHUVLD FRUHFWDW GLQWUH JUXSH VH RE LQH
UDSRUWkQGYDULDQ DVLVWHPDWLF GLQWUHFHOHUJUXSH ODQXP UXOJUDGHORUGHOLEHUWDWHQRWDWFX³O´
Acest num r este: a) b) c) d) e)
l=n-1; l=n-r; l=r-1; l=n-r-1; l=n-2.
23) ÌQFD]XOLQGLFDWRULORUGHWLSFDOLWDWLYDJUHJDUHDVHUHDOL]HD]
SULQWU
-o:
a) RSHUD LHGHDGXQDUH b) oSHUD LHGHDGXQDUHVDXVF GHUH c) numai printr-RPHGLHDULWPHWLF d) numai prin calculul unei medii armonice; e) SULQFDOFXOXOXQHLP ULPLPHGLL 24) ,GHQWLILFD LFDUHGLQWUHDILUPD LLOHXUP a)
WRDUHUHIHULWRDUHODRELHFWXOREVHUY ULLHVWHIDOV
2ELHFWXO REVHUY ULL HVWH PXO LPHD GH IHQRPHQH GH PDV GHVSUH FDUH XUPHD] V VH FXOHDJ GDWHOHVWDWLVWLFH
b) c)
2ELHFWXOREVHUY ULLHVWHRPXO LPHGHXQLW
LVLPSOHVDXFRPSOH[HGHREVHUYDUH
3RSXOD LD VXSXV REVHUY ULL WUHEXLH GHOLPLWDW FD YROXP vQ WLPS úL vQ VSD LX LQGLIHUHQW GDF HDHVWHVWDWLF VDXGLQDPLF
d) e)
1XvQWRWGHDXQDRELHFWXOREVHUY ULLFRLQFLGHFXRELHFWXOFHUFHW ULL &KLDUGDF RELHFWXOREVHUY ULLHVWHELQHGHILQLWGXS FULWHULLFODUHHVHQ LDOHVWDELOHQXVH SRDWHDVLJXUDVXEQLFLRIRUP FRPSDUDELOLWDWHDGDWHORUG
25) &RUHF LDOXL6KHSSDUGVHDSOLF
e la o observare la alta.
GLVSHUVLHLFkQG
a) seria este pe variante; b) VHULDHVWHSHLQWHUYDOHQHHJDOHGHYDULD LH c) VHULDHVWHSHLQWHUYDOHHJDOHGHYDULD LH d) FkQGGLVWULEX LDHVWHDSUR[LPDWLYQRUPDO úLSUH]LQW e) FkQGVHULDHVWHELPRGDO
XQQXP UPDUH
de intervale egale;
26) 3UHFL]D LFDUHHOHPHQWHGLQFHOHSUH]HQWDWHPDLMRVQXHVWHRIXQF LHVSHFLILF
PHWRGHLJUXS ULL
FODVLILF ULLvQDFWLYLWDWHDVWDWLVWLF
a)
VLVWHPDWL]DUHD GDWHORU LQGLYLGXDOH SULQ UHVWUkQJHUHD QXP UXOXL GH
variante ale variabilei
de grupare; b) c) d) e)
IDFLOLWDUHDFDOFXOXOXLWXWXURULQGLFDWRULORUSULPDULúLGHULYD L VWUXFWXUDUHDSRSXOD LHLVWDWLVWLFHvQFODVHJUXSHRPRJHQH SUH]HQWDUHDúLGHVFULHUHDVWUXFWXULLSRSXOD LHLVWDWLVWLFH FDUDFWHUL]DUHDOHJ WXULORUVWDWL
27) Programul propriu-]LV DO REVHUY
stice dintre variabilele analizate.
ULL HVWH IRUPDW GLQ WRWDOLWDWHD FDUDFWHULVWLFLORU YDULDELOHORU
SHQWUXFDUHXUPHD] V VHFXOHDJ GDWHOHGHODXQLW
a)
vQ vQWUHE UL FDUH VX
LOHSRSXOD LHLVWDWLVWLFH(OVHFRQFUHWL]HD]
nt înscrise în formulare statistice la care se primesc obligatoriu
U VSXQVXULFXSULYLUHODQLYHOXOGHGH]YROWDUHVDXIRUPDORUGHPDQLIHVWDUH
b) într-R OLVW
GH YDULDELOH GHVSUH FDUH VH FXOHJ GDWHOH GLQ GRFXPHQWHOH SH FDUH XQLW
LOH GH
REVHUYDUHGRUHVFV OHSXQ ODGLVSR]L LH
c)
vQ vQWUHE UL vQVFULVH vQ FKHVWLRQDUH VDX DOWH IRUPXODUH VWDWLVWLFH DGUHVDWH OD WRDWH VDX OD R SDUWH GLQ XQLW
LOH SRSXOD LHL úL DOH F URU SRVLELOH U VSXQVXUL UHIOHFW IRUPHOH LQGLYLGXDOH
de manifestare ale fenomenelor; d) vQWUHE ULLQFOuse în chestionare sau în alte formulare statistice numai atunci când ele sunt DGUHVDWH GLUHFW WXWXURU XQLW
LORU GH REVHUYDUH VDX OD R SDUWH GLQ DFHVWHD úL DOH F URU
SRVLELOHU VSXQVXULUHIOHFW IRUPHOHLQGLYLGXDOHDOHIHQRPHQHORUGHPDV LQYHVWLJDWH
e) în variantele variabilelor precizate. 28) 3HQWUXGLVWULEX LDXQHLYDULDELOHDOHDWRDUH;VHFXQRDúWHYDORDUHDGLVSHUVLHLúLYDORDUHD momentului centrat de ordinul 4: 20876491. &RHILFLHQWXOOXL)LVFKHUSHQWUXP VXUDUHDEROWLULLDUHYDORDUHD
γ2 γ2 γ2 γ2 e) γ 2
a) b) c) d)
= −0,782 ; = 2,218 ; = 5,218 ; = 0,45 ; = −2,218 .
29) 6HH[FOXGGLQFDOFXOXOLQGLFDWRULORUPDFURHFRQRPLFLGHUH]XOWDWHWUDQ]DF LLOH a) b) c) d) e)
intersectoriale; bilaterale; unilaterale; intrasectoriale; de SLD
30) &RQWXOPDFURHFRQRPLF3URGXF LHDUHFDVROG a) b) c) d) e)
PINpp; PIBpf; PIBpp; VN; PNBpf.
31) 'LVWULEX LD HOHYLORU GLQ FODVD , D XQHL úFROL JHQHUDOH GXS media zece este: Nr. materii Nr. elevi VaORDUHDPHGLDQ a) b) c) d) e)
0 10
1 30
2 80
3 70
QXP UXO PDWHULLORU OD FDUH DX DYXW
4 50
5 20
DVHULHLHVWH
2 materii; 2,5 materii; 3 materii; 2,7 materii; 70 elevi.
32) 'LVWULEX LD XQHL YDULDELOH DOHDWRDUH ; HVWH SHUIHFW VLPHWULF GH PHGLH x = 20 'DF VH DGDXJ GRX XQLW LVWDWLVWLFHFXYDORULOHYDULDELOHLVWXGLDWe x1 úL[2 DWXQFLQRXDGLVWULEX LH a) b) c) d) e)
DUHDVLPHWULHSR]LWLY HVWHSHUIHFWVLPHWULF DUHDVLPHWULHQHJDWLY DUHILHDVLPHWULHSR]LWLY ILHDVLPHWULHQHJDWLY QXSUH]LQW DVLPHWULH
33) 1XVXQWFXSULQVHvQYDORDUHDSURGXF LHL a) serviciile statului; b) EXQXULOHGHFDSLWDOGLQSURGXF LHSURSULH c) autoconsumul; d) FKLULDDXWRLPSXV LSRWHWLF e) EXQXULOHSURGXVHúLFRQVXPDWHSHQWUXSURGXFHUHDDOWRUEXQXULúLVHUYLFLL 34) Atunci când datele provin dintr-XQ HúDQWLRQ GH YROXP UHGXV Q úL VH WHVWHD] prLYLQGSDUDPHWUXOPHGLDvQWUHJLLFROHFWLYLW L
LSRWH]D QXO
H0 : m = m0 Ha : m > m0
UHJLXQHDFULWLF HVWHGDW GH
a) z > zα ; b) z > zα / 2 ; c) t > tα ; n − 1 ; d) t > tα / 2 ; e) t > − tα − 2; n − 1 . 35) Aplicând modelul analizei
GLVSHULVRQDOH XQLIDFWRULDOH VH DFFHSW LSRWH]D FRQIRUP F UHLD
αVHvQGHSOLQHúWHFRQGL LD
IDFWRUXOGHJUXSDUHHVWHVHPQLILFDWLYGDF ODXQSUDJGHVHPQLILFD LH
a) Fcalc < Fα , n − 1, r − 1 ; b) Fcalc < Fα , r − 1, n − r ; c) Fcalc < Fα , r − 1, n − 1 ; d) Fcalc > Fα , r − 1, n − 1 ;
e) Fcalc > Fα , r − 1, n − r .
36) 2JUXS GHGHVWXGHQ LVXV LQHODGRX GLVFLSOLQHFkWHXQWHVWSHQWUXYHULILFDUHDFXQRúWLQ HORU Testele au punctaje diferite, iar rezultatele sunt: 25
- la testul A:
- la testul B:
∑ x 2Ai = 9000;
25
∑ x Ai = 450;
i =1 25
i =1 25
i =1
i =1
∑ x Bi2 = 425;
∑ x Bi = 100;
*UXSDGHVWXGHQ LHVWHPDLRPRJHQ GLQSXQFWXOGHYHGHUHDOFXQRúWLQ HORUDFXPXODWH
a) la disciplina A; b) la disciplina B; c) ODDPEHOHGLVFLSOLQHSUH]LQW DFHODúLJUDGGHRPRJHQLWDWH d) nu sunt sufLFLHQWHGDWHSHQWUXDILVWXGLDW RPRJHQLWDWHVHULLORU e) QXVHSRWFRPSDUDRPRJHQLW LOHODFHOHGRX GLVFLSOLQHGHRDUHFFHSXQFWDMHOHWHVWHORUDX fost diferite. 37) 3UREDELOLWDWHD FD R FRPSDQLH GH DVLJXU
UL V ILH LQXW V SO WHDVF R SROL
SHQWUX R SUREOHP
PHGLFDO PDMRU HVWH 'DF XQ JUXS GH GH SHUVRDQH DVLJXUDWH VXQW VHOHFWDWH vQWkPSO WRU SUREDELOLWDWHD FD DFHDVW FRPSDQLH V SO WHDVF FHO SX LQ R SROL
SHUVRDQHORU
selectate este: a) b) c) d) e)
0,8196; 0,1804; 0,1353; 0,8647; 0,001.
38) Valoarea individual pe scala:
³]HUR´DYDULDELOHL³P ULPHDH[WUDVXOXLGHFRQW´DUHVHPQLILFD LHFRQFUHW
a) RUGLQDO b) de rapoarte; c) de intervale; d) GLVFUHW e) FRQWLQX 39) 3HQWUX SDWUX ILOLDOH DOH XQHL VRFLHW L FRPHUFLDOH VWUXFWXUD FLIUHL GH DIDFHUL UHDOL]DWH úL LQGLFLL UHDOL] ULL programului la cifra de afaceri au fost:
Filiala A B C D
Structura cifrei de afaceri realizate (%) 20 40 30 10
,QGLFHOHUHDOL]
ULL
programului cifrei de afaceri 1,1 1,2 1,25 1,5
,QGLFHOHUHDOL] ULLSURJUDPXOXLFLIUHLGHDIDFHULSHvQWUHDJDVRFLHWDWHFRPHUFLDO DIRVW
a) b) c) d) e)
1,2625; 1,225; 1,2542; 1,2168; 1,2465.
TESTUL 7
1)
([SUHVLD VLQWHWL] ULL YDORULORU LQGLYLGXDOH DOH XQHL YDULDELOH VWDWLVWLFH vQWU
-un singur nivel estarea fenomenelor
UHSUH]HQWDWLYDWRWFHHDFHHVWHHVHQ LDORELHFWLYúLVWDELOvQDSDUL LDúLPDQLI GHPDV HVWHGDW GH
a) YDORDUHDORUPHGLDQ b) valoarea lor medial ; c) valoarea lor medie; d) FRHILFLHQWXOORUGHYDULD LH e) FDOFXOXOXQHLP ULPLUHODWLYHGHLQWHQVLWDWH 2)
3HULRDGDGHWLPSFkWIXQF LRQHD] XQDQXPLWWLSGHEDWHULL HVWHQRUPDO GLVWULEXLW FXRPHGLHGH GHRUHúLRGHYLD LHVWDQGDUGGHRUH3UREDELOLWDWHDFDREDWHULHV IXQF LRQH]HvQWUHúL
de ore este: a) b) c) d) e) 3)
0,5918; 0,4082; 0,8164; 0,1836; 0,7959.
'DF vQWU R VHULH GH GLVWULEX LH YDORULOH LQGLYLGXDOH VH VLPSOLILF GH N RU
serii este:
i, atunci dispersia noii
a) de k2RULPDLPLF ID GHGLVSHUVLDVHULHLLQL LDOH b) GHNRULPDLPDUHGHFkWGLVSHUVLDVHULHLLQL LDOH c) HJDO FXGLVSHUVLDVHULHLLQL LDOH d) de k2RULPDLPDUHID GHGLVSHUVLDVHULHLLQL LDOH e) GHNRULPDLPLF GHFkWGLVSHUVLDVHULHLLQL LDOH 4)
ÌQPRGHOXOGHDQDOL] GLVSHUVLRQDO XQLIDFWRULDO VHXWLOL]HD] WHVWXO³)´GDWGHUHOD LD
∑ (y i − y) r
=1 a) Fcalc = i
2
ni :
r −1
∑ ( y i − y) r
b) Fcalc =
∑ ∑ (yij − y i ) r
2
i =1 r m
m
2
i = 1 j =1
;
n−r
ni
∑ ∑ ( yij − y)
; 2
i =1 j =1
∑( r
c) Fcalc =
i =1
yi − y r −1
)
2
∑ ∑ (y j − y) r
ni :
m
i =1 j =1
n −1
2
;
∑ (y i − y) r
d) Fcalc = i =1
2
∑ ∑ ( yij − y i ) r
ni :
r −1
∑ ∑ ( yij − y i ) r
e) Fcalc =
m
i =1 j =1
m
2
i =1 j =1
2
;
n −1
∑ (y i − y) r
ni :
n−r
i =1
r −1
2
ni .
5) În teVWDUHD LSRWH]HL VWDWLVWLFH SULYLQG PHGLD SRSXOD LHL FkQG GDWHOH SURYLQ GH OD XQ HúDQWLRQ GH YROXPUHGXVQ úL
H 0 : m = m0 H a : m ≠ m0
UHJLXQHDFULWLF HVWHGDW GH
a) z < − zα sau z > zα ; b) z < − zα / 2 sau z > zα /2 ; c) t < − tα / 2, n sau t > t α / 2 ,n ;
d) t < − tα , n − 1 sau t > t α ,n −1 ; e) t < − t α / 2,n −1 sau t > t α / 2,n −1
6)
ÌQFDGUXOXQXLVWXGLXGHSLD
HIHFWXDWvQOXQDLDQXDULHV DXUP ULWSULQWUH
GH FRQVXPDWRUL DVXSUD FDOLW YDULDELODRSLQLHúLFX[i
-
altele opinia a 100
LL XQXL DQXPLW SURGXV XWLOL]DW vQ PRG FXUHQW 6H QRWHD] FX ;
opinia consumatorului i ( i = 1,100 ) intervievat. P HVWHIRUPDW GLQ:
3RSXOD LDVWDWLVWLF QRWDW FX
a) WR LFRQVXPDWRULL b) consumatorii români; c) FHLGHFRQVXPDWRULLQWHUYLHYD L d) FRQVXPDWRULLSRWHQ LDOL e) consumatorii din zona de sud-HVWD
ULL
9DULDELOD;GHILQLW vQSUREOHPD HVWH
a) FDOLWDWLY b) FDOLWDWLY c) QRPLQDO d) de timp; e) QXPHULF 8)
FRQWLQX GLVFUHW
&DUHGLQXUP WRDUHOHDILUPD LLQXHVWHDGHY UDW SHQWUXRVHULHVWDWLVWLF
a) b) c) d) e)
vQWUHTXDUWLODúLTXDUWLODVHJ VHVFGLQREVHUYD LLVLWXDWHvQFHQWUXOGLVWULEX LHL YDORDUHDTXDUWLOHLHVWHHJDO FXPHGLDQDGRDUSHQWUXRVHULHVLPHWULF YDORDUHDPHGLDQHLHVWHvQWRWGHDXQDHJDO FXYDORDUHDTXDUWLOHL SHQWUXRVHULHVLPHWULF DEDWHUHDLQWHUTXDUWLOLF HVWHQXO SHQWUXRVHULHVLPHWULF DEDWHUHDLQWHUTXDUWLOLF FXSULQGHGLQREVHUYD LL
9)
3HQWUXRGLVWULEX LHVLPHWULF
a) abaterileLQGLYLGXDOHVHFRPSHQVHD] GRDUODQLYHOXOvQWUHJLLFROHFWLYLW L b) abaterile individuale sunt nule; c) DEDWHUHDPD[LP SR]LWLY HVWHHJDO FXDEDWHUHDPD[LP QHJDWLY d) DEDWHULOHLQGLYLGXDOHVHFRPSHQVHD] DWkWSHWRWDOFkWúLODQLYHOXOFHQWUDOL]DWDOXQLW e) VXPDDEDWHULORULQGLYLGXDOHHVWHHJDO FXDPSOLWXGLQHDYDULD LHL 10) *UDGXOGHOLEHUWDWHHVWHXQFRQFHSWVWDWLVWLFFHGHVHPQHD]
LORU
a) QXP UXOGHHOHPHQWHGLQWU-o colectivitate; b) num rul de elemente dintr-o colectivitate minus unul; c) num rul de elemente necesare pentru a defini starea unui ansamblu; d) num rul de elemente independente necesare pentru a defini starea unui ansamblu; e) QXP UXOGHUHOD LLLQGHSHQGHQWHFDUHOHDJ HOHPHQWHOHXQXLDQVDPEOX 11) 'RX
YDULDELOH VWDWLVWLFH DX IRVW PRGHODWH vQWU R SRSXOD LH VWDWLVWLF FX Q XQLW
HFXD LHLOLQLDUHGHIRUPD
∑ (xi − x) n
2
y = 5 + 64 x ùWLLQGF
n
∑ (yi − y)
= 30;
i =1
2
-
L FX DMXWRUXO
= 1960 SHQWUX Q
XQLW
L VWDWLVWLFH DWXQFL LQWHUYDOXO GH
i =1
încredere pentru panta liniei de regresie, la o probabilitate de 95% este: a) b) c) d) e)
(63,53 ; 64,47); (4,53 ; 5,47); (58,92 ; 66,65); (61,35 ; 66,65); (58,92 ; 69,08).
12) 'LVSHUVLDXQHLFDUDFWHULVWLFLGHWLSDOWHUQDWLYHVWHPD[LP
FkQG
a) QXP UXOGHU VSXQVXULDILUPDWLYHHVWHHJDOFXQXP UXOGHU VSXQVXULQHJDWLYH b) WRDWHXQLW LOHFROHFWLYLW LLvQUHJLVWUHD] U VSXQVXULDILUPDWLYH c) WRDWHXQLW LOHFROHFWLYLW LLvQUHJLVWUHD] U VSXQVXULQHJDWLYH d) WRDWHXQLW LOHFROHFWLYLW LLvQUHJLVWUHD] ILHU VSXQVXULQHJDWLYHILHU VSXQVXULSR]LWLYH e) nu se poate preciza în ce caz dispersia unei caracteristiFLDOWHUQDWLYHHVWHPD[LP 13) 'HQVLWDWHDGHUHSDUWL LHDYDULDELOHLDOHDWRDUHQRUPDOHGHPHGLH x = 20,9 úLGLVSHUVLHHVWHGHVFULV a) f ( xi ) = b) f ( xi ) = c) f ( xi ) = d) f ( xi ) = e) f ( xi ) =
1 2π
⋅e
−
1 17,5 2π 1 17,5 2π
1 4,18 2π 1 4,18 2π
20,9 35
⋅e ⋅e
⋅e ⋅e
2
−
−
; 1 2⋅17,5
2
( xi − 20,9 )2
1 ( xi − 20,9 )2 2⋅17 ,5
;
;
−
1 ( xi − 20,9 )2 2⋅4,18 ;
−
1 ( xi − 20,9 )2 2⋅17,5
.
GH
14) 0HGLDDUPRQLF a) b) c)
VHGHILQHúWHFD
PHGLDDULWPHWLF FDOFXODW GLQLQYHUVHOHYDORULORULQGLYLGXDOHvQUHJLVWUDWH YDORDUHDLQYHUV DPHGLHLDULWPHWLFHDWHUPHQLORUVHULHL YDORDUHD
LQYHUV
D
PHGLHL
DULWPHWLFH
FDOFXODW
GLQ
LQYHUVHOH
S WUDWHORU
YDORULORU
individuale înregistrate; d) e)
YDORDUHDLQYHUV DPHGLHLDULWPHWLFHFDOFXODW GLQLQYHUVHOHYDORULORULQGLYLGXDOH YDORDUHDFDUHGDF DUvQORFXLWHUPHQLLVHULHLQXDUPRGLILFDVXPDORU
15) ,QGLFDWRUXO ³HQHUJLD caracterizarea:
LQIRUPD LRQDO
2QLFHVFX´
HVWH
XWLOL]DW
vQ
DQDOL]D
VWDWLVWLF
SHQWUX
a) asimetriei; b) dispersiei; c) QRUPDOLW LLGLVWULEX LHL d) FRQFHQWU ULL e) WHQGLQ HLFHQWUDOH 16) 'LUHFWRUXOXQXLSRVWGHUDGLRFRPDQG
RFHUFHWDUH VWDWLVWLF vQVFRSXOGHWHUPLQ ULL DXGLHQ HLGH
FDUHVHEXFXU SRVWXOV X&HUFHW WRUXOFXOHJHSHXQHúDQWLRQGDWHSULYLQGQXP UXOGHRUHDXGLDWH úL DIO F GLQ SHUVRDQH DVFXOW SRVWXO GH UDGLR PDL SX LQ GH GRX RUH vQWUH úL RUH vQWUHúLRUHvQWUHúLRUHLDUUHVWXOSHVWHRUH1XP UXOPHGLXGHRUHGHDXGL LH SHRSHUVRDQ GLQHúDQWLRQHVWH
a) b) c) d) e)
4,8 ore; 4,7 ore; 6 ore; 4,2 ore; 4,6 ore.
17) 6 VH SUHFL]H]H FDUH GLQ XUP Poisson: a) pi = b) pi =
WRDUHOH GLVWULEX LL GH SUREDELOLWDWH GHVFULH R YDULDELO DOHDWRDUH
10! 0,9 xi 0,110− xi (xi=0, 1, 2, … , 10); xi !⋅ (10 − x i )!
(0,5) xi e −0,5
(xi=0, 1, 2, 3, … );
xi !
c) pi = C6xi ⋅ 0,2 ⋅ 0,8 6− xi d) pi =
(xi=0, 1, 2, … , 6);
x i ! e − xi
(xi=0, 1, 2, 3, … )
(0,5) xi
e) f ( xi ) =
1 31 , 2π
⋅e
−
( xi − 20,9)2 2⋅9 , 61
.
18) 3HQWUX R FROHFWLYLWDWH GH Q XQLW L VLVWHPDWL]DWH FRQFRPLWHQW vQ U JUXSH GXS YDORULOH caracteriVWLFLL ; FRQVLGHUDW FDUDFWHULVWLF HVHQ LDO GH LQIOXHQ úL vQ P JUXSH GXS YDORULOH FDUDFWHULVWLFLLDQDOL]DWH<LQIOXHQ DIDFWRUXOXL;HVWHP VXUDW GH
a) b) c)
vPSU úWLHUHDYDORULORULQGLYLGXDOHGLQILHFDUHJUXS vQMXUXOPHGLHLGHJUXS vPSU úWLHUHDYDORULORULQGLYLGXDOHGLQILHFDUHJUXS vQMXUXOPHGLHLJHQHUDOHDFROHFWLYLW vPSU úWLHUHDPHGLLORUGHJUXS vQMXUXOPHGLHLJHQHUDOHDFROHFWLYLW
LL
LL
d) e)
vPSU úWLHUHDYDORULORULQGLYLGXDOHvQMXUXOPHGLHLPHGLLORUGHJUXS vPSU úWLHUHDPHGLHLPHGLLORUGHJUXS ID
19) ÌQPRGHOXOGHDQDOL] a)
m
i =1 j =1 r
b)
∑ ( y i − y)
i =1 r
2
∑ (y i − y)
c) i =1
2
d)
;
r −1
e)
m
2
;
n −1
∑ ∑ ( yij − y ) m
;
ni
i =1 j =1 r
2
ni ;
∑ ∑ ( yij − y ) r
LL
GLVSHUVLRQDO XQLIDFWRULDO YDULDQ DIDFWRULDO VLVWHPDWLF HVWH
∑ ∑ ( yij − y i ) r
GHPHGLDJHQHUDO DFROHFWLYLW
2
.
i =1 j =1
20) În testarea ipotezei statistice
H 0 : m ≥ 100
H a : m < 100
XWLOL]kQGWHVWXO]VHRE LQHYDORDUHDWHVWXOXL]
a) b) c) d) e)
-1,11. Nivelul de încredere al testului este:
86,65%; 36,65%; 13,35%; 26,70%; 73,30%.
21) Într-un proces de testare a ipotezelor statistice, eroarea de genul al doilea este: a) HURDUHDSHFDUHRIDFHPDFFHSWkQGLSRWH]DQXO FkQGHDHVWHDGHY UDW b) HURDUHDSHFDUHRIDFHPDFFHSWkQGLSRWH]DDOWHUQDWLY FkQGHDHVWHIDOV c) HURDUHDSHFDUHRIDFHPDFFHSWkQGLSRWH]DQXO FkQGHDHVWHIDOV d) eroarea pe FDUHRIDFHPHOLPLQkQGLSRWH]DQXO FkQGHDHVWHDGHY UDW e) HURDUHDSHFDUHRIDFHPHOLPLQkQGLSRWH]DDOWHUQDWLY DWXQFLFkQGHDHVWHIDOV
22) ÌQ XWLOL]DUHD PHWRGHL UHJUHVLHL SHQWUX VWXGLXO GHSHQGHQ HL GLQWUH YDULDELOH PRGHOXO GH IRUPD
y=α + a) b) c) d) e)
1 β + ε este un model: x
liniar; H[SRQHQ LDO
logaritmic; hiperbolic; parabolic.
23) 'LVSHUVLDYDORULORUXQHLYDULDELOHDOHDWRDUH;ID a) b) c) d) e) 24) Un
GHRFRQVWDQW DHVWHPLQLP FkQG
a = 0;
a = x; pentru orice a; a = ∑ xi ; a = xmax.
VLVWHP DO XQXL YHKLFXO VSD LDO WUHEXLH V IXQF LRQH]H FRQWLQXX SHQWUX FD QDYD V UHLQWUH vQ
VSD LX 2 FRPSRQHQW D VLVWHPXOXL IXQF LRQHD] FRUHVSXQ] WRU GLQ WLPS 3HQWUX D DVLJXUD EXQD IXQF LRQDUH D VLVWHPXOXL VXQWPRQWDWH SDWUX FRPSRQHQWH VLPLODUH vQ DúDIHO vQFkW VLVWHPXO IXQF LRQHD] GDF FHO SX LQ R FRPSRQHQW OXFUHD] &RPSRQHQWHOH RSHUHD] LQGHSHQGHQW 3UREDELOLWDWHDFDVLVWHPXOV FDG HVWH
a) 0,05%; b) 5%; c) 15%; d) 52,20%; e) 0,5220%. 25) 3HQWUXRVHULHGHUHSDUWL LHGHIUHFYHQ HPHGLDS r
a) x p =
∑ (x n )
2
i i
i =1
;
r
∑n
i
i =1
r
b) x p =
∑x n
2 i i
i =1 r
;
∑n
i
i =1 r
c) x p =
∑ (x n )
2
i i
i =1
r
∑ ni i =1
r
d) x p =
∑x n i =1 r
2 i i
;
∑n
i
i =1
r
e) x p =
∑x n i =1 r
i
∑n i =1
i
. i
;
WUDWLF VHFDOFXOHD] FD
26) 'RX
JUXSH GH VWXGHQ L FX HIHFWLYH GH úL UHVSHFWLY GH SHUVRDQH DX VXV LQXW XQ WHVW GH
FXOWXU JHQHUDO 3ULPDJUXS DRE LQXWPHGLDLDUDGRXD1RWDPHGLHSHDQVDPEOXOFHORU GRX JUXSHHVWH
a) b) c) d) e)
8,14; 8,10; 8,12; 8,00; 8,09.
27) Într-R FROHFWLYLWDWHD VWDWLVWLF
VLVWHPDWL]DW vQ U JUXSH GXS YDULD LD FDUDFWHULVWLFLL GH JUXSDUH ;
úLvQPJUXSHGXS YDORULOHYDULDELOHLDQDOL]DWH<H[LVW vQWRWGHDXQDUHOD LD
2
a) σ = σ i2 + δ 2 ; 2
b) σ ≥ δ 2 ; σ i2 2 ∑ c) σ = ; r 2
d) σ ≤ σ 2 ;
∑∑ (y r
e) σ 2 =
m
i =1 j =1
r
)
2
j
− y i nij
.
m
∑∑ n i =1 j =1
ij
28) Într-R FROHFWLYLWDWHD GH VDODULD L VLVWHPDWL]DW
GXS IDFWRUXO GH JUXSDUH ; QXP UXO RUHORU
OXFUDWH vQ JUXSH úL GXS YDULDELOD GHSHQGHQW VDODULXO vQ JUXSH DSOLFkQGX DQDOL]
ST
GLVSHUVLRQDO
V D
-
RE LQXW
YDULDQ D
VLVWHPDWLF
61
úL
-se modelul de
YDULDQ D
WRWDO
9DORDUHDFDOFXODW DUDSRUWXOXL)SHQWUXXWLOL]DUHDWHVWXOXLFXDFHODúLQXPHHVWH
a)Fcalc=81,875; b) Fcalc=73,23; c) Fcalc=1,25; d) Fcalc=61,09; e) Fcalc=36,94. 29) În testarea ipotezei statistice
H 0 : m ≥ 100
H a : m < 100
VHRE LQHYDORDUHDWHVWXOXLVWDWLVWLF]
-1,11. 3UDJXOGHVHPQLILFD LHDOWHVWului este: a)0,3665; b) 0,1335; c) 0,267 ; d) 0,06675; e) 0,43325.
30) Într-un proces de testare a ipotezelor statistice, eroarea de genul întâi este: a) HURDUHDSHFDUHRIDFHPDFFHSWkQGLSRWH]DQXO FkQGHDHVWHDGHY UDW b) eroarea pe care o facem acceptând ipoteza nXO DWXQFLFkQGHDHVWHIDOV c) HURDUHDSHFDUHRIDFFHPDFFHSWkQGLSRWH]DDOWHUQDWLY FkQGHDHVWHDGHY UDW d) HURDUHDSHFDUHRIDFHPHOLPLQkQGLSRWH]DQXO DWXQFLFkQGHDHVWHDGHY UDW e) HURDUHDSHFDUHRIDFHPHOLPLQkQGLSRWH]DDOWHUQDWLY DWXQFLFkQGHDHVWHDGHY 31) 6
UDW
VH SUHFL]H]H FDUH GLQ XUP WRDUHOH PHWRGH GH FDUDFWHUL]DUH D OHJ WXULORU GLQWUH YDULDELOHOH
VWDWLVWLFHQXVHvQFDGUHD] vQFDWHJRULD³PHWRGHORUVLPSOH´
a) metoda seriilor interdependente; b) PHWRGDJUXS ULORU c) PHWRGDJUDILF d) PHWRGDFRUHOD iei; e) PHWRGDWDEHOXOXLGHFRUHOD LH
TESTUL 8 1) Prin AUDIT-ul financiar efectuat în luna ianuarie 1998 la S.C. “ICS” SRL s-D FRQVWDWDW F vQ IDFWXULOH HODERUDWH vQ H[LVW DQXPLWH HURUL vQ FDOFXOXO 79$-XOXL FDUH DX DYXW GUHSW VXUV QHFXQRDúWHUHD PHWRdologiei de calcul a TVA-XOXL OD XQHOH SURGXVH DSUR[LP UL HURQDWH GHIHF LXQLDOHPLMORFXOXLWHKQLFGHFDOFXOHWF 3RSXOD LDVWDWLVWLF VWXGLDW HVWH
a) ansamblul facturilor elaborate de S.C. “ICS” SRL; b) DQVDPEOXOSURGXVHORUúLVHUYLFLLORUUHDOL]DWHGH6&³,&6´65/SkQ OD;,, c) DQVDPEOXO SURGXVHORU úL VHUYLFLLORU UHDOL]DWH GH 6& ³,&6´ 65/ GHVI FXWH SH SLD
úL
IDFWXUDWHSkQ OD;,,
d)
DQVDPEOXO SURGXVHORU úL VHUYLFLLORU UHDOL]DWH SHQWUX D IL GHVI FXWH SH SLD
SRL, facturateSkQ e)
DQVDPEOXO IDFWXULORU HODERUDWH GH 6& ³,&6´ 65/ SkQ OD ;,, SHQWUX SURGXVHOH úLVHUYLFLLOHUHDOL]DWHúLGHVI FXWHSHSLD
2)
GH 6& ³,&6´
OD;,,úLODFDUHVHSHUFHSH79$
&DOFXOXODPSOLWXGLQLLYDULD LHLYDORULORULQGLYLGXDOHDUHVHQVSHQWUX
a) serii statistice numerice formate pe variante; b) VHULLVWDWLVWLFHIRUPDWHGXS RYDULDELO DOWHUQDWLY c) VHULLVWDWLVWLFHIRUPDWHSHLQWHUYDOHHJDOHGHYDULD LH d) VHULLVWDWLVWLFHIRUPDWHSHLQWHUYDOHQHHJDOHGHYDULD LH e) orice tip de serie. 3) Pentru o colectivitDWH GH Q XQLW L FDUH DX IRVW VWUXFWXUDWH FRQFRPLWHQW vQ r JUXSH GXS YDORULOH FDUDFWHULVWLFLL ; úL vQ mJUXSH GXS YDORULOH FDUDFWHULVWLFLL < PHGLD FDUDFWHULVWLFLL < SH vQWUHDJD colectivitate ( y QXVHFDOFXOHD] m
a) y =
∑y n j =1 m
j .j
;
∑n
.j
j =1
r
b) y =
∑y n i =1 r
i. i .
;
∑n
i.
i =1 r m
∑∑ y n
j =1 c) y = i =1r m
ij
ij
;
∑∑ n
ij
i =1 j =1 r
m
∑∑ y n
j =1 d) y = i=1 n
ij
ij
;
r
e) y =
∑y n i =1 r
i. i .
∑n i =1
i.
.
FD
4)
ÌQ DQXO LQGLFHOH PHGLX OXQDU DO SUH XULORU GH FRQVXP OD VHUYLFLL D IRVW SHQWUX SHULRDGD
ianuarie-DXJXVWúLSHQWUXSHULRDGDDXJXVW-decembrie 1,0319. Indicele mediu lunar pe anul 1994 a fost: a) b) c) d) e) 5)
1,0505; 1,0474; 1,0435; 1,0436; 104,35%.
3HQWUX GRX YDULDELOH VWDWLVWLFH ; úL < vQWUH FDUH H[LVW R GHSHQGHQ JUDILF V
OLQLDU XWLOL]kQG PHWRGD
-au calculat:
σ 2x = 9043;
cov( x , y ) = −2392 ,8;
y = 37;
x = 364.
(FXD LDGHUHJUHVLHFDUHPRGHOHD] GHSHQGHQ DGLQWUHFHOHGRX YDULDELOHHVWH
a) b) c) d) e) 6)
y = 133,3 + 0,2646x ; yˆ = 133,3 − 0,2646 x ; yˆ = 0,2646 + 133,3 x ; yˆ = 1412,92 − 3,78 x ; yˆ = −1338,92 − 3,78 x .
ÌQ UHSDUWL LD ELQRPLDO FX Q REVHUYD LL S
- probabilitatea succesului, q - probabilitatea
LQVXFFHVXOXLIUHFYHQ DDNVXFFHVHvQ1VHULLHVWH
a) q n − k p k ; b) Cnk q n − k p k ; c) Cnk p n − k q k ; d) N ⋅ C nk q n − k p k ; e) N ⋅ q n − k p k . 7)
ÌQVWXGLXOPLúF ULLQDWXUDOHDSRSXOD LHLVHDQDOL]HD] SULQWUHDOWHOHúLYDULDELOD³UDQJXOQ VFXWXOXL YLX´ÌQLDQXDULHvQ5RPkQLDUHSDUWL LDGXS DFHDVW YDULDELO VHSUH]LQW DVWIHO
5DQJXOQ
VFXWXOXLYLX
1XP
UGHQRXQ
Primul
VFX L
139958
Al doilea
64897
Al treilea
19812
Al patrulea
9657
Al cincilea
5650
$OúDVHOHD
3966
$OúDSWHOHD
2322
Al 8-OHDúLSHVWH
3722
Sursa: Anuarul statistic al României, CNS, 1994, p.126
Datele prezentate mai sus sunt: a) b) c) d) e) 8)
individuale; grupate; de stoc; de flux; agregate.
3HQWUX GRX YDULDELOH VWDWLVWLFH GHSHQGHQWH ; úL < FX \ XQLW
I[ DX IRVW FXOHVH GDWH GH OD GH
LVWDWLVWLFHúLvQXUPDSUHOXFU ULLGDWHORUV DRE LQXWFRHILFLHQWXOGHFRUHOD LHU
-
-0,82.
&RHILFLHQWXOGHFRUHOD LHU
a) HVWHVHPQLILFDWLYVWDWLVWLFODXQSUDJGHVHPQLILFD LHα=0,0005; b) nu este semnificativ statistic; c) este semnificativ statistic doar pentru cel mult un nivel de încredere de 1-α=0,90; d) QXHVWHVHPQLILFDWLYVWDWLVWLFODXQSUDJGHVHPQLILFD LHα=0,010; e) DUHRYDORDUHFDUHQXSRDWHILWHVWDW SHQWUXQLFLXQSUDJGHVHPQLILFD LH 9)
)UHFYHQ HOHUHGXVHODXQLWDWHVHFDOFXOHD]
a) vQFD]XOUHSDUWL LLORUSHLQWHUYDOHQHHJDOHSHQWUXDVLJXUDUHDFRPSDUDELOLW LLIUHFYHQ HORU b) SHQWUXDVWXGLDSRQGHUHDXQLW LORUVWDWLVWLFHGLQWU-RJUXS vQWRWDOXOFROHFWLYLW LLVWXGLDWH c) pentru a detHUPLQD QXP UXO XQLW LORU FDUH DX YDORDUHD LQGLYLGXDO VLWXDW SkQ OD XQ anumit nivel al caracteristicii; d) SHQWUXDVWXGLDVWUXFWXUDXQHLVHULLGHGLVWULEX LH e) SHQWUX D VWXGLD QXP UXO XQLW LORU VWDWLVWLFH FDU DX YDORULOH LQGLYLGXDOH VLWXDWH SHVWH XQ anumit nivel al caracteristicii. 10) 3UHVXSXQHP F SHUHFKL
12
VXPD
∑ ( yi − y i )
i =1
a) b) c) d) e)
vQ XUPD DSOLF ULL PHWRGHL GH UHJUHVLH OLQLDU V
2
S WUDWHORU
DEDWHULORU
YD
lorilor
-a calculat, pentru 12 valori empirice de la valorile ajustate
= 0,507 . Atunci, s e2 HVWLPDWRUXOGLVSHUVLHLDEDWHULORUvQWkPSO
ε, este:
WRDUH
0,0507; 0,04225; 0,04609; 0,2252; 0,2055.
11) 'LVSHUVLDFDOFXODW
ID
GHRFRQVWDQW
a este, comparatLYFXGLVSHUVLDFDOFXODW
a) de aRULPDLPLF b) mai mare de a2 ori; c) PDLPLF FXS WUDWXOGLVWDQ HLGLQWUHPHGLHúLFRQVWDQWDa; d) mai mare cu a2; e) PDLPDUHFXS WUDWXOGLVWDQ HLGLQWUHPHGLHúLFRQVWDQWDa.
ID
GHPHGLH
12) 2YDULDELO DOHDWRDUH;DUHRGLVWULEX LHQRUPDO care P ( x ≤ x 0 ) = 0,8413 este: a) 54,23; b) 45,77; c) 53; d) 59; e) 46. 13) 3HQWUX YHULILFDUHD QRUPDOLW variabilei χ2 are forma: r
2 a) χ calc =
b) χ
∑ (n i =1
2 c) χ calc
, pentru
LL UHSDUWL LLORU HPSLULFH XWLOL]kQG WHVWXO
χ2 YDORDUHD FDOFXODW
D
− npi )
2
i
npi
; 2
n − npi ; = ∑ i npi i =1 r n − npi =∑ i ; npi i =1 r
2 calc
GHPHGLHúLGLVSHUVLH9DORUHD[0
r
2 d) χ calc =∑ i =1 r
2 e) χ calc =∑ i =1
ni − npi ; (npi )2
(ni − npi )2 . npi
14) ÌQ FDGUXO PHWRGHORU JHQHUDOH GH DERUGDUH úWLLQ LILF
D IHQRPHQHORU HFRQRPLFR
-sociale, un loc
LPSRUWDQWvORFXS DEVWUDFWL]DUHDVXFFHVLY LQGXF LDúLGHGXF LD$FHVWHPHWRGH
a) nu pot fi utilizate într-XQ GHPHUV VWDWLVWLF GHRDUHFH RSHUHD]
FX GDWH FRQFUHWH RE LQXWH
SULQREVHUY ULWRWDOHúLSDU LDOH
b)
VXQWXWLOL]DWHvQVWXGLXOVWDWLVWLFDOIHQRPHQHORUGHPDV vQWUXFkWSHQWUXDVHUH LQHQXPD
i
FHHD FH HVWH HVHQ LDO úL WLSLF WUHEXLH V VH HOLPLQH DVSHFWHOH vQWkPSO WRDUH úL QHHVHQ LDOH GH OD SDUWLFXODUXO RE LQXW SULQ REVHUYDUHD vQUHJLVWUDUHD YDORULORU HPSLULFH VH WUHFH
inductiv spre ceea ce este în general valabil pentru întregul ansamblu, etc.; c)
QXSRWILXWLOL]DWHGHVWDWLVWLF vQWUXFkWvQRULFHFHUFHWDUHQXVHSRUQHúWHGHODLSRWH]HFDUH
ar trebui verificate; d) e)
VXQWXWLOL]DWHQXPDLvQVWXGLXOUHSDUWL LLORUVWDWLVWLFHXQL úLPXOWLGLPHQVLRQDOH VXQWXWLOL]DWHQXPDLGDF VXQWRUJDQL]DWHVRQGDMH
statistice.
15) Analizate la nivelul unui ansamblu, formele individuale de manifestare ale fenomenelor de PDV SDU DVHP Q WRDUH vQWUH HOH ILLQG JHQHUDWH GH FDX]H HVHQ LDOH FRPXQH VH VXSXQ DFHOHLDúL OHJLGHDSDUL LHúLGH]YROWDUH$FHDVW OHJHDF LRQHD]
a) stDWLFFkQGIHQRPHQHOHVXQWFLUFXPVFULVHODDFHODúLVSD LXúLDFHHDúLIRUP
GHRUJDQL]DUH
GDUvQFRQGL LLGHWLPSGLIHULWH
b) GLQDPLFFkQGIHQRPHQHOHVXQWGHOLPLWDWHvQDFHODúLVSD LXVXQWvQUHJLVWUDWHvQDFHOHDúLXQLW LGHWLPS c) atât static, când fenomenHOH GH PDV VXQWFLUFXPVFULVHvQDFHOHDúL FRQGL LLGH WLPS FkWúL GLQDPLF FkQG IHQRPHQHOH VXQW GHOLPLWDWH vQ VSD LX úL RUJDQL]DWRULF GDU vQUHJLVWUDWH vQ XQLW
LGHWLPSGLIHULWH
d) exclusiv dinamic, când se face ipoteza c fenomenele au fost înregistrate lD DFHOHDúL PRPHQWHGHWLPSYDULDELOHILLQGVSD LXOúLIRUPDGHRUJDQL]DUH
e)
VWDWLF GHRDUHFH GLQDPLF QX SRDWH DF LRQD vQWUXFkW UHOD LLOH GH FDX]DOLWDWH GLQWUH
fenomenele sociale nu au un caracter dinamic.
16) 2 YDULDELO
DOHDWRDUH ; GLVWULEXLW QRUPDO úL FX REOLFLWDWH PRGHUDW DUH GLQ YDORUL VLWXDWH
vQ FHQWUXOGLVWULEX LHLFXSULQVHvQWUH úLFRHILFLHQWXOGHYDULD LHHVWH LDUYDORDUHD PRGDO $VLPHWULDHVWH
a) PRGHUDWSR]LWLY b) PRGHUDWQHJDWLY c) HJDO FX]HUR d) nu se poate preciza felXOúLP ULPHDDVLPHWULHL e) HJDO FXDPSOLWXGLQHDVHPLLQWHUTXDUWLOLF 17) $EDWHUHDPHGLHLQWHUTXDUWLOLF
VHFDOFXOHD] FD
a) Q3 − Q1 ; Q − Q1 b) 3 ; 2 Q − Q1 c) 2 ; 2 (Q3 − Me )+ (Q1 − Me ) ; d) 2 e) 2(Q2 − Q1 ). 18) Pentru dou
YDULDELOHVWDWLVWLFHDF URUWHQGLQ
SULQ HFXD LD GH UHJUHVLH
DGHSHQGHQ HLVWDWLVWLFH\
I[ DIRVWPRGHODW
y = 25 − 0,7 x , se cunosc dispersiile σ 2x = 2603,04 úL σ 2y = 1896,6 .
&RHILFLHQWXOGHFRUHOD LHDUHYDORDUHD
a) b) c) d) e)
0,82; 0,96; -0,96; -0,82; -0,597.
19) 3UREDELOLWDWHDFDYDORULOHXQHLYDULDELOHDOHDWRDUHQRUPDOHV RULDEDWHUHDPHGLHS WUDWLF GHRSDUWHúLGHDOWDID
a) b) c) d) e)
VHVLWXH]HODRGLVWDQ
5%; 0,05%; 2,5%; 47,50%; 97,5%.
20) Un grup de DQJDMD L HVWHDOHV GLQWU-R FRPSDQLH vQ VFRSXO GH D GHWHUPLQD QXP VXV LQVLQGLFDWXOFRPSDQLHL3UHVXSXQHPF GLQWR LDQJDMD LLVXV LQVLQGLFDWXO 3UREDELOLWDWHDFDPDLSX LQGHDQJDMD LGLQFHLV VXV LQ VLQGLFDWXOHVWH
a) b) c) d) e)
PDLPDUHGH
GHPHGLHHVWH
61,78%; 38,22%; 83,28%; 21,50%; 16,72%.
UXO FHORUFDUH
21) 'DF
YDORULOHXQHLFDUDFWHULVWLFLVXQWPLFúRUDWHFXFRQVWDQWD
a) b) c) d) e)
a, atunci dispersia noii serii este:
HJDO FXGLVSHUVLDVHULHLLQL LDOH PDLPDUHGHFkWGLVSHUVLDVHULHLLQL LDOHFXS WUDWXOGLVWDQ HLGLQWUHPHGLHúLFRQ
stanta a;
PDLPLF GHFkWGLVSHUVLDVHULHLLQL LDOHFXS WUDWXOGLQWUHPHGLHúLFRQVWDQWD
a;
PDLPLF GHFkWGLVSHUVLDVHULHLLQ LDOHFXFRQVWDQWD
a; PDLPDUHGHFkWGLVSHUVLDVHULHLLQL LDOHFXFRQVWDQWDa.
22) Patronul unei firme ce vinde autoturisme presupune F UHOD LD GLQWUH QXP UXO GH DXWRWXULVPH vândute într-R]L< úLQXP UXOGHYkQ] WRULFHOXFUHD] vQVDORQXOGHSUH]HQWDUHúLvQVHFWRUXOGH SXEOLFLWDWH D SURGXVXOXL ; SRDWH IL PRGHODW SULQWU-R OLQLH GUHDSW 'DWHOH FXOHVH SHQWUX ]LOH sunt: xi yi
6 20
6 18
4 10
2 6
3 11
Atunci: a)
OHJ WXUD
GLQWUH
FHOH
GRX
YDULDELOH
SRDWH
IL
PRGHODW
SULQ
HFXD LD
GH
UHJUHVLH
yˆ = 0,125 + 3,125 x ;
b) FRYDULDQ DGLQWUH[úL\DUDW ROHJ WXU SXWHUQLF LQYHUV vQWUHFHOHGRX YDULDELOH c) panta linie drepte de regresiHHVWHLDUSXQFWXOGHLQWHUFHS LHFXD[D2\HVWH-0,125; d) FRHILFLHQWXOGHFRUHOD LHHVWHVHPQLILFDWLYVWDWLVWLFSHQWUXRSUREDELOLWDWHGH e)
DSUR[LPDWLY GLQ YDULD LD YDORULORU FDUDFWHULVWLFLL < vQ MXUXO PHGLHL
y este explLFDW
SULQOHJ WXUDOLQLDU GLQWUH;úL<
23) 3HQWUX LGHQWLILFDUHD úL GLPLQXDUHD HURULORU GH REVHUYDUH HVWH QHFHVDU FRQWUROXO GDWHORU FXOHVH Acest control nu presupune: a)
FDSULQVRQGDMV VHUHIDF DQXPLWHFDOFXOHGHRE LQHUHDYDORULORUXQRULQGLFDWRUL
însFULúL
în formulare; b)
FDODFHQWUHOHGHSUHOXFUDUHV VHYHULILFHGDF DXVRVLWWRDWHIRUPXODUHOHFXWRDWHUXEULFLOH
completate; c)
XWLOL]DUHDXQRUPRGHOHGHYHULILFDUHDLSRWH]HORUVWDWLVWLFHúLDSOLFDUHGHWHVWHGHYHULILFDUH DVHPQLILFD LLORUYDORULORULQGL
catorilor;
d) e)
HIHFWXDUHDGHFRPSDU UL VXEQLFLRIRUP XWLOL]DUHDXQRUSURJUDPHLQIRUPDWLFHVSHFLDOHODERUDWH
24) Pentru calculul mediei aritmetice într-RVHULHQXPHULF GHGLVWULEX LHGHIUHFYHQ HSHLQWHUYDOHVH iau în considerare: a) limitele inferioare; b) mijloDFHOHLQWHUYDOHORULQGLIHUHQWGHUHSDUWL LLOHGLQLQWHUYDOH c) limitele superioare; d) OLPLWHOHVXSHULRDUHGDF IUHFYHQ HOHVXQWUHODWLYH e) PLMORDFHOHLQWHUYDOHORUvQLSRWH]DDSULRULF DQRUPDOLW LLUHSDUWL LLORUGLQLQWHUYDOH
25) &RHILFLHQWXO GH GHWHUPLQD LH R2, calculat pe baza regulii de adunare a dispersiilor, are întotdeauna valoarea: a) R 2 = 1 ;
b) R 2 ∈[0,1] ; c) R 2 ∈ (0,1);
d) R 2 ≤ 35% ; e) R 2 > 50% . 26) Inegalitatea dintre abaterile standard ale unei vaULDELOH ; QRUPDO UHSDUWL]DWH vQ SRSXOD LLOH VWDWLVWLFH GH DFHODúL YROXP úL DFHHDúL PHGLH
x , σ 1 > σ 2 > σ 3 HVWH YL]XDOL]DW
varianta:
a)
b) 3
3 2
1 2
1
c)
d) 1
2 3 2
1
3
e)
2
1 3
vQ
27) 3HQWUX FHOH GRX
YDULDELOH VWDWLVWLFH vQWUH FDUH H[LVW R GHSHQGHQ
OLQLDU V
-au înregistrat o
PXO LPHGHGDWHVWDWLVWLFHÌQXUPDSUHOXFU ULLDFHVWRUDV DXRE LQXWLQGLFDWRULL
-
∑ y = 968; ∑ x = 183,91; ∑ y ∑ x y = 19485,9; i = 1,11 i
i
i
2 i
= 96299,6;
∑x
2 i
= 4099,8;
i
'HVSUHGHSHQGHQ DGLQWUHFHOHGRX YDULDELOHVHSRDWHDILUPD
a) b) c) d) e)
GHSHQGHQ DHVWHLQYHUV HVWLPDUHDFRYDULDQ HLHVWH
yˆ = 88 + 3,2213 x ; ˆ = 34,14 + 3,2213 x . HFXD LDGHUHJUHVLHHVWH y HFXD LDGHUHJUHVLHHVWH
28) 3HQWUXXUP
WRDUHOHYDORULDOHXQHLYDULDELOHDOHDWRDUH;
{7,11,1414,12,20}
a) b) c) d) e)
cov(x,y)=130,82;
FRHILFLHQWXOGHFRUHOD LHHVWH
FDUHGLQXUP WRDUHOHDILUPD LLHVWHDGHY UDW
Me = 14; 0R
úL0H
x = 13 úL0H x = 14 úL0R ; x = Mo = Me = 14 .
29) &RQVLGHUkQGXUP
WRDUHOHYDORULDOHXQHLYDULDELOHDOHDWRDUH;
{5,7,4,5,20,6,4} , indicatorul cel
PDLSRWULYLWSHQWUXDFDUDFWHUL]DWHQGLQ DFHQWUDO HVWH
a) PHGLDDUPRQLF b) media; c) modul; d) PHGLDS WUDWLF e) mediana. 30) Un meteoURORJ GRUHúWH V
úWLH vQ FH P VXU SUHYL]LXQLOH VDOH VXQW IRQGDWH ÌQ DFHVW VHQV HO
DQDOL]HD] YDULDELODQXPLW SUHYL]LXQH$FHDVW YDULDELO LDGRX YDORUL
0, daca previziunea a fost incorecta x= 1, daca previziunea este corecta 0HWHRURORJXOUHVSHFWLYDXUP ULWSUHYL]LXQLOHHIHFWXDWHvQFHOH GH]LOHFRQVHFXWLYHúLDFRQVWDWDW F DXIRVWFRUHFWHLDUDXIRVWLQFRUHFWH3HED]DDFHVWRUGDWHHOWHVWHD] LSRWH]D
H0SURSRU LDSUHYL]LXQLORUHIHFWXDWHúLFRUHFWHHVWHGHúL H1SURSRU LDHVWHGLIHULW GHúL cu testul χ2:
χ =∑ 2
a)
=
c) d) e)
2
=
= 203,9 > χ 12;0,95 = 3,84
25 ⇒ se respinge ipoteza H0;
χ =∑ =
+ frecventa teoretica)
frecventa teoretica
(32 + 25)2 + (18 + 25)2
2
b)
(frecventelor observate
(frecventelor observate
- frecventa teoretica )
2
frecventa teoretica
(32 − 25)2 + (18 − 25)2
=
= 3,92 > χ 12;0,95 = 3,84
25 ⇒ se respinge ipoteza H0;
χ2vQYDULDQWDE úLVHDOHJHDWXQFLLSRWH]D+0; 2 χ vQYDULDQWDD úLVHDOHJHDWXQci ipoteza H1;
VHFDOFXOHD] VHFDOFXOHD]
(frecventelor observate)2 = χ = ∑ ∑ frecventelor teoretice 2
32 2 + 18 2 = = 269,6 > χ 12;0,95 = 3,84 25 + 25 ⇒ se respinge ipoteza H0. 31) 1RWHOH RE LQXWH GH VWXGHQ L GLQ DFHHDúL JUXS
vQ VHVLXQHD GH YDU OD SDWUX GLVFLSOLQH VH
SUH]LQW DVWIHO
1XPHúL
prenume A.B. C.D. E.F. G.H. M.V.
DISCIPLINA NR. 2 NR. 3 6 7 7 9 8 8 9 10 7 4
NR. 1 9 6 7 10 5
3HQWUX FDUDFWHUL]DUHD GLVLPLODULW
NR. 4 8 9 6 8 5
LL VWXGHQ LORU GXS QRWHOH RE LQXWH VH FDOFXOHD] PDWULFHD
GLVWDQ HORUDEVROXWH$FHDVWDHVWH
a)
AB AB 0 CD 7 EF 7 GH 7 MV 11
CD 7 0 6 8 10
EF 7 6 0 8 8
GH MV 7 11 8 10 8 8 0 15 15 0
b)
AB AB 0 CD 7 EF 7 GH 7 MV 0
CD 7 0 6 0 8
EF 7 6 0 8 10
GH 7 0 8 0 15
MV 0 8 10 15 0
c) NR1 NR2 NR3 NR4
NR1 NR2 NR3 NR4 0 7 7 11 7 0 6 8 7 6 0 15 11 8 15 0 e) AB CD EF GH MV
AB 0 -7 -7 11 7
d)
CD -7 0 -6 8 -10
EF -7 -6 0 8 8
AB NR1 0 NR2 7 NR3 7 NR4 11
CD 7 0 6 10
GH 11 8 8 0 15
MV 7 -10 8 15 0
EF 7 6 0 8
GH 7 8 8 0
MV 11 10 8 15
TESTUL 9
1)
ÌQ VWXGLXO UHSDUWL LHL QRUPDOH VH IRORVHúWH úL QR LXQHD UHSDUWL LHL
-α) - punct percentilic α ∈[0,1] al
N(0,1). Acesta:
a. este valoarea Cα pentru care Φ( Cα ) = 1 − α ; b. este cuantila de ordin 1-α; c. este cuantila de ordin α; d. este cuantila de ordin
1 ; α
e. este valoarea pentru care Φ(Cα ) = 1 + α . 2)
'LVSHUVLDXQHLVXPHGHYDULDELOHQRWDW
σ 2x
1 + x2 + ..+ x n
: n
a)
HVWH HJDO FX VXPD GLVSHUVLLORU YDULDELOHORU H[LVW RGHSHQGHQ
b)
∑ σ 2xi
GDF vQWUH YDULDELOHOH
x1, x2, …, xn
i =1
OLQLDU
HVWHHJDO FXVXPDGLVSHUVLLORUYDULDELOHORUPDMRUDW FXGXEOXOVXPHLFRYDULDQ HORUGLQWUH
n
YDULDELOHOXDWHVXFFHVLYGRX FkWHGRX
∑σ
i =1
2 xi
n
+ 2∑ ∑ Cov ( x i , x j ) ; i =1 j > i
c) HVWHHJDO FXVXPDFRYDULDQ HORUGLQWUHYDULDELOHOXDWHVXFFHVLYGRX FkWHGRX d) nu se poate calcula; e) HVWHOLSVLW GHVHQVGHRDUHFHvQSUDFWLF QXVHSRWvQWkOQLDVWIHOGHFD]XUL 3)
'DF SH ED]D GDWHORU XQHL VHULL VWDWLVWLFH YDORDUHD PHGLH D FDUDFWHULVWLFLL V
-a calculat ca medie
DUPRQLF DWXQFLvQFDOFXOXOGLVSHUVLHLSHQWUXFDUDFWHUL]DUHDvPSU úWLHULLVHXWLOL]HD]
a) PHGLDDULWPHWLF b) mediaJHRPHWULF c) PHGLDDUPRQLF d) PHGLDFURQRORJLF e) mediana; f) PHGLDS WUDWLF g) cuartila a treia. 4)
ÌQUHSUH]HQW ULOHJUDILFHDOHGDWHORUVWDWLVWLFHVHXWLOL]HD]
a) b)
vQH[FOXVLYLWDWHVFDUDDULWPHWLF
c)
vQ IXQF LH GH RUGLQXO GH P ULPH DO GDWHORU VFDOD QRPLQDO RUGLQDO GH LQWHUYDOH GH
vQ IXQF LH GH RUGLQXO GH P ULPH DO GDWHORU VH XWLOL]HD] GXS FD] VFDUD DULWPHWLF ORJDULWPLF VHPLORJDULWPLF GXEOXORJDULWPLF HWF UDSRDUWHFRQWLQX VDXGLVFUHW
d) e)
RULFHVFDU QXPDLJUDILFXOV ILHWUDVDWvQWU RULFHVFDU QXPDLJUDILFXOV ILHWUDVDWvQWU
-un sistem de axe rectangulare; -un sistem de axe polare.
5)
5HSDUWL LD PXQFLWRULORU GLQWU R XQLWDWH LQGXVWULDO GXS VDODULXO ORU PHGLX OXQDU QHW VH SUH]LQW
-
astfel: Clase salariale (u.m.) [800; 1000] [1000; 1100] [1100; 1200] [1200; 1300] [1300; 1500]
Nr. persoane 26 33 64 7 10
Procentul muncitorilor cu salariile medii lunare mai mici sau egale cu 1200 u.m. este: a) 64%; b) 45,8%; c) 87,9%; d) 12,1%; e) 23,5%. 6)
6FRSXOXQHLREVHUY ULVWDWLVWLFH
a) b)
vQPRGREOLJDWRULXWUHEXLHV FRUHVSXQG FXVFRSXOFHUFHW ULLVWDWLVWLFHHIHFWXDWH VHSUHFL]HD] vQIXQF LHGHQHFHVLW
LOHVSHFLILFHGHLQIRUPD LLSHQWUXGRPHQLXOvQFDUHVH
RUJDQL]HD] FHUFHWDUHDúLFDUHVHvQFDGUHD] vQVFRSXOJHQHUDODODFHVWHLD
c)
QX WUHEXLH SUHFL]DW GHRDUHFH QX LQIOXHQ HD] YROXPXO úL FDOLWDWHD GDWHORU QHFHVDUH GHPHUVXOXLúWLLQ LILF
d)
QX WUHEXLH SUHFL]DW GHRDUHFH QX SUH]LQW LPSRUWDQ
SHQWUX UH]ROYDUHD SUDFWLF D XQRU
SUREOHPHFXPDUILGHOLPLWDUHDRELHFWXOXLGHREVHUYDUHGHILQLUHDXQLW
stabilirea programului propriu-]LVDOREVHUY e)
LORUGHREVHUYDUH
ULL
WUHEXLH FODU SUHFL]DW GHRDUHFH vQ IXQF LH GH DFHVWD VH UHDOL]HD] QXPDL LQVWUXLUHD
personalului care culege datele. ÌQ FRQFHS LD GH DVW ]L VWDWLVWLFD IDFH SDUWH GLQ FDGUXO úWLLQ HORU FDUH VWXGLD] VXE DVSHFW
cantitatiYIHQRPHQHOHúLSURFHVHOHvQWU-RYL]LXQHVLVWHPLF
ODQLYHOPLFURúLPDFURHFRQRPLF LQkQG
VHDPDGHGLQDPLVPXOVWUXFWXULORUH[LVWHQWHúLGHIDFWRULLFDUHDF LRQHD] YDULDELOvQWLPSúLVSD LX ÌQFRQVHFLQ
VFRSXOXQXLGHPHUVVWDWLVWLFHVWH
a) excluVLYGHFXQRDúWHUHDIHQRPHQHORUúLSURFHVHORULQYHVWLJDWH b) GHFXQRDúWHUHúLIXQGDPHQWDUHDYDULDQWHORUGHFL]LLORUGHDF LXQH c) GH FXQRDúWHUH GH GHVSULQGHUHD OHJLW LORU VXE FDUH VH PDQLIHVW IHQRPHQHOH úL SURFHVHOH LQYHVWLJDWHúLGHIXQGDPHQWDUHDDFWLYLW
d) e) 8)
LLPDQDJHULDOH
GHFRQVHPQDUHDPDQLIHVW ULLIHQRPHQHORULQYHVWLJDWHODXQPRPHQWGDW VLPLODUFXFHODOXQHLDFWLYLW
LFRQWDELOH
3HQWUXDvQ HOHJHFDUDFWHUXODFHVWRUIHQRPHQHWUHEXLHSRUQLWGHOD
a) b) c) d) e)
natura raporturilor de cauzalitate a acestora; scopXOFHUFHW ULL VFRSXOREVHUY ULL
prelucrarea datelor culese; identitatea formelor lor individuale de manifestare.
9)
8QLW
LOHFRPSOH[HGHREVHUYDUH
a) VXQWUH]XOWDWHDOHRUJDQL] ULLVRFLDOHúLHFRQRPLFHDSRSXOD LHLFROHFWLYLW LL VWDWLVWLFH b) pot fi de exemplu: angajatul într-R vQWUHSULQGHUH MXF WRUXO vQWU-R HFKLS GH IRWEDO persoana unei familii; c) VXQW QXPDL XQLW LOH UDSRUWRDUH FDUH SRWULYLW OHJLVOD LHL vQ YLJRDUH LQIRUPHD] VLVWHPDWLF LLXQLW
DVXSUDDFWLYLW
d)
LORUDIODWHvQVWUXFWXUDORURJDQL]DWRULF
VXQWHOHPHQWHOHVLPSOHFRQVWLWXWLYHDOHSRSXOD LHLVWDWLVWLFHFDUHVXQWGLVSXVHV U VSXQG ODvQWUHE ULOHGLQFKHVWLRQDUGHH[HPSOXVWXGHQWXOSHUVRDQDFXGUHSWGHYRWHWF
e)
VXQWGHWLSXOPXO LPHDvQWUHSULQGHULORUPLFLúLPLMORFLLPXO LPHDF V
10) 3UHFL]D LúLDUJXPHQWD LGDF a) b) c) d) e)
toriilor,etc.
DILUPD LD³RULFHQXP UHVWHRGDW VWDWLVWLF ´HVWH
DGHY UDW IDOV HVWHDGHY UDW GDF QXP UXOHVWHQDWXUDO HVWHDGHY UDW GHRDUHFHVWDWLVWLFDVWXGLD] IHQRPHQHOHGHPDV GLQSXQFWGHYHGHUHFDQWLWDWLY QX HVWH DGHY UDW GHRDUHFH VWDWLVWLFD VWXGLD] úL YDULDELOH DOH F URU YDULDQWH VXQW
nenumerice. 11) /D H[DPHQXO GH %D]HOH 6WDWLVWLFLL GLQ SULPLL VWXGHQ L GLQ FDWDORJXO JUXSHL DXRE LQXWXUP WRDUHOHQRWH
Nr. crt Nota
1 10
2 7
3 4
4 8
5 9
6 9
7 7
8 3
9 6
10 2
Datele prezentat în tabel sunt: a) b) c) d) e)
individuale; agregate; de stoc; de flux; grupate.
12) 0HGLDDULWPHWLF
∑ (xi − x) n
a)
HVWHDFHDYDORDUHDQXPHULF DYDULDELOHLVWXGLDWHFDUHPLQLPL]HD]
2
;
i =1
b) max x i − x ; n
c)
∑
i , j =1 i≠ j
∑ (x i − x ) n
d)
xi − x x j − x ; 3
;
i =1 n
∑ (xi − x )(x j − x )
e)
i , j =1
σx
.
13) 3HQWUX
GRX VHULL GH GLVWULEX LH GH IUHFYHQ H LQGLFDWRUXO ³DPSOLWXGLQHD vPSU úWLHULL´ HVWH
FRPSDUDELOGDF
a) b) c) d) e) 14)
FHOHGRX VHULLVHUHIHU ODDFHHDúLFDUDFWHULVWLF FHOHGRX VHULLVHUHIHU ODDFHHDúLFROHFWLYLWDWH FHOHGRX VHULLVHUHIHU ODFDUDFWHULVWLFLGLIHULWHGDUFXDFHHDúLXQLWDWHGHP VXU FHOHGRX VHULLDXDFHODúLJUDGGHDVLPHWULH FHOHGRX VHULLVHUHIHU ODFROHFWLYLW
LGHDFFHODúLYROXP
3XQFWXO$VHPQLILF
x ’− x ; σ
a) P ( X < x ’) = Φ
1,0
A 0,5
x − 3σ
-3
x − 2σ
x −σ
x
-2
-1
0
x’ x + σ 1
x + 2σ
2
x + 3σ
3
x ’− x ; σ
b) P ( X > x ’) = Φ
x ’− x ; σ
c) P ( X = x ’) = Φ
x ’− x ; σ
d) P ( X < x ’) > Φ
x ’− x . σ
e) P ( X < x ’) < Φ
15) GH HOHYL GLQ GRX
RUDúH SDUWLFLS OD XQ FRQFXUV GH FXOWXU JHQHUDO &HL GH HOHYL GLQ
SULPXORUDúRE LQXQSXQFWDMPHGLXGHSXQFWHFXXQFRHILFLHQWGHYDULD LHGHLDUFHLGLQ DO GRLOHD RUDú RE LQ XQ SXQFWDM PHGLX GH SXQFWH FX R DEDWHUH PHGLH S WUDWLF GH SXQFWH )DFWRUXOGHJUXSDUHRUDúXO FRQWULEXLHODYDULD LDSXQFWDMHORURE LQXWHGHHOHYLvQSURSRU LHGH
a) 23,46%; b) 10,28%; c) 76,54%;
d) 48,44%; e) 24,48%. 16) 3ULQFLSDOD SURSULHWDWH D IHQRPHQHORU GH PDV OHJHD GH DSDUL LH D DFHVWRUD VH PDQLIHVW DFHDVW
FDX]
IHQRPHQHOHGHPDV
HVWH YDULDELOLWDWHD vQ WLPS úL vQ VSD LX úL
FD WHQGLQ
úL QX vQ ILHFDUH FD] vQ SDUWH 'LQ
VXQWQXPLWHúLIHQRPHQHQHGHWHUPLQLVWHVDXVWRFKDVWLFH
LDULQWHUSUHWDUHDúLDQDOL]DORUWUHEXLHV
FDG
VXELQFLGHQ DQXPHUHORUPDUL3RWULYLWDFHVWHL
legi: a)
YDULD LLOH vQWkPSO WRDUH GH OD WHQGLQ D JHQHUDO SURYRFDWH GHIDFWRULL RELHFWLYL úL HVHQ LDOL VHFRPSHQVHD] UHFLSURFGDF H[LVW XQQXP UPDUHGHFD]XULLQGLYLGXDOH
b) c)
QXPDLvQWkPSO WRUYDULD LLOHGHODWHQGLQ DJHQHUDO VHFRPSHQVHD] QXHVWHSRVLELO WUHFHUHDGHODQXPHURDVHOHGDWHLQGLYLGXDOHODLQGLFDWRULVLQWHWLFLVSHFLILFL
ansamblului investigat; d)
YDULD LLOH vQWkPSO WRDUH GH OD WHQGLQ D JHQHUDO SURYRFDWH GHIDFWRULLDOHDWRUL GH LQIOXHQ
se compeQVHD] HVHQ
e)
OXDWHvQVWXGLX
WHQGLQ DGHPDQLIHVWDUHWUHEXLHV VHYHULILFHODQLYHOXOILHF UHLXQLW
17) 3URFHVXOGHFXQRDúWHUHVWDWLVWLF a) b) c) d) e)
UHFLSURF GDF H[LVW XQ QXP U PDUH GH FD]XUL LQGLYLGXDOH GH DFHHDúL LGHREVHUYDUH
VHvQFKHLHFX
observarea total VDXSDU LDO DIHQRPHQHORUGHPDV prelucrarea datelor înregistrate; interpretarea rezultatelor; prezentarea datelor în tabele, serii sau grafice;
GHOLPLWDWH
DQDOL]D úL LQWHUSUHWDUHD UH]XOWDWHORU úL FX IRUPXODUHD FRQFOX]LLORU VWDWLVWLFH FDUH
obligatoriu WUHEXLH V în viitor.
FXSULQG YDULDQWH SUREDELOH GH DSDUL LH DOH DFHORUDúL IHQRPHQH
18) 3HQWUX VWDELOLUHD JUHXW LL VSHFLILFH D SURGXF LHL UHEXWDWH vQWU-un lot de volum N=3000 produse s-DX SUHOHYDW vQWkPSO WRU úL QHUHSHWDW GH SURGXVH ÌQ XUPD HIHFWX ULL controlului acestora 9 produse au fost depistate rebuturi. Pentru o probabilitate de 0,975 (zα=1,96) procentul de rebut estimat pentru întregul lot este: a) (0,015; 0,06); b) (0,012; 0,048; c) (0,15; 0,20); d) (0,02; 0,05); e) (0,18; 0,25). 19) 2PHGLHFDOFXODW
GLQWU
-un úLUGHYDORULLQGLYLGXDOHHVWHUHSUH]HQWDWLY
GDF
a) s-DXXWLOL]DWIUHFYHQ HOHDEVROXWHGHDSDUL LHDYDORULORULQGLYLGXDOH b) úLUXOGHYDORULLQGLYLGXDOHHVWHRPRJHQ c) XQXOGLQFRHILFLHQ LLGHDVLPHWULHLDYDORULvQLQWHUYDOXO>-1, 1]; d) úLUXOGHYDORULHVWHVtructurat pe intervale de grupare egale; e) s-DXWLOL]DWPHGLDDULWPHWLF
20) &DUHHVWHUHOD LDFRUHFW a) ryx = b) ryx =
xy − x ⋅ y ; σ xσ y
∑ (x − x )(y − y)
c) ryx = b d) ryx =
GHFDOFXODFRHILFLHQWXOXLGHFRUHOD LHOLQLDU VLPSO
nσ x σ y
;
σx ; σy n∑ xy − ∑ x ∑ y n x − ( x ) n y − ( y) ∑ ∑ ∑ ∑ 2
2
∑ ( yi − Y ) 1− 2 ∑ ( yi − y)
2
2
;
2
e) ryx =
.
21) 2 FRPSDQLH FDUH SURGXFH XQ QRX WLS GH vQJU
ú PkQW DJULFRO HVWH LQWHUHVDW GH VWXGLHUHD
FRUHOD LHL GLQWUH SURGXF LD GH URúLL < úL FDQWLWDWHD GH vQJU ú PkQW DSOLFDW ; 2 VXSUDID GLYL]DW vQ RSW SDUFHOH GH P ULPL HJDOH SH FDUH VXQW DSOLFDWH FDQWLW 3URGXF LLOH GH URúLL NJ úL FDQWLW
HVWH
L GLIHULWH GH vQJU ú PkQW
LOH GH vQJU ú PkQW DSOLFDW NJ vQUHJLVWUDWH SHQWUX ILHFDUH
SDUFHO VXQW
xi yi
1 25
&RHILFLHQWXOGHFRUHOD LHDUH
a) b) c) d) e)
1,5 31
2 27
2,5 28
3 36
3,5 35
4 32
4,5 34
valoarea:
0,37; 0,98; 0,73; -0,84; 1,00.
22) Într-XQ úLU GH YDORUL LQGLYLGXDOH UHIHULWRDUH OD DFHHDúL YDULDELO
úL REVHUYDW vQWU R SRSXOD LH
-
VWDWLVWLF GHOLPLWDW vQWLPSúLvQVSD LXYDORDUHDPRGDO HVWH
a) YDORDUHDLQGLYLGXDO SR]LWLY FHDPDLPDUH b) valoaUHDLQGLYLGXDO QHJDWLY PD[LP vQYDORDUHDEVROXW c) YDORDUHDLQGLYLGXDO SR]LWLY VDXQHJDWLY FXFHDPDLPDUHIUHFYHQ GHDSDUL LH d) DFHDYDORDUHFDUHvQUHJLVWUHD] FHDPDLPDUHDEDWHUHDEVROXW ID GHPHGLH e) YDORDUHDFDUHPLQLPL]HD] GLVSHUVLD 23) PentrXDQDOL]DGHSHQGHQ HORUVWDWLVWLFHGLQWUHYDULDELOHPHWRGDJUDILF a) b) c) d) e)
LQWHUSUHWDUHDLQWHQVLW
SHUPLWH
LLOHJ WXULORUGLQWUHYDULDELOH
FRQVWDWDUHDH[LVWHQ HLOHJ WXULLVWDWLVWLFH LGHQWLILFDUHDH[LVWHQ HLGLUHF LHLúLIRUPHLOHJ WXULLGLQWUHGRX YDULDELOH
statistice;
HVWLPDUHDSDUDPHWULORUIXQF LHLGHUHJUHVLH HVWLPDUHDUDSRUWXOXLGHFRUHOD LHGDUQXúLDFRHILFLHQWXOXLGHFRUHOD LHVDXGHDVRFLHUH
24) )LHRVHULHVWDWLVWLF IRUPDW GLQQ SYDORULLQGLYLGXDOH[1, x2, …, xnúL51, R2, …, Rn rangurile ordonate ale celor n valori. Mediana (Me) este:
1 n ∑ xi ; n i =1 1 b) F ( Me) = ; 2 c) Me = R p+1 ;
a) Me =
n + 1
d) Me = x ; 2
n n + 1 x + x 2 2 e) Me = . 2 25) Într-RVHULHGHUHSDUWL LHGHLQWHUYDOHLQWHUYDOXOPHGLDQHVWH a) acela care vPSDUWHvQGRX
S U LHJDOHQXP UXOGHLQWHUYDOHDOHVHULHL
r
∑ ni
b)
FRUHVSXQ] WRUSULPHLIUHFYHQ HFXPXODWHFDUHGHS úHúWH
i =1
;
2 r
∑ ni + 1
c)
FRUHVSXQ] WRUSULPHLIUHFYHQ HFXPXODWHFDUHGHS úHúWH
d) e)
FRUHVSXQ] WRULQWHUYDOXOXLFXIUHFYHQ DFHDPDLPDUH
26) 'DF
i =1
2
;
FRUHVSXQ] WRULQWHUYDOXOXLvQFDUHHVWHSODVDW PHGLD
vQWU RVHULHGHUHSDUWL LHGHIUHFYHQ H
-
FXPXODWH FUHVF WRU
(Fa i )i =1,r
x i ni i =1,r
r
,
∑ ni
= n VHFDOFXOHD]
i =1
úL IUHFYHQ HOH FXPXODWH GHVFUHVF WRU
(Fd i )i =1,r , atunci între ele
H[LVW UHOD LD
a) Fai + Fd i = n ; b) Fai = Fd i + n ; c) Fai + Fd ( i +1) = n ; d) Fai + Fd i = 100 ; e) Fai + Fd (i +1) = 100 . 27) )UHFYHQ DDEVROXW
FXPXODW FUHVF WRUDXOWLPHLJUXSHHVWHvQWRWGHXQDHJDO FX
a) QXP UXOGHXQLW LGLQFROHFWLYLWDWH b) QXP UXOGHXQLW LGLQXOWLPDJUXS c) 100%; d) IUHFYHQ DDEVROXW FXPXODW GHVFUHVF WRUDXOWLPHLJUXSH e) IUHFYHQ DDEVROXW DXOWLPHLJUXSHSOXVYROXPXOFROHFWLYLW
LL
IUHFYHQ HOH
28) În general, în cadrul
VRFLHW
LL GDU úL vQ QDWXU IHQRPHQHOH SRW V DSDU FD UH]XOWDW DO XQHL
VLQJXUHFDX]HVDXFDUH]XOWDWDOPDLPXOWRUFDX]HFDUHVHPDQLIHVW L]RODWVDXvQLQWHUGHSHQGHQ
vQWUH HOH ÌQ SULPXO FD] VXQW IHQRPHQH XQLYRF GHWHUPLQDWH úL GH UHJXO HOH VH SUH]LQW FD IHQRPHQHVLPSOHLGHQWLFHvQWUHHOHGHQXPLWHúLIHQRPHQHWLSLFHÌQFHOGH
-al doilea caz, apar ca
IHQRPHQH PXOWLFDX]DOH DO F URU SURFHV GH IRUPDUH SRDWH V SUH]LQWH JUDGH GLIHULWH GH FRPSOH[LWDWH FX UHOD LL PXOWLSOH GH LQWHUGHSHQGHQ
IRUPkQG vPSUHXQ XQ DQVDPEOX D F UXL
GLPHQVLXQH úL VWUXFWXU SRW IL GHOLPLWDWH vQ WLPS vQ VSD LX úL RUJDQL]DWRULF 6WDWLVWLFD VWXGLD]
fenomenele din: a) b) c) d) e)
primul caz; cazul al doilea; ambele cazuri; DOW FDWHJRULHGHFkWFHOHSUHFL]DWH
cazul al doilea, dar numai cele cuantificabile.
29) 0HGLDDULWPHWLF a) b) c) d) e)
DVXPHLGLQWUHGRX YDULDELOHHVWHHJDO FXVXPDPHGLLORUFHORUGRX YDULDELOHFkQG
FHOHGRX YDULDELOHVHDIO vQWU RUHOD LHGHLQWHUGHSHQGHQ
-
FHOGRX YDULDELOHVHDIO vQWU RUHOD LHGHLQYHUV SURSRU LRQDOLWDWH
-
FHOHGRX YDULDELOHVHUHIHU ODDFHHDúLFROHFWLYLWDWH FHOHGRX YDULDELOHVXQWLQGHSHQGHQWH FHOHGRX YDULDELOHVXQWGLUHFWSURSRU LRQDOH
30) 6WXGLD LXUP WRDUHOHDILUPD LL )HQRPHQHOHGHPDV vQJHQHUDODSDUFDRPXO LPHGHIRUPH individuale diferiWH DSDUHQW I U QLFL R OHJ WXU GH OD R IRUP OD DOWD GDU FDUH DQDOL]DWH FRPSDUDWLYVHFRQVWDW F DXDFHHDúLHVHQ
$FHDVWDVHH[SOLF vQSULQFLSDOSULQIDSWXOF HOH
VXQW JHQHUDWH GH R VHULH GH FDX]H FRPXQH FDUH VH PDQLIHVW GH UHJXO vQ FRQGL LL
diferite; 3) La
IHQRPHQHOH GH PDV GLQ VRFLHWDWH UHOD LLOH GH PXOWLFDX]DOLWDWH GLUHFW VDX LQGLUHFW FDUH OH GHWHUPLQ IDF LPSRVLELO FXQRDúWHUHD OHJLORU FDUH OH SURGXF úL JXYHUQHD] GDF VH LDX vQ VWXGLX
izolat doar câteva din formele lor de manifestare, ignorând ansamblul din care fac parte; 4) În SUDFWLF IRUPHOHLQGLYLGXDOHGHPDQLIHVWDUHGLIHU GHODRXQLWDWHODDOWDvQIXQF LHGHPRGXOFXP VHDVRFLD] úLVHFRPELQ IDFWRULLGHLQIOXHQ
de manifHVWDUH GLQ FDGUXO DQVDPEOXOXL I
GHQDWXU GLIHULW O VkQGLPSUHVLDF ILHFDUHIRUP
U V H[LVWH R FDX]DOLWDWH FHUW $QDOL]DWH IRUPHOH
LQGLYLGXDOHGHPDQLIHVWDUHDOHIHQRPHQHORUGHPDV SDUDVHP Q WRDUHvQWUHHOHILLQGJHQHUDWHGH FDX]HHVHQ LDOHFRPXQHVXSXQkQGX VHDFHOHLDúLOHJLGHDSDUL LHúLGH]Y
-
&DUHGLQDILUPD LLOHGHPDLVXVVXQWIDOVH
a) úL b) úL c) úL d) WRDWHFXH[FHS LD e) nici una.
oltare.
TESTUL 10
1)
3HQWUXYHULILFDUHDQRUPDOLW
LLGLVWULEX LHLHPSLULFHvQWU RFROHFWLYLWDWHGHQXQLW
pe r intHUYDOH GH JUXSDUH GDF VH XWLOL]HD] valoarea χ2WDEHODUFRUHVSXQ] WRDUHXQXLQXP a) b) c) d) e) 2)
WHVWXO
χ2 YDORDUHD FDOFXODW
LVLVWHPDWL]DWH
HVWH FRPSDUDW FX
UGHJUDGHGHOLEHUWDWHHJDOFX
n-r; n-1; r-1; r-3; n-3.
'LVSHUVLDXQHLUHSDUWL LELQRPLDOHFXS
- probabilitatea succesului, q - probabilitatea insuccesului
úLQQXP UXOGHREVHUYD LLHVWH
a) np; b) nq; c) npq ; d) npq(q-p); e) npq. 3)
&RQVLGHU P XUP WRDUHOH SHUHFKL GH REVHUYD LL SHQWUX YDULDELOHOH ; úL < vQWUH FDUH H[LVW R GHSHQGHQ
GHIRUPD\
xi yi
I[
1 1
4 3
3 3
2 1
5 4
6 7
0 2
6 VHDUDWHFDUHGLQXUP WRDUHOHDILUPD LLHVWHDGHY UDW
a)
HFXD LDGHUHJUHVLHOLQLDU HVWH
yˆ = 0,536 − 0,821x ;
SHQWUX XQ SUDJ GH VHPQLILFD LH α=0,05, coeficientul de regresie nu este semnificativ statistic; c) intervalul de încredere pentru coeficientul de regresie este (0,243, 1,399); d) HFXD LDGHUHJUHVLHOLQLDU HVWH yˆ = 0,536 + 0,821x ; e) FRHILFLHQWXOGHFRUHOD LHHVWHU -0,92.
b)
4)
3HQWUXRVHULHGHUHSDUWL LHGHIUHFYHQ HFXWHQGLQ
a) b) c) d) e)
GHQRUPDOLWDWHDEDWHUHDPHGLHOLQLDU
HVWHDSUR[LPDWLYGLQDEDWHUHDLQWHUTXDUWLOLF HVWHPDLPLF VDXHJDO FX HVWHDSUR[LPDWLYGLQYDORDUHDDEDWHULLPHGLLS WUDWLFH HVWHHJDO FX]HUR FXSULQGHGLQXQLW
LOHVWDWLVWLFHGLQFHQWUXOGLVWULEX LHL
5) Pentru verificarea norPDOLW
χ 2tabelar FRUHVSXQ]
FRPSDU FXYDORDUHD
a) b) c) d) e)
LL UHSDUWL LLORU HPSLULFH XWLOL]kQG WHVWXO
χ2, valoarea χ 2calculat se
WRUXQXLQXP UGHJUDGHGHOLEHUWDWHHJDOFX
QXP UXOXQLW
LORUVWDWLVWLFHGLQFROHFWLYLWDWHPLQXVXQX
QXP UXOXQLW
LORUVWDWLVWLFHGLQFROHFWLYLWDWHPLQXVGRL
QXP UXOLQWHUYDOHORUGHYDULD LHPLQXVXQX
χ2 ;
QXP UXOLQWHUYDOHORUGHYDULD LHPLQXVQXP UXOGHSDUDPHWULDLOHJLLGHUHSDUWL LH
QXP UXO LQWHUYDOHORU GH YDULD LH PLQXV QXP UXO GH SDUDPHWUL DL OHJLL GH UHSDUWL LH
χ2 ,
minus unu. 6)
&DUHGLQXUP WRDUHOHDILUPD LLHVWHDGHY UDW
a) PHGLDJHRPHWULF VHFDOFXOHD] FDRPHGLHDULWPHWLF DORJDULWPLORUYDORULORULQGLYLGXDOH b) SURGXVXODEDWHULORUWHUPHQLORUVHULHLGHODPHGLDORUJHRPHWULF HVWH c) suma abaterilor WHUPHQLORUVHULHLGHODPHGLDORUJHRPHWULF HVWH d) SURGXVXODEDWHULORUWHUPHQLORUVHULHLGHODPHGLDORUJHRPHWULF HVWH e) PHGLD JHRPHWULF HVWHDFHD YDORDUHFDUHvQORFXLQGWHUPHQLLVHULHLQXPRGLILF SURGXVXO S WUDWHORUORU
7) Într-o colectivitate staWLVWLF
IHQRPHQXOGHFRQFHQWUDUHvQVHDPQ
a) RYDULD LHVF ]XW DYDORULORUFDUDFWHULVWLFLLvQMXUXOPHGLHL b) RGLVWULEX LHvQIRUP GH³-´ c) RDVLPHWULHVF ]XW DGLVWULEX LHL d) RGLVWULEX LHvQIRUP GH³8´ e) cumularea valorilor caracteristicii în cadrul uneLJUXSHFODVHDOHFROHFWLYLW 8)
'DF vQWUH FXDUWLOHOH FDOFXODWH SHQWUX R VHULH GH UHSDUWL LH H[LVW UHOD LD
Q2 =
UHSDUWL LDHVWH
a) b) c) d) e) f)
Q1 + Q3 atunci 2
DVLPHWULF ODGUHDSWD DVLPHWULF ODVWkQJD QRUPDO KLSHUEROLF ELGLPHQVLRQDO ELPRGDO
9) PriQFHWHVWVHYHULILF a) b) c) d) e)
LL
FRUHVSRQGHQ DGLQWUHUHSDUWL LLOHWHRUHWLFHúLFHOHHPSLULFH"
χ2 ; F (R.A.Fisher); t (Student); Kolmogorov-Smirnov; Wald.
10) )LH VHULD VWDWLVWLF
{x1 , x 2 ,... , x n }
RE LQXW SULQ REVHUYDUHD XQHL YDULDELOH QXPHULFH ; úL
pentru care s-au calculat media x úL GLVSHUVLD σ 2 . Controlându-se calitatea datelor culese, se x
FRQVWDW F ILHFDUHGLQDFHVWHDDXIRVWPDMRUDWH OD vQUHJLVWUDUHFXGHXQLW
L6HULDFRUHFW DU
x x x fi fost: 1 , 2 , ..., n . Calculându-se din nou dispersia pentru valorile corecte se 100 100
FRQVWDW F DFHDVWDHVWH
100
a)
HJDO FXGLVSHUVLDLQL LDO "
b)
PDLPLF GHFkW
σ 2 de 10.000 ori?
c)
PDLPLF GHFkW
σ 2 cu
x x
d) mai mare decât σ 2 x
1 ? 100 1 ? cu 100
e) mai mare decât σ 2 de 100 de ori? x
11) 3HQWUXGRX YDULDELOHVWDWLVWLFHGHSHQGHQWH[úL\FX\ au calculat indicatorii:
I[ V DXFXOHVGDWHGHODXQLW
-
LúLV
-
, ;∑xi2 = 0957118 , ;∑xi yi = 296734 , ∑yi =1133;∑yi2 = 92703;∑xi = 3658 i
i
i
i
i
ÌQ LSRWH]D XQHL GHSHQGHQ H OLQLDUH HFXD LD GH UHJUHVLH FDUH PRGHOHD] OHJ WXUD GLQWUH FHOH GRX YDULDELOHHVWH
a) b) c) d) e)
yˆ = 55,55 + 522,35 x ; yˆ = −522,35 + 55,55 x ; yˆ = 522,35 − 55,55 x ; yˆ = −522,35 x + 55,55 ; yˆ = −55,55 + 522,35 x ;
12) Se precizeaz
XUP WRDUHOHSRSXOD LLVWDWLVWLFH
SRSXOD LD%XFXUHúWLXOXLODRFWRPEULH SRSXOD LDGLQ5RPkQLDGLQPHGLXOXUEDQODLXOLH PXO LPHDIDFWXULORUHODERUDWHGH6&³,&6´65/vQWULP,
4) 5)
PXO LPHDF V WRULLORUvQFKHLDWHvQ5RPkQLDv
n anul 1997;
VWRFXULOHGHP UIXULDOHvQWUHSULQGHULORUPLFLúLPLMORFLLODVIkUúLWXODQXOXL
3RSXOD LLVWDWLVWLFHGLQDPLFHVXQW
a)
úL
b)
úL
c)
úL
d)
úL
e)
úL
13) ÌQFD]XOXQHLREVHUY
ULVWDWLVWLFHDOF UHLVFRSHVWH³IRWRJUDILHUHD]LOHLGHO
ucru a unui muncitor”:
a) WLPSXOREVHUY ULLFRLQFLGHFXWLPSXOODFDUHVHvQUHJLVWUHD] GDWHOH b) WLPSXOREVHUY ULLQXFRLQFLGHFXWLPSXOODFDUHVHvQUHJLVWUHD] GDWHOH c) WLPSXOREVHUY ULLVHUHIHU ODGXUDWDV SW PkQLLGHOXFUXDPXQFLWRUXOXL d) precizarea timpXOXLREVHUY ULLHVWHOLSVLW GHVHQV e) WLPSXOREVHUY ULLHVWHPRPHQWXOFULWLF³RUD]HUR´D]LOHLvQFDUHPXQFLWRUXOVHSUH]LQW
ODOXFUX
14) Coeficientul de concentrare al lui Corrado-*LQLVHFDOFXOHD] a) G =
FD
n
∑x i =1
2 i
;
x b) G = ∑ n i i =1 ∑ xi i =1 n
; 2
n x c) G = n∑ n i i =1 ∑ xi i =1
n x d) G = ∑ n i i =1 ∑ xi i =1
;
2
n xi ∑ n i =1 ∑ xi i =1 e) G = n
.
15) 0HGLDDULWPHWLF
−1
;
2
DXQHLYDULDELOHDOHDWRDUH;UHSUH]LQW
a) momentul simplu de ordinul întâi; b) momentul centrat de ordinul întâi; c) momentul centrat de ordinul al doilea; d) momentul simplu de ordinul al doilea; e)
PRPHQWXOVLPSOXGHRUGLQXODOGRLOHDPLQXVPRPHQWXOVLPSOXGHRUGLQXOvQWkLODS WUDW
16) /DWHVWDUHDQRUPDOLW a)
VH DFFHSW LSRWH]D F vQWUH GLVWULEX LD HPSLULF úL FHD QRUPDO WHRUHWLF QX H[LVW FRQFRUGDQ
b)
VH UHVSLQJH LSRWH]D FRQIRUP F UHLD vQWUH GLVWULEX LD HPSLULF úL FHD WHRUHWLF H[LVW
concordDQ d)
VH DFFHSW LSRWH]D F vQWUH GLVWULEX LD HPSLULF úL FHD QRUPDO WHRUHWLF H[LVW FRQFRUGDQ
c)
χ2GDF χ 2calc < χ 2tab , atunci:
LLUHSDUWL LLORUHPSLULFHXWLOL]kQGWHVWXO
VHDFFHSW LSRWH]DFRQIRUPF UHLDGLVWULEX LDHPSLULF GLIHU VHPQLILFDWLYGHFHDQRUPDO WHRUHWLF
e)
QXH[LVW PRWLYHVXILFLHQWHSHQWUXDDFFHSWDLSRWH]DQRUPDOLW
LLGLVWULEX LHLHPSLULFH
17) $PSOLWXGLQHDUHODWLY a) b) c) d) e)
x max − x min ; 100 x max − x min 100 ; x min x max − x min 100 ; x max x max − x min 100 ; x x max − x 100 . x
18) 5HSDUWL LDELQRPLDO a) b) c)
DYDULD LHLVHFDOFXOHD] FD
WLQGHF WUHUHSDUWL LDQRUPDO
GDF QLFLSSUREDELOLWDWHDVXFFHVXOXL úLQLFLTSUREDELOLWDWHDLQVXFFHVXOX GDF S
T
i) nu sunt nule;
GDF XQD GLQWUH SUREDELOLW
L GHYLQH IRDUWH PLF úL Q QXP UXO GH REVHUYD LL FUHúWH
VXILFLHQWSHQWUXDS VWUDQSILQLW
d) e)
GDF RSUREDELOLWDWHSVDXT GHYLQHQXO GDF QLFLSúLQLFLTQXVXQWPLFLLDUQDUHYDORULPDUL
19) ÌQ PRGHOXO GH DQDOL]
GLVSHUVLRQDO XQLIDFWRULDO GLVSHUVLD FRUHFWDW GLQ LQWHULRUXO JUXSHORU VH
RE LQH UDSRUWkQG VXPD S WUDWHORU DEDWHULORU GLQ LQWHULRUXO FHORU U JUXSH OD QXP UXO JUDGHORU GH OLEHUWDWHO $FHVWQXP U
a) b) c) d) e)
l=n; l=n-1; l=r-1; l=n-2; l=n-r.
20) 3HQWUX XQ VWXGLX VRFLRORJLF FX WHPD ³,PSOLFD LL DOH IHQRPHQXOXL GH úRPDM vQ 5RPkQLD´ V-a IRUPDW XQ HúDQWLRQ GH GH SHUVRDQH LQFOXVH vQ ³VIHUD IRU HL GH PXQF ´ ÌQ FKHVWLRQDUXO
special elaborat s-DX
FXSULQV úL vQWUHE UL UHIHULWRDUH OD VWDUHD FLYLO úL
categoria socio-
SURIHVLRQDO &HOHGRX YDULDELOHVXQWGHDFHHDúLQDWXU FXYDORULVLWXDWHSHRVFDO
a) FRQWLQX b) GLVFUHW c) RUGLQDO d) QRPLQDO e) de intervale. 21) Într-R SRSXOD LH VWDWLVWLF \
VH XUP UHVF YDULDELOHOH QXPHULFH [ \ úL ] vQWUH FDUH H[LVW UHOD LD
:
[] 0HGLD DULWPHWLF D YDULDELOHL [ HVWH HJDO FX SURGXVXO PHGLLORU YDULDELOHORU \ úL ] DWXQFL
când: a)
\úL]VHDIO vQWU RDQXPLW GHSHQGHQ
-
b) c) d) e)
\úL]VXQWLQGHSHQGHQWHvQWUHHOH \úL]VXQWYDULDELOHQRUPDOL]DWHGDUGHSHQGHQWH \úL]VXQWOLQLDUG
ependente;
\úL]DXFRYDULDQ DGLIHULW GH]HUR
22) 'HVSUHVWRFXOGHP UIXUL H[LVWHQWODRVRFLHWDWHFRPHUFLDO în urma inventarierii:
VH FXQRVFXUP WRDUHOH GDWHRE LQXWH
Data inventarierii 1.01.1997 1.02.1997 15.03.1997 10.05.1997 1.07.1997 Stocul existent (mil. lei) 50 58 68 70 75 6WRFXOPHGLXGHP UIXULDOVRFLHW
a) b) c) d) e)
LLFRPHUFLDOHGLQSHULRDGD
- 1.07.197 a fost de:
66 mil. lei; 60 mil. lei; 64,2 mil. lei; 50 mil. lei; 75 mil. lei.
23) 2PDúLQ
XWLOL]DW SHQWUXDGR]DFDQWLWDWHDGHFXORDUHvQYRSVHDGR]HD] vQPHGLH
m ml pe cutie
GH YRSVHD &DQWLWDWHD GHFXORDUH GR]DW HVWHFXQRVFXW D DYHD R GLVWULEX LH QRUPDO FX GLVSHUVLD HJDO FX 'DF PDL PXOW GH PO GH FXORDUH HVWH DPHVWHFDW vQ RE LQHUHD XQHL QXDQ H GH
albastru, vopseaua este respins din cutii este: a) b) c) d) e)
9DORDUHD OXL
m DVWIHO vQFkW V
QX ILH UHVSLQVH PDL PXOW GH
5,072; 5,6272; 5,536; 5,068; 5,6288.
24) 3HQWUX FRQVWUXLUHD LQGLFLORU GH JUXS VH XWLOL]HD] PDL PXOWH VLVWHPH GH SRQGHUDUH ,QIOXHQ D sistemului de ponderare utilizat poate fi SXV vQHYLGHQ XWLOL]kQG a)
H[FOXVLY FRHILFLHQWXO GH FRUHOD LH DO LQGLFLORU LQGLYLGXDOL DL IDFWRUXOXL FDQWLWDWLY úL DL
factorului calitativ ( r x
);
i if
b)
DQDOL]kQGFRHILFLHQ LLGHYDULD LHDLFHORUGRX FDWHJRULLGHLQGLFLLQGLYLGXDOL
c) produsul Vi x ⋅ Vi f ⋅ ri xi f = I
x ( f1 ) 1/ 0
:I
x ( f0 ) 1/ 0
;
d)
UHOD LD
I x ( f1 ) : I x ( f0 ) = 1 + ri xi f ⋅ Vi x ⋅ Vi f ;
e)
UHOD LD
I x ( f1 ) ⋅ I x ( f0 ) = 1 + ri xi f ⋅ Vi x ⋅ Vi f .
25) &DUHHVWHPXO LPHDYDORULORUFRHILFLHQWXOXLGHFRUHOD LHvQFDGUXOOHJ a) b) c) d) e)
Vi x ; Vi f );
WXULORUGLUHFWH
[ -1, 1 ]; [ -1, 0 ]; ( 0, 1 ]; PXO LPHDQXPHU
elor reale;
[ -3, 3 ].
26) 3HQWUXRFROHFWLYLWDWHVWUXFWXUDW
vQ UJUXSHGXS YDORULOHFDUDFWHULVWLFLL ;IDFWRUGHJUXSDUH úL
vQPJUXSHGXS YDORULOHYDULDELOHLDQDOL]DWH<UHJXODGHDGXQDUHDGLVSHUVLLORUVHSRDWHDSOLFD XWLOL]D úL GDF DYHP OD GLVSR]L LH IUHFYHQ HOH UHODWLYH vQ ORFXO IUHFYHQ HORU DEVROXWH FX FRQGL LD
ca: m
a)
∑
r
f . j = 1 úL ∑ f i. = 1 ;
j =1 r m
b)
i =1
∑ ∑ f ij
= 1;
i =1 j =1 r
c)
∑ f i. = 1 ;
i =1 m
d)
∑
j =1 m
e)
r
f ij = 1 úL ∑ f i. = 1 ;
∑ f ij
i =1
= 1.
j =1
27) Coeficientul lui Pearson β 2 =
µ4 µ 22
VHXWLOL]HD] SHQWUXDQDOL]DVWDWLVWLF D
a) asimetriei; b) YDULD LHL c) boltiri; d) WHQGLQ HLFHQWUDOH e) LQGLFDWRULORUPHGLLGHSR]L LH 28) ÌQ WHVWDUHD LSRWH]HL VWDWLVWLFH SULYLWRDUH OD SDUDPHWUXO ³PHGLD SRSXOD LHL´ UHJLXQHD FULWLF GDW GH t < − t α ;n −1 când:
HVWH
a) datele provin dintr-XQHúDQWLRQGHYROXPUHGXVúLVHHIHFWXHD] WHVWXQLODWHUDOVWkQJD b) datele provin dintr-XQHúDQWLRQGHYROXPUHGXVúLVHHIHFWXHD] WHVWXQLODWHUDOGUHDSWD c) datele provin dintr-XQ HúDQWLRQ GH YROXP QRUPDO VH FXQRDúWH GLVSHUVLD SRSXOD LHL úL V-a efectuat test unilateral stânga; d) datele provin dintr-XQHúDQWLRQGHYROXPUHGXVúLV-a efectuat test bilateral; e) datele provin dintr-XQHúDQWLRQGHYROXPQRUPDOúLV-a efectuat test bilateral. 29) Într-R VHULH GH GLWULEX LH QRUPDO
GXS R DQXPLW YDULDELO QXPHULF vQWUH YDORDUHD PHGLDQ
PRGDO úLPHGLHHVWHDGHY UDW UHOD LD
a) b) c) d) e)
x < Mo < Me ; Me < x < Mo ; x = Mo = Me ; x < Me < Mo ; Mo < Me < x .
Unde x PHGLDDULWPHWLF Me = mediana; Mo YDORDUHDPRGDO 30) 3HQWUXRUHSDUWL LHGHIUHFYHQ HFXWHQGLQ GHQRUPDOLWDWHV VHSUHFL]H]HFDUHGLQXUP DILUPD LLSULYLWRDUHODPHGLDVDQXHVWHDGHY UDW
a)
UHSUH]LQW SXQFWXOIRFDOGHSHVFDO vQMXUXOF UXLDYDORULOHVHEDODQVHD] SHUIHFW
WRDUHOH
n
b)
PLQLPL]HD] IXQF LDGHGLVWDQ
GHWLSXO
∑ (a − xi )
2
;
i =1
c) d) e)
HVWHSX LQVHQVLELO ODIOXFWXD LLOHGHVHOHF LH vQSURFHVXOLQIHUHQ HLVWDWLVWLFHHVWHGHRELFHLSUHIHUDW DOWRULQGLFDWRULDLWHQGLQ HLFHQWUDOH HVWHPDLSX LQDIHFWDW GHYDORULOHH[WUHPHGHFkWPHGLDQDúLPRGXO
31) 6HFXQRVFXUP WRDUHOHGDWHSULYLQGQXP noiembrie 1997:
UXOGHIDFWRULvQWRFPLWHGH6&$QRQLPXV65/vQOXQD
3RSXOD LDVWDWLVWLF VWXGLDW HVWHVWUXFWXUDW úLSUH]HQWDW vQ
a) Tabelul I; b) Tabelul II; c)Tabelul III; d) Tabelul IV; e) Tabelul V. Data 1 2 3 4 5 6 7 8 9 10
Nr. facturi 6 10 12 10 8 9 10 11 12 9
I Grupe de ]LOHGXS
QU
de facturi 0-5 6 - 11 11 - 15 16 - 20
Nr. zile
GXS
QUGH
facturi 0 -5 6 - 10 11 - 15 16 - 20
Nr. de zile
UXOXL]LOQLFGH
facturi (0-5] ( 5 - 10 ] (10 - 15 ] ( 15 - 20 ]
Nr. facturi 10 14 6 18 13 9 14 12 17 12
II Grupe de zile
1 13 13 3
IV Intervale ale QXP
Data 11 12 13 14 15 16 17 18 19 20
Nr. zile 1 16 10 3
Nr. facturi 14 12 11 10 8 4 12 9 12 16
III Intervale Nr. de timp facturi 0-6 7 - 14 15 - 22 23 - 30
V Intervale ale QXP
1 13 13 3
Data 21 22 23 24 25 26 27 28 29 30
55 90 103 82
Nr. de zile
UXOXLGH
facturi zilnice [0-5) [ 5 - 10 ) [10 - 15 ) [ 15 - 20 )
1 9 17 3
TESTUL 11
1)
1RW PFX
σ 2REV úLFX σ 2FREV GLVSHUVLLOHPHGLHLGH VHOHF LHvQFD]XULOH IRUP
ULLHúDQWLRDQHORU
vQYDULDQWHOHFXUHYHQLUHúLI U UHYHQLUH&RPSDUkQGFHOHGRX GLVSHUVLLV VHDSUHFLH]HFDUHGLQ
variantele de mai jos sunt corecte: 2 2 a) σ REV < σ FREV ; 2 2 b) σ REV > σ FREV ; 2 2 c) σ FREV = σ REV ; σ2 N −n d) FREV > ; 2 σ REV N −1 σ2 N −n e) FREV = . 2 σ REV N −1
2)
6HFRQVLGHU RSRSXOD LHVWDWLVWLF GHYROXP1 XQ QXP U QDWXUDO QHQXO /D XQLW
cu N = n ⋅ k ; unde n -YROXPXOHúDQWLRQXOXLúLN-
LOH GH REVHUYDUH V D XUP ULW YDULDELOD ; DOH F UHL YDORUL
individuale sunt x i = i (cu i=1,2,…,N).
'LVSHUVLDPHGLHLGHVHOHF LHvQFD]XOIRUP ULLHúDQWLRQXOXLvQYDULDQWDI U UHYHQLUHHVWH
a) b)
N +1 ; 2 N ( N + 1)
12
;
N ; 2 (k − 1)(N + 1)
c) (k − 1) d) e) 3)
12 (k − 1) 12
;
.
6HFRQVLGHU RSRSXOD LHVWDWLVWLF GHYROXP1FX XQ QXP U QDWXUDO QHQXO /D XQLW
N = n ⋅ k ; unde n -YROXPXOHúDQWLRQXOXLúLN-
LOH GH REVHUYDUH V-D XUP ULW YDULDELOD ; DOH F UHL YDORUL individuale sunt x i = i (cu i=1,2,…,N 3UHVXSXQHP F VH H[WUDJH OD vQWkPSODUH XQ QXP U ³a” vQWUH úL k ( a ∈ (1, k ) (IHFWX P R H[WUDJHUH PHFDQLF D HúDQWLRQXOXL FHHD FH vQVHDPQ F HúDQWLRQXOHVWHIRUPDWGLQXQLW LOH a , a + k ,.., a + ( n − 1) k . 'LVSHUVLDPHGLHLGHVHOHF LHHVWH
a)
(k − 1)(N + 1)
12 2 k −1 b) ; 12
;
k 2 − 1)N ( c) ; d) e)
12 (k − 1)N
;
12 N ( N + 1) 12
.
6 FRQVLGHU PFD]XOXQXLVRQGDMFXUHYHQLUH úLSUREDELOLW
în fiecare din cele n SUHOHY ( i = 1, N 3UHFL]
/D XQLW
UL XQLW
LOH
Ui ( i = 1, N
LOHLQHJDOH$FHDVWDvQVHDPQ F
VH UHJ VHVF vQ HúDQWLRQ FX SUREDELOLW
LOH GH REVHUYDUH V D XUP ULW YDULDELOD ; DOH F UHL YDORUL VXQW
-
ile Ai
xi ( i = 1, N ).
ULSHQWUXSUREOHPHOH úL
4) Suma T =
N
∑ Xi
HVWHHVWLPDW
i =1
[]
1 n xi a) nedeplasat de T = ∑ deoarece M Tˆ = T , unde cu M [] ⋅ s-a notat media; n i =1 Ai 1 n x b) deplasat de T = ∑ i deoarece M T − T ≠ 0 ; n i =1 Ai
[]
1 n x c) nedeplasat de T = ∑ i deoarece T = T ; n i =1 Ai 1 n x d) deplasat de T = ∑ i deoarece M 2 T − T 2 ≠ 0 ; n i =1 Ai
[]
1 n x e) nedeplasat de T = ∑ i deoarece M 2 T − T 2 = 0 . n i =1 Ai
[]
2
x 5) 1RW P FX D(x i / Ai ) = ∑ Ai i − T dispersia valorilor xi /Ai cu i = 1, N . Dispersia i =1 Ai estimatorului T este: N
x 1 N a) D T = ∑ Ai i − T n i =1 Ai
2
x 1 N b) D T = ∑ Ai i − T n i =1 Ai
2
() ()
≠
1 ∑ n i
=
2 1 xi − T2 ; ∑ n i Ai
2
xi2 −T2; Ai
x xj 1 2 x2 = ∑ i − 2T 2 ; c) D T = ∑ ∑ Ai A j i − ni j n i Ai Ai A j i< j
()
xi2 2 d) D T = ∑ + 2T 2 ; n i Ai
()
1 Nx e) D T = ∑ i − T n i =1 Ai
()
6)
2
=
2 1 N xi −T2. ∑ n i =1 Ai
$QDOL]kQGFRQGL LLOHIRUPXODWHOD úL VHFRQVWDW F HVWHDGHY UDW UHOD LD
x n a) D i = D T ; Ai N
()
b) D
xi n − N D T ; = Ai N − 1
()
x c) D i = nD T ; Ai
()
x d) D i = D T ; Ai
()
e) D
xi 1 = D T . Ai n
()
()
7) Un estimator nedeplasat pentru D T este: 2
()
n x 1 i − T ; ∑ n (n − 1) i =1 Ai
()
1 n ∑ n − 1 i =1
a) D T = b) D T =
2
xi − T ; Ai 2
N x 1 i c) D T = − T ; ∑ n( n − 1) i =1 Ai
()
()
n n x i
2
xj ; d) SUH]HQWDWvQYDULDQWDD úLvQSOXV D T = − ∑ ∑ A 2 A n (n − 1) i j i j 1
i< j
()
e) SUH]HQWDWvQYDULDQWDF úLvQSOXV D T =
N N x i
2
xj − ∑ ∑ A A . j i j i i< j
8)
&RPSDUkQG GLVSHUVLD HVWLPDWRUXOXL GLQ FD]XO VHOHF LHL FX SUREDELOLW SUREDELOLW
L LQHJDOH 'I
LHJDOH'EFRQVWDW PF UHOD LDDGHY UDW GLQXUP WRDUHOHYDULDQWHHVWH
a) DI > DEvQRULFHVLWXD LH
:
cu cel cu
b) DI < DE
∑
⇔
Nx i2 >
i
c) DI < DE
⇔
d) DI < DE
⇔
x i2 ∑A ; i i
1 GDF N 1 A i < GDF N Ai >
xi2 HVWHPDUHDGLF xi este corelat pozitiv cu Ai);
xi2 HVWHPLFDGLF xi este corelat pozitiv cu Ai);
e) DI = DE. 6 FRQVLGHU P FD]XO vQ FDUH ILHFDUH XQLWDWH VHOHFWDW vQ HúDQWLRQ PRGLILF FRQGL LLOH XUP WRDUHORU H[WUDJHUL DOH XQLW
primei unit XQLW
LORU vQ HúDQWLRQ 'HFL
L vQ HúDQWLRQ WUHEXLH V FXQRDúWHP DWXQFL
Ai1 HVWH GDF
SUREDELOLWDWHD GH H[WUDJHUH D
Ai2( j ) SUREDELOLWDWHD GH LHúLUH vQ HúDQWLRQ D
LORU 8i vQ D GRXD H[WUDJHUH GXS FH vQ SULPD H[WUDJHUH D DS UXW XQLWDWHD 8j
, etc. De exemplu,
GDF 8j HVWH VHOHF LRQDW OD SULPD H[WUDJHUH DWXQFL
Ai2( j ) =
Ai1
∑ Aα1
α≠ j
=
(
Ai1
1 − A1j
)
. Problema aceasta,
GHVWXO GH FRPSOLFDW D IRVW VWXGLDW WHKQLF úL SUDFWLF vQ GH +RURYLW] úL 7KRPSVRQ $VWIHO DX IL[DWGRX JUXSHGHQXPHUHSi
Uj úL 8j V
- probabilitatea ca UjV
ILJXUH]HvQHúDQWLRQúLSij
ILJXUH]H VLPXOWDQ vQ HúDQWLRQ $FHVWH SUREDELOLW
- probabilitatea ca
L VXQW QXPHUH VXEXQLWDUH úL vQ SOXV
UHVSHFW FRQGL LLOHXUP WRDUH
∑ pi
= n úL
∑ ∑ pij
= n ( n − 1)
ÌQ DFHVWH FRQGL LL HVWLPDWRUXO XQXL 7RWDO
N x THT = ∑ i i =1 pi
QXPLW úL HVWLPDWRUXO OXL +RURYLW]
- Thompson.
3UHFL]
ÌQFRQGL LLOHSUH]HQWDWHSUHFL]D LYDORDUHDGHDGHY UDDILUPD LLORUXUP WRDUH
a) THT este un estimator nedeplasat;
1 b) THT este un estimator deplasat cu THT ; 2
[ ] d) M [THT ] − THT = pi ; e) M [THT ] − THT = pij . c) M THT = THT ;
∑ x i este
UL SHQWUX SUREOHPHOH úL
10)). 9)
T=
i =1
i j i≠ j
i
N
10)ÌQFRQGL LLOHSUH]HQWDWHGLVSHUVLDHVWLPDWRUXOXL THT este: N p (1 − p ) pij − pi p j i a) D THT = ∑ i X i2 − ∑ ∑ Xi X j ; pi p j pi2 i =1 i j
[
]
i≠ j
N p (1 − p ) pij − pi p j i b) D THT = ∑ i X i2 + ∑ ∑ Xi X j ; 2 p p p i j i =1 i j i
[ ]
i≠ j
2
x xj 1 ; c) D THT = ∑ ∑ pi p j − pij i − 2i p p i j j
(
[ ]
)
i≠ j
[ ]
d) D THT =
[ ]
e) D THT =
N p (1 − p ) pij − pi p j i i X i2 : Xi X j ; 2 p p p i j i =1 i j i i≠ j 2 1 n n pi p j − pij xi x j
∑
∑ ∑
2i
i≠ j
11)1RW
P FX
∑∑
j
− . p p i j
pij
σ 2S úL FX σ 2STRAT GLVSHUVLD PHGLLORU GH VHOHF LH SHQWUX FD]XO VHOHF LHL VLPSOH úL
UHVSHFWLY SHQWUXFD]XO VHOHF LHL VWUDWLILFDWH &RPSDUkQGFHL GRL LQGLFDWRULFRQVWDW P YDORDUHD GH DGHY UDDILUPD LLORUXUP WRDUH
a) σ 2STRAT < σ 2S , deoarece media dispersiilor straturilor este mai mare decât dispersia JHQHUDO
b) σ 2STRAT < σ 2S , deoarece media dispersiilor straWXULORU vQ RULFH VLWXD LH HVWH PDL PLF
GHFkWGLVSHUVLDJHQHUDO FXFRQGL LDFDGLVSHUVLDGLQWUHVWUDWXULV ILHQHQXO
c) σ 2STRAT = σ 2S GHRDUHFH PHGLD GLVSHUVLLORU VWUDWXULORU HVWH HJDO
FX GLVSHUVLD GLQWUH
straturi;
d) σ 2STRAT − σ 2S V ILHPDLPLF GHFkWGLVSHUVLDGLQWUHVWUDWXUL e) FRPSDUDUHDFHORUGRX GLVSHUVLLHVWHOLSVLW GHVHQV 12)6H FRQVLGHU
F
σ 2STRAT HVWH GLVSHUVLD PHGLHL GH VHOHF LH vQ FD]XO VHOHF LHL VWUDWLILFDWH SH
straturile “h” (cu h = 1, m ). SHQRWHD] VLWXD LHGLVSHUVLDHVWHPD[LP
a) b)
h
FX
nh volumul stratului h
GDF
n1 = n 2 = ... = n h = ... = n m ; n1 ≠ n 2 ≠... ≠ n h ≠... ≠ n m ;
⇒n=
m
∑ nh
h =1
ÌQDFHDVW
Nh c) n h = pentru (∀)h = 1, m ; m ∑ Nh h =1
d) n1 ≠ n 2 úL n 3 = n 4 =... = nh =... = n m ; e) N 1 = N 2 =... = N h =... = N m .
TESTUL 12*)
1) Estimatorul unui parametru θ
a)
VHQRWHD] FX
θ $FHVWHVWLPDWRUHVWHQHGHSODVDWGDF
GLIHUHQ D GLQWUH PHGLD VD úL YDORDUHD SDUDPHWUXOXL HVWH GLIHULW GH ]HUR GDU DFHDVW GLIHUHQ
QXGHS úHúWHGLQYDORDUHDSDUDPHWUXOXL
b) GLVSHUVLD VD HVWH PLQLP
()
D θ → 0 FkQG YROXPXO HúDQWLRQXOXL WLQGH F
WUH YROXPXO
SURGXF LHL n → N ); c) GLVSHUVLDVDHVWHPLQLP SHQWUXRULFHYROXPIL[DWDOHúDQWLRQXOXL d) mHGLDVDHVWHHJDO FXYDORDUHDSDUDPHWUXOXL M θ → θ );
()
e) 2)
GLVSHUVLDVDHVWHPD[LP
6 VH SUHFL]H]H FDUH GLQ VHULLOH GH UHSDUWL LH FDUDFWHUL]DWH SULQ XUP WRDUHOH VHWXUL GH YDORUL SUH]LQW RDVLPHWULHSR]LWLY
a) b) c) d) e)
x = 40 u.m ; Me = 40 u.m.; Mo = 40 u.m.; x = 2500 u.m ; Me = 3000 u.m.; Mo = 3300 u.m.; x = 151,25 u. m ; Me = 138,75 u.m.; Mo = 112,58 u.m.; x = 180 u.m 0H
XP0R
XPúLXP
x = Me = Mo = 0
3) Scala de interval:
a) DUHWRDWHFDUDFWHULVWLFLOHVFDOHORURUGLQDOHúLGHUDSRUW b) DUH WRDWHFDUDFWHULVWLFLOH VFDOHL RUGLQDOH úL vQ SOXV GLVWDQ D GLQWUH GRX
QXPHUH DOH VFDOHL
DUHRVHPQLILFD LHFRQFUHW
c)
HVWH R VFDO QXPHULF úL vQ SOXV UDSRUWXO GLQWUH GRX SXQFWH DOH
scalei este independent
GHXQLWDWHDGHP VXU
d) SUH]LQW PXOWHGLQFDUDFWHULVWLFLOHVFDOHLRUGLQDOH e) PDLHVWHGHQXPLW úLVFDO GHUDSRUWVDXVFDO GLVFUHW 4)
3HQWUX FRQVWUXLUHD LQGLFLORU GH JUXS VH XWLOL]HD] PDL PXOWH VLVWHPH GH SRQGHUDUH ,QIOXHQ D
sistePXOXLGHSRQGHUDUHXWLOL]DWSRDWHILSXVvQHYLGHQ
a) XWLOL]kQGH[FOXVLYFRHILFLHQWXOGHFRUHOD LHDOLQGLFLORULQGLYLGXDOLDLIDFWRULORU[úLI b) DQDOL]kQGFRHILFLHQ LLGHYDULD LHDLFHORUGRX FDWHJRULLGHLQGLFLLQGLYLGXDOLV x ; V f );
i i x ( f1 ) x ( f 0 ) c) utilizând valorile raportului I 1/ 0 : I 1/ 0 = V x V f r x f , unde r x f este coeficientul i i i i i i GHFRUHOD LH
x( f )
x( f )
d) XWLOL]kQGUHOD LD I 1/ 0 1 : I 1/ 0 0 = 1 + r x f V x V f ; i i i i e)
XWLOL]kQGUHOD LD
x( f )
6XELHFW OD H[DPHQXO GH OLFHQ
*)
x( f )
I 1/ 0 1 + I 1/ 0 0 = 1 + r x f V x V f . i i i i
OD GLVFLSOLQD ³7HRULD VWDWLVWLFLL´ OD IDFXOWDWHD GH &LEHUQDWLF 6WDWLVWLF úL
,QIRUPDWLF (FRQRPLF VSHFLDOL]DUHD6WDWLVWLF 6HVLXQHD0DL
-
5)
6HFRQVLGHU XQWDEHOGHFRQWLQJHQ
{[(x , y )n ]; j ∈ J , k ∈ K} j
k
jk
reduse U j =
xj − x
σx
úL
Vk =
FRUHOD LH vQIRUPDVDJHQHUDO
'DF SH ED]D WDEHOXOXL FRQVLGHUDW FDOFXO P YDORULOH FHQWUDWH úL
yk − y ( cu x úL y mediile variabLOHORU;úL<LDU σ x úL σ y abaterile σy
VWDQGDUG DOH YDULDELOHORU ; úL < DWXQFL FRYDULDQ D GLQWUH YDULDELOHOH ; úL < QRWDW FX &RY;<
este: a) Cov ( X , Y ) ≠ σ x σ y Cov (U ,V ) ; b) Cov ( X , Y ) =
Cov (U ,V ) ; σ xσ y
c) Cov ( X , Y ) = σ x σ y Cov (U ,V ) ; d) Cov ( X , Y ) − Cov (U ,V ) = σ xσ y ; e) Cov ( X , Y ) = σ U σ V Cov (U ,V ) . 6)
5HIHULWRUODDFWLYLWDWHDHFRQRPLF DXQHLVRFLHW
Unitatea
LFRPHUFLDOHVHFXQRVFXUP WRDUHOHGDWH
9DORDUHDSURGXF LHL PLOOHLSUH XULFXUHQWH
Perioada ED]
A B
1200 875
Perioada
Modificarea valorii SHVHDPDPRGLILF SUH XULORU
ULL
(mil. lei)
FXUHQW
1850 1600
350 275
0RGLILFDUHD UHODWLY D YDORULL SURGXF LHL OD QLYHOXO vQWUHJLL VRFLHW
L FDX]DW GH PRGLILFDUHD
YROXPXOXLIL]LFDOSURGXF LHLvQWUHFHOHGRX SHULRDGHDIRVWHJDO FX
a) -12,5%; b) +100,0%; c) +36,1%; d) +136,1%; e) -112,5%. 7)
ÌQFD]XOXQHLREVHUY ULVWDWLVWLFHDOF UXLVFRSHVWH³IRWRJUDILHUHD´]LOHLGHOXFUXDXQXLOXFU WRU
a) WLPSXOREVHUY ULLFRLQFLGHFXWLPSXOODFDUHVHvQUHJLVWUHD] GDWHOH b) WLPSXOREVHUY ULLQXFRLQFLGHFXWLPSXOODFDUHVHvQUHJLVWUHD] GDWHOH c) WLPSXOREVHUY ULLVHUHIHU ODGXUDWDV SW PkQLLGHOXFUXDOXFU WRUXOXL d) SUHFL]DUHDWLPSXOXLREVHUY ULLQXDUHVHQV e) WLPSXO REVHUY ULL HVWH PRPHQWXO FULWLF ³RUD ]HUR´ D ]LOHL vQ FDUH OXFU WRUXO VH SUH]LQW
OD
lucru. 8)
$QDOL]D LXUP WRDUHOHSRSXOD LLVWDWLVWLFH SRSXOD LD%XFXUHúWLXOXLODLXOLH SRSXOD LD GLQ5RPkQLDGLQPHGLXOXUEDQOD LXOLH PXO LPHD IDFWXULORUHODERUDWH GH6&³,&6´ 65/vQWULP, PXO LPHDF V WRULLORUvQFKHLDWHvQ5RPkQLDvQ P UIXULDOvQWUHSULQGHULORUPLFLúLPLMORFLLODVIkUúLWXODQXOXL
anul 1997; 5) stocurile de
3RSXOD LLVWDWLVWLFHGLQDPLFHVXQW
a) úL b) úL c) úL d) úL e) úL 9)
6H
úWLH
F
σ 2y =
Yi = b0 + b1 xi 'DF
(
c) σ 2y.x > σ 2y d) σ 2y.x > σ 2y e) σ 2y.x < σ 2y 10) 2 YDULDELO
(
)
úL
σ Y2 =
(
)
2 1 Yi − y ∑ n i
unde
UHVWHFRHILFLHQWXOGHFRUHOD LHGLQWUHYDULDELOHOH<úL;DWXQFL
( (1 − r (1 − r (1 − r (1 − r
a) σ 2y.x = σ 2y 1 − r 2 b) σ 2y .x = σ 2y
)
2 2 1 1 yi − y ;σ 2y.x = ∑ yi − Yi ∑ r i n i
2 2
2 2
) ) ) ) )
úL
úL
σ 2y = σ 2y .x + σ Y2 ;
σ 2y < σ 2y .x + σ Y2 ;
úL
σ 2y = σ 2y .x + σ Y2 ;
úL
σ 2y < σ 2y .x + σ Y2 ;
úL
σ 2y > σ 2y .x + σ Y2 .
FRPSOH[ < HVWH H[SULPDW vQ IXQF LH GH IDFWRULL [ ] X Y J K Z S DOH F URU
LQIOXHQ HWUHEXLH L]RODWH5HOD LDRELHFWLY GLQWUH< úLIDFWRULL V LILLQGPXOWLSOLFDWLY SHUPLWHR
descompunere în trepte de forma: Y
Â]
= x
u
v
g
p
w
h
cu y = x ⋅ z = u ⋅ v ⋅ z = u ⋅ v ⋅ g ⋅ p = u ⋅ v ⋅ g ⋅ w ⋅ h ÌQWUH LQGLFHOH YDULDELOHL < úL LQGLFLL YDULDELOHORU IDFWRULDOH GDF VH XWLOL]HD] WHKQLFD VXEVWLWXLULLvQO Q XLWHQXH[LVW UHOD LD
a) I y = I y ( x) ⋅ I y ( z) ; b) I y = I y ( z) ⋅ I y ( u) ⋅ I y ( v ) ; c) I y = I y ( u) ⋅ I y ( v ) ⋅ I y ( g ) ⋅ I y ( w) ⋅ I y ( h ) ; d) I y = I y ( x ) ⋅ I y ( g ) ⋅ I y ( w) ⋅ I y ( h ) ; e) I y − I y ( u) ⋅ I y ( v ) ⋅ I y ( g ) ⋅ I y ( w) ⋅ I y ( h) ≠ 0 .
11) (YROX LD3URGXVXOXL,QWHUQ%UXWSHORFXLWRUvQSHULRDGD-VHSUH]LQW Anii ID
GHDQXOSUHFHGHQW
1994 14,0
1995 +7,3
1996 +4,4
DVWIHO
1997 -6,3
0HGLDDQXDO DHYROX LHLSURFHQWXDOHHVWHGH
a) -0,09%; b) 102,0%; c) 201,3%; d) +2,21%; e) +4,35%. 12) 1RW
P FX
σ 2R úL FX σ 2F GLVSHUVLLOH PHGLLORU GH VHOHF LH SHQWUX SURFHGHHOH GH IRUPDUH D
HúDQWLRDQHORU vQ YDULDQWHOH FX UHYHQLUH úL I U UHYHQLUH &RPSDUkQG FHL GRL LQGLFDWRUL UHOD LD FRUHFW HVWH
a) σ 2R > σ 2F ; b) σ 2F > σ 2R ; c) σ 2R = σ 2F ;
1 d) σ 2F = σ 2R ; 2 e) σ 2F = σ 2R
YROXPXOHúDQWLRQXOXL
13) Inegalitatea dintre aEDWHULOH VWDQGDUG DOH XQHL YDULDELOH ; QRUPDO UHSDUWL]DWH vQ SRSXOD LLOH VWDWLVWLFH GH DFHODúL YROXP úL DFHHHDúL PHGLH
varianta: a)
x , σ 1 > σ 2 > σ 3 HVWH YL]XDOL]DW b)
3
3 2
1 2
1
c)
d) 1
2 3 2 3
1
vQ
e) 2
1 3
14) 6H FXQRDúWH IDSWXO F 6& ³,&6´ 65/ D UHDOL]DW vQ OXQD ,$1 ¶ R FLIU GH DIDFHUL GH POG lei, iar în perioada IAN ’97 - APR ’98 a cunoscut o modificarePHGLHOXQDU GHPOGOHLÌQ ipoteza în care în perioada MAI ’98 - ,81 ¶ vQUHJLVWUHD] DFHHDúL HYROX LH FD DFHHD GLQ ,$1 ’97 -$35¶YDORULOHHVWLPDWHDOHFLIUHLGHDIDFHULvQOXQLOHPDLLXQLHúLLXOLHVXQW
a) POGOHLPOGOHLúL mld. lei; b) POGOHLPOGOHLúLPOGOHL c) POGOHLPOGOHLúLPOGOHL d) POGOHLPOGOHLúLPOGOHL e) POGOHLPOGOHLúLPOGOHL 15) 'DF
vQWUH GRX YDULDELOH < úL ; QX H[LVW QLFL R OHJ WXU YDULDEL
lele sunt independente)
FRHILFLHQWXOGHFRUHOD LHHVWHHJDOFX]HUR5HFLSURFDDFHVWHLDILUPD LL
a) HVWHIDOV b) HVWHDGHY UDW c) HVWHDGHY UDW GRDUGDF GLVSHUVLLOHFHORUGRX YDULDELOHVXQWHJDOH d) HVWHDGHY UDW GRDUGDF FHOHGRX GLVWULEX LLIRUPDOHGXS ;úL<VXQWQRUPDOH e) HVWH DGHY UDW GRDU GDF GDWHOH FHORU GRX YDULDELOH VXQW VLVWHPDWL]DWH vQWU-un tabel de FRQWLQJHQ
FRUHOD LH
16) La un punct comercial din vânzarea unui produs s-a realizat în luna APR ’98 o încasare de 8 mil. lei. Ca urmare a major ULL SUH XOXL ID GH OXQD $35 ¶ vQFDV ULOH GLQ OXQD $35 ¶ DX FXQRVFXWRFUHúWHUHGHOHL&DUHDUILIRVWvQFDV ULOHOXQLL$35¶GDF SUH XOQXV-ar fi modificat?
a) 7,7 mil. lei; b) 7,3 mil. lei; c) 5 mil. lei; d) 6 mil. lei; e) 7 mil. lei. 17) ÌQHYROX LDVDvQGHOXQJDW
VWDWLVWLFDV
-a dezvoltat continuu atât sub aspectul obiectului de studiu
GDU PDL DOHV DO SHUIHF LRQ ULL úL GLYHUVLILF ULL PHWRGHORU GH DERUGDUH D DFHVWXL RELHFW ÌQ WRDWH PRPHQWHOHGH]YROW ULLVDOHVWDWLVWLFDVHRFXS GH
a) fenomene care se proGXFODRDQXPLW XQLWDWHGHREVHUYDUH b) IHQRPHQHFDUHVHUHSURGXFvQPRGLGHQWLFODXQLW LOHGHREVHUYDUH c) fenomene care se produc într-XQ QXP U PDUH GH FD]XUL úL DOH F URU IRUPH LQGLYLGXDOH PDQLIHVW DQXPLWHUHJXODULW
L
d) fenomene exclusiv economice; e) fenoPHQHFDUHDXODRULJLQHDSURGXFHULLORUXQVLQJXUIDFWRUGHLQIOXHQ
18) $QDOL]D L
XUP WRDUHOH
QR LXQL
$XWRQRPLH
FRQILGHQ LDOLWDWH
WUDQVSDUHQ
VSHFLDOL]DUH SURSRU LRQDOLWDWH GHRQWRORJLH SURIHVLRQDO LQGHSHQGHQ
elDERUDUHDGHFL]LLORU DUJXPHQWDUHDDF LXQLORUGXS 11) observare.
SROLWLF
GHFODQúDUHDORU SUHOXFUDUHDGDWHORU
$FWLYLWDWHDVWDWLVWLFLLSXEOLFHWUHEXLHV VHGHVI úRDUHUHVSHFWkQGXUP WRDUHOHSULQFLSLL
a) úL b) úL c) 3, úL d) úL e) úL 19) 6WDELOL L YDULDQWD GH DGHY
U D DILUPD LHL XUP WRDUH 5HFHQV PkQWXO FD PHWRG GH REVHUYDUH
VWDWLVWLF
a) QXSUHVXSXQHFXOHJHUHDGDWHORUGHODWRDWHXQLW LOHSRSXOD LHLVWDWLVWLFHELQHGHOLPLWDW b) are exclusiv un caracter demografic; c) VHvQFDGUHD] vQVIHUDREVHUY ULORUFXFDUDFWHUSHUPDQHQW d) VHRUJDQL]HD] FXRDQXPLW SHULRGLFLWDWH e) VH RUJDQL]HD] RUL GH FkWH RUL 6WDWLVWLFD 218 GHFODQúHD] DF LXQHD GH HIHFWXDUH D UHFHQV PLQWHORUvQ
ULOH
membre.
20) *UDILFHOHVWDWLVWLFHWUDVDWHvQFRRUGRQDWHSRODUHVHXWLOL]HD]
vQPRGFXUHQWSHQWUXYL]XDOL]DUHD
a) RULF UHLVHULLGHGDWHVWDWLVWLFH b) VHULLORUGHUHSDUWL LH c) WUHQGXOXLWHQGLQ HL GLQHYROX LDvQWLPSDXQXLIHQRPHQ d) HYROX LDvQWLPSDXQXLIHQRPHQDIHFWDW GHRVFLOD LLVH]RQLHUH e) WHQGLQ HLOHJ WXULLGLQWUHYDULDELOHúLSHQWUXDOHJHUHDPRGHOHORUGHUHJUHVLH 21) 6H FXQRDúWH IDSWXO F
vQWU R UDPXU GH DFWLYLWDWH YDULDELOD ³VDODULXO PHGLX EUXW´ < HVWH
-
GHSHQGHQW SULQWUH DOWHOH GH ³JUDGXO PHGLX DO vQGHSOLQLULL QRUPHORU´ ; úL ³JUDGXO PHGLX GH vQ]HVWUDUH WHKQLF D PXQFLL´ ; &RQWULEX LD FHORU GRL IDFWRUL ; úL ; OD YDULD LD VDODULXOXL PHGLXEUXW\ HVWHHVWLPDW SULQ
a) R y2/ x x = ry2/ x + ry2/ x ; 1 2 1 2 b) R y / x x = 1 2
r y2/ x + r y2/ x − 2ry / x ry / x rx1x2 1 2 1 2 1 − rx2 x 1 2
;
c) R y / x x = r y2/ x + ry2/ x − 2ry / x ry / x rx1x2 ; 1 2 1 2 1 2 d) rx1x2 = 0 ; e) R y / x x = 1 2
r y2/ x + ry2/ x 1 2 1 − rx2 x
.
1 2
127
r -FRHILFLHQWXOGHFRUHOD LHOLQLDU
22) Prin AUDIT-ul financiar efectuat în luna ianuarie 1998 la S.C. “ICS” SRL s-D FRQVWDWDW F vQ IDFWXULOH HODERUDWH vQ H[LVW DQXPLWH HURUL vQ FDOFXOXO 79$-ului FDUH DX DYXW GUHSW VXUV QHFXQRDúWHUHD PHWRGRORJLHL GH FDOFXO D 79$-XOXL OD XQHOH SURGXVH DSUR[LP UL HURQDWH GHIHF LXQLDOHPLMORFXOXLWHKQLFGHFDOFXOHWF 3RSXOD LDVWDWLVWLF VWXGLDW HVWH
a) ansamblul facturilor elaborate de S.C. “ICS” SRL; b) ansambOXOSURGXVHORUúLVHUYLFLLORUUHDOL]DWHGH6&³,&6´65/SkQ OD;,, c) DQVDPEOXO SURGXVHORU úL VHUYLFLLORU UHDOL]DWH GH 6& ³,&6´ 65/ GHVI FXWH SH SLD
úL
IDFWXUDWHSkQ OD;,,
d)
DQVDPEOXO SURGXVHORU úL VHUYLFLLORU UHDOL]DWH SHQWUX D IL GHVI FXWH SH SLD
GH 6& ³,&6´
65/IDFWXUDWHSkQ OD;,,úLODFDUHVHSHUFHSH79$
e)
DQVDPEOXO IDFWXULORU HODERUDWH GH 6& ³,&6´ 65/ SkQ OD ;,, SHQWUX SURGXVHOH úLVHUYLFLLOHUHDOL]DWHúLGHVI FXWHSHSLD
23) G.U<XOH
úLODFDUHVHSHUFHSH79$
SUHFL]HD] F LQGLFDWRULL UHSDUWL LLORU VWDWLVWLFH WUHEXLH V vQGHSOLQHDVF
XUP WRDUHOHFRQGL LL V ILHGHILQL LvQPRGRELHFWLY V GHSLQG GHWRDWHGDWHOHGLQVHUL V DLE VHPQLILFD LL FRQFUHWH V ILH VLPSOX GH FDOFXODW V ILH SX LQ VHQVLELOL OD IOXFWXD LLOH GH VHOHF LH V VHSUHWH]HXúRUODFDOFXOHDOJHEULFH $FHVWHFRQGL LLvQWRWDOLWDWH
a) sunt respectate de medie; b) sunt respectate de dispersie; c) VXQWUHVSHFWDWHGHFRYDULDQ d) VXQWUHVSHFWDWHGHYDORDUHDPRGDO e) nu sunt rHVSHFWDWHGHQLFLXQLQGLFDWRUDOWHQGLQ HLFHQWUDOHVDXDOYDULD LHL 24) /X
PvQFRQVLGHUDUHXQWDEHOGHFRQWLQJHQ
OXL<FRQGL LRQDWHGH;
{(y , n ), j k
jk
dispersiile:
y (x j ) =
1 n j.
unde n j . = ∑ n jk
∑y n k
k
jk úL
( )
σ 2y x j =
FRUHOD LH
{[(x , y ), n ]j ∈ J , k ∈ K } j
k
jk
fixat , k ∈ K}3HQWUXDFHVWHDGLQXUP
[
úLGLVWULEX LLOH
VHFXQRVFPHGLLOHúL
( )]
2 1 yk − y x j n jk ∑ n j. k
HVWH HIHFWLYXO IUHFYHQ D PDUJLQDO DVRFLDW YDULDQWHL [M D YDULDELOHL ; ÌQ
k
IXQF LH GH HOHPHQWHOH SUH]HQWDWH vQ LSRWH] GLVSHUVLD YDULDELOHL <
varianta:
( )
[( ) ]
2 1 1 n j .σ 2y x j + ∑ n j . y x j − y ; ∑ n j n j 2 1 b) σ 2y < ∑ n j. y x j − y ; n j
a) σ 2y =
[( ) ] ( )
c) σ 2y <
1 ∑ n j.σ 2y x j ; n j
d) σ 2y =
2 1 1 n j.σ 2y x j − ∑ n j. y x j − y ; ∑ n j n j
( )
[( ) ]
σ 2y VH SUH]LQW
FRUHFW vQ
e) σ 2y >
[( ) ]
( )
2 1 1 n j .σ 2y x j + ∑ n j . y x j − y . ∑ n j n j
FXFRYDULDQ DGLQWUH<úLFHLODO LIDFWRULGHLQIOXHQ
25) 3HQWUX GRX HFXD LD
FXH[FHS LDIDFWRUXOXL;
YDULDELOH VWDWLVWLFH D F URU WHQGLQ
GH
UHJUHVLH
y i = 25 − 0,7 x i
úL
D GHSHQGHQ HL VWDWLVWLFH D IRVW PRGHODW SULQ
VH
PDL
FXQRVF
GLVSHUVLLOH
σ 2x = 2603,04 úL
σ 2y = 1896,6 &RHILFLHQWXOGHFRUHOD LHDUHYDOoarea: a) 0,82; b) 0,96; c) -0,96; d) -0,59; e) -0,82. 26) 'DF
vQWUH FXDUWLOHOH FDOFXODWH SHQWUX R VHULH GH UHSDUWL LH H[LVW UHOD LD
Q2 = (Q1 + Q3 ) / 2
DWXQFLUHSDUWL LDHVWH
a) DVLPHWULF VSUHYDORULOHPDUL b) DVLPHWULF VSUHYDORULOHPLFL c) QRUPDO d) KLSHUEROLF e) bidimHQVLRQDO 27) 9HULILFDUHDFRQFRUGDQ HLGLQWUHUHSDUWL LDHPSLULF
RE LQXW vQWU RFHUFHWDUHFRQFUHW úLUHSDUWL LD
-
WHRUHWLF SUHVXSXV VH HIHFWXHD] FX DMXWRUXO PDL PXOWRU WHVWH ([SUHVLD
k
(ni − npi )2
i =1
np i
∑
UHSUH]LQW VWDWLVWLFDWHVWXOXL
a) Shapiro-Wilk; b) Lilliefors; c) Hi-S WUDW χ 2 ); d) Kolmogorov - Smirnov; e) Gnedenko. 28) 2JUXS
GHGHVWXGHQ LVXV LQHODGRX GLVFLSOLQHFkWHXQWHVWSHQWUXYHULILFDUHDFXQRúWLQ HORU
7HVWHOHDXSXQFWDMHGLIHULWHLDUSHED]DORUVHFXQRDúWHF
25
2 - la testul A: ∑ xiA = 9000
25
∑ xiA = 450
i =1 25
i =1 25
i =1
i =1
2 - la testul B: ∑ xiB = 425
∑ xiB = 100
*UXSDGHVWXGHQ LHVWHPDLRPRJHQ GLQSXQFWXOGHYHGHUHDOFXQRúWLQ HORUDFXPXODWH
a) la disciplina A; b) la disciplina B; c) la ambele disciplLQHH[LVW
DFHODúLJUDGGHRPRJHQLWDWH
d) QXVXQWVXILFLHQWHGDWHSHQWUXDILVWXGLDW RPRJHQLWDWHD e) QX VH SRW FRPSDUD RPRJHQLW LOH FXQRúWLQ HORU OD FHOH
GRX GLVFLSOLQH GHRDUHFH
punctajele testelor au fost diferite. 29) (YROX LDQXP
UXOXLGHERYLQHúLYROXPXOSURGXF LHLGHFDUQHDXHYROXDWDVWIHO
Anii Nr. bovine (mii) Prod. carne (mii tone)
1990 5381 2232
1991 4355 2023
1992 3683 1895
1993 3597 1935
1994 3481 1852
1995 3496 1846
1996 3435 1868
1997 3431 1871
'HSHQGHQ D GLQWUH FHOH GRX YDULDELOH VH P VRDU FX DMXWRUXO FRHILFLHQWXOXL 6SHDUPDQ DOH F UXLYDORULVXQW
a) 0,738; b) 0,901; c) -0,675; d) 0,991; e) 0,307. 30) Media ( x XQXL HúDQWLRQ GH PDUH YROXP Q SRDWH IL FRQVLGHUDW QRUPDO GHPHGLH
x 0 úLDEDWHUHPHGLHS
WUDWLF HURDUHPHGLH
F XUPHD] R GLVWULEX LH
σ în cazul unui sondaj simplu n
cu revenire. Pentru o probabilitate 1− α intervalul de estimare (de încredere) a parametrului
σ 3HQWUXFDSUHFL]LDHVWLPD LHLV n x 0 YROXPXOHúDQWLRQXOXL k ∈ (0;1) ) este: x 0 este x − x 0 ≤ zα
ILHPDLPLF FX
zα2 σ 2 a) n ≤ ⋅ ; k 2 x 20 b) n ≥
zα2 k
c) n =
2
(CV )2
σ2 k2 x0
XQGH&9HVWHFRHILFLHQWXOGHYDULD LH
;
z 2 k 2σ 2 d) n = α ; x0 e) Q!XQLW LvQRULFHVLWXD LH
k% din valoarea lui
TESTUL 13
5HFHQV PkQWXOSRSXOD LHLHVWH D RREVHUYDUHWRWDO XQLF E RREVHUYDUHWRWDO LQWHJUDO SHULRGLF F RREVHUYDUHFXUHQW SHULRGLF
d) o observare curHQW
GHRVLQJXU GDW
H RREVHUYDUHSHULRGLF SDU LDO
2) (URULOHGHUHSUH]HQWDWLYLWDWHVXQWVSHFLILFHFHUFHW
ULORU
a) prin sistemul rapoartelor statistice; b) prin sondaj; F SULQUHFHQV PkQW G SULQREVHUYDUHDS U LLSULQFLSDOH
e) prin monografii.
3) 3URSULHWDWHDGHWHUPLQDQW
DYDULDELOHL[vQED]DF UHLDVHGHWHUPLQ PHGLDDULWPHWLF HVWH
a) f ( x 2 , x 2 , ... , x 2 ) = f ( x12 , x 22 , ... , x 2n ) ; b) f ( x1 , x2 , ... , xn ) = f ( x , x , ... , x ) ;
c) f ( x1 , x22 , ... , xnn ) = f ( x , x , ... , x ) ; d) f ( x1m , xm2 , ... , xmn ) = f ( x1 , x2 , ... , xn ) ; e) f ( x1 , x2 , ... , xn ) = f ( x1 , x2 , ... , xn ) .
4) 6HFXQRVFGDWHFRQYHQ LRQale referitoare la valorile unei caracteristici: Grupe
)UHFYHQ H
9,0 - 9,5
3
9,5 - 10,0
1
10,0 - 10,5
42
10,5 - 11,0
23
11,0 - 11,5
9
11,5 - 12,0
1
12,0 - 12,5
1
Total
n = 80
&XQRVFkQG F PHGLD DULWPHWLF D FDUDFWHULVWLFLL [ HVWH RPRJHQLWDWHYDULD LH HVWHGH
a) 4,62 %;
XQLW
L FRHILFLHQWXO GH
b) 13,32 %; c) 22,19 %; d) 23,32 %; e) 14,62 %.
5) 6WDELOLUHDLQGLFHOXLSUH XULORUEXQXULORU GHFRQVXPVHIDFHGXS
UHOD LD
∑ q1 p1 a) ∑ q1 p0 ; ∑ p1 ( q1 + q0 ) b) ∑ p0 ( q1 + q0 ) ;
∑ p1 q0 ∑ p1 q1 ⋅ ∑ p0 q0 ∑ p0 q1
c)
∑ i p q0 p0 d) ∑ q0 p0 ; ∑ q1 p1 1 ∑ p q1 p1 e) i .
;
6) )DFWRUXO GH FRUHF LH LQWURGXV vQ FDOFXOXO HURULL DEDWHULL PHGLHL GH VRQGDM vQ YDULDQWD SUHOHY QHUHSHWDWHDXQLW
LORUHVWHHJDOFX
σ2 a) n ; b) 1 - (n / N) ; 1 c) N - 1 ; 1 d) N ; e)
1 1 / n N .
7) &XQRVFkQGUHSDUWL LDYDULDELOHL[ )UHFYHQ H
Grupe 1,1 - 1,3 1,3 - 1,5 1,5 - 1,7 1,7 - 1,9
6 9 4 1
∑ ni
Total valoarea quantilei doi (Q2 HVWHHJDO a) 1,375; b) 1,51; c) 1,40;
FX
= 20
ULL
d) 1,45; e) 1,55.
8) 6HFXQRVFXUP
WRDUHOHGDWHFRQYHQ LRQDOH DVXSUDUHSDUWL LHLXQHLFDUDFWHULVWLFL
)UHFYHQ H
Grupe 11,0 - 13,0 13,0 - 15,0 15,0 - 17,0 17,0 - 19,0 Total
12 18 8 2 n = 40
'DWH ILLQG YDORDUHD PRGDO 0R [mo
) = 13,75; valoarea medie = 14,0, coeficientul de asimetrie
(Pearson) are valoarea: a) 0,377; b) 0,677; c) 1,377; d) 0,963; e) 0,09.
9) ÌQ OHJ
WXU FX H[HUFL LXO DQWHULRU VH FHUH V VH GHWHUPLQH GLVSHUVLD FDUDFWHULVWLFLL DOWHUQDWLYH
ELQDUH QXP UXQLW
LFXYDORULPDLPDULFD
'LVSHUVLDDFHVWHLFDUDFWHULVWLFLHVWHHJDO FX
a) 0,1875; b) 0,2875; c) 0,0912; d) 1,1725; e) 0,5000.
10) Se cunosc GDWHFRQYHQ LRQDOH DVXSUDYROXPXOXLYkQ]
ULORUvQOXQD PDUWLH OD6&*,*,
,03(;VUOSHQWUXWUHLSURGXVHGLQQRPHQFODWRUFkWúLPRGLILFDUHDSUH XULORU
Produsul
Valoarea vânz rilor în
Modificarea procenWXDO
SHULRDGDFXUHQW PLLOHL
SUH XULORU
13.860 51.300 57.200 Σ= 122.360
+ 5,0 - 10,0 + 10,0 X
1 2 3 TOTAL
D
0RGLILFDUHD DEVROXW D YROXPXOXL YkQ] ULORU FDX]DW GH PRGLILFDUHD SUH XULORU OD FHOH WUHL SURGXVHDIRVWHJDO FX
a) 0 (zero) mii lei; b) - 80,0 mii lei; c) + 160,0 mii lei; d) + 180,0 mii lei; e) - 102,0 mii lei.
11) &XQRVFkQG UH]XOWDWHOH FHUFHW
ULL FDUDFWHULVWLFLL ; GLQWU-XQ VRQGDM Q XQLW L SUHOHYDWH 2 XQLW LúLDQXPH = 17,45 u.m., respectiv S = 0,61 u.m., pentru o probabilitate P = 95 % (Za LQWHUYDOXOGHvQFUHGHUHSHQWUXPHGLDSRSXOD LHL DOHDWRUúLQHUHSHWDWGLQWU RSRSXOD LH1
JHQHUDOHHVWHHJDOFXYDORULURWXQMLWHFXGRX ]HFLPDOH
a) (17,01 ; 17,93); b) (16,25 ; 19,73); c) (10,63 ; 22,75); d) (14,29 ; 21,33); e) (17,29 ; 17,61).
12) 6H FXQRVF XUP
WRDUHOH GDWH FRQYHQ LRQDOH UHIHULWRDUH OD YDORDUHD YkQ] ULORU SHQWUX GRX
SURGXVHvQ SHULRDGD GHED] UHVSHFWLY LQGLFLL SUH XULORU úL PRGLILFDUHD SURFHQWXDO D YROXPXOXL
fizic. ,QGLFHOHSUH XULORU
0RGLILFDUHDSURFHQWXDO D
SHULRDGDGHED] POGOHL
(%)
volumului fizic (%)
1
10
130
0
2
12
100
0
Total
S = 22
X
X
Produsul
Valoarea vânz
ULORUvQ
0RGLILFDUHD UHODWLY D YROXPXOXL YDORULF DO YkQ] ULORU OD QLYHOXO DQVDPEOXOXL FHORU GRX
produse este eJDO
FX
a) + 100 %; b) + 13,64 %; c) 0 %; d) - 25,0 %; e) + 117,5 %.
13) ÌQ FDGUXO DQDOL]HL GLVSHUVLRQDOH ELIDFWRULDOH XWLOL]DW SHQWUX D WHVWD VHPQLILFD LD IDFWRULORU GH i = 1,r ), respectiv B ( j = 1,p DWXQFL QXP UXO LQIOXHQ GDF YDORULOH IDFWRUXOXL $ gradelor de libertate al dispersiei reziduale este: a) rp - 1; b) r(r - 1); c) (r - 1)(p - 1); d) r(p - 1)p; e) r2(p - 1).
14) În cadrul analizei dispersionale unifactoriale, i = 1,r QXP XQLW
j = 1,ni - QXP
UXO
LORU vQ JUXS VXPD S WUDWHORU DEDWHULORU SHQWUX FDOFXOXO GLVSHUVLHL UH]LGXDOH vQ LQWHULRUXO
JUXSHL VHVWDELOHúWHFXUHOD LD
a) 2
∑ yij 2 j y ∑ij ij ∑i ni ;
b)
c)
UXO JUXSHORU
∑ yij j ∑i ni
2
2
∑ ∑ yij - i j n ;
2
d)
∑ ∑ yij 2 i j ∑ij yij ∑ ni ;
e)
∑ ∑ yij j 2 i y ∑ij ij n
2
;
2
2
∑ ∑ yij ∑ yij j j 2 i ∑ij yij ∑ n ni i
15) ÌQWUHGRX
.
YDULDELOHOHJDWHXQDUH]XOWDWLY \úLDOWDIDFWRULDO [SHQWUXQ
REVHUYD LH
VH
FXQRVF
100
∑
DJUHJDWHOH
GH
FDOFXO
∑
SHUHFKLYDORULGH
100
100
∑
xi = 2105
1
;
xi2 = 49.665
1
;
100
∑
yi = 4160
1
xi yi = 96.640
; 1
.
ÌQLSRWH]DXQHLOHJ WXULOLQLDUH\x
DE[HFXD LDHVWH
a) yx = 0,963 + 12,735 x; b) yx = 1,259 + 0,799 x; c) yx = 22,933 + 12,811 x; d) yx = 5,937 + 1,694 x; e) yx = 7,339 + 2,437 x.
16) %XQXULOH GH IRORVLQ
vQGHOXQJDW úL FX GXUDW PHGLH GH IRORVLQ
LQFOXVH vQ DYX LD QD LRQDO
DFXPXODW FXSULQG
a) Bunurile destinate s
VDWLVIDF SH R GXUDW GH PD[LP XQ DQ GLIHULWH FHULQ H PDWHULDOH úL
VSLULWXDOHDOHSRSXOD LHLFDGHH[HPSOXDXWRWXULVPHWHOHYL]RDUHDSDUDWHGHUDGLRIUL
gidere,
PRELO HWF
b) Bunurile destinate s
VDWLVIDF SH R GXUDW GH SHVWH XQ DQ GLIHULWH FHULQ H PDWHULDOH úL
VSLULWXDOH DOH SRSXOD LHL FD GH H[HPSOX IRQGXO IXQFLDU FO GLULOH GH ORFXLW DXWRWXULVPHOH
televizoarele, aparatele de radio, frigiderele, mobila etc.; c) Bunurile destinate s VDWLVIDF SHRGXUDW PDLPDUHGHXQDQGLIHULWHFHULQ HPDWHULDOHúL VSLULWXDOH DOH SRSXOD LHL FD GH H[HPSOX FO GLULOH GH ORFXLW DXWRWXULVPHOH WHOHYL]RDUHOH
aparatele de radio, frigiderele, mobila etc.; d) Bunurile destinate s VDWLVIDF SH R GXUDW GH PD[LP XQ DQ GLIHULWH FHULQ H PDWHULDOH úL spirituale, ca de exemplu: autoturisme, mijloace financiar-valutare, televizoare, aparate de UDGLRIULJLGHUHPRELO HWF
e) Bunurile materiale destinate s satisfac
SH R GXUDW GH SHVWH XQ DQ GLIHULWH FHULQ H
PDWHULDOH úL VSLULWXDOH DOH SRSXOD LHL FD GH H[HPSOX FO GLULOH GH ORFXLW DXWRWXULVPHOH PLMORDFHOHILQDQFLDUYDOXWDUHWHOHYL]RDUHDSDUDWHGHUDGLRIULJLGHUHPRELO HWF
17) (ILFLHQ DIRQGXULORUIL[HQRLVHGHWHUPLQ
e FN = a)
e FN = b)
e FN = c)
e FN = d)
e FN = e)
FXUHOD LD
∆ PIB i /i −1 FN i - 1 ; ∆ PIB i /0 FN i - 1 ; PIB
FN i ;
PIB Ff i
;
∆ PIB i /i −1 Ff i
.
unde: eFN -HILFLHQ DIRQGXULORUIL[HQRL PIB - produsul intern brut;
i = 0,n - LQGH[XOSHULRDGHORUGHUHIHULQ
Ffi - fondurile fixe în anul i; FNi - fondurile fixe noi; D -PRGLILFDUHDDEVROXW DLQGLFDWRULORU
18) 5HVXUVHOHGHPXQF
ODXQPRPHQWGDWVHGHWHUPLQ
D 5HVXUVH GLVSRQLELOH
7RWDO SRSXOD LH
-
3RSXOD LD vQ YkUVW GH PXQF GDU vQ
LQFDSDFLWDWH 3RSXOD LDvQDIDUDYkUVWHLGHPXQF GDUFDUHOXFUHD] E 5HVXUVH GLVSRQLELOH
7RWDO SRSXOD LH DSW GH PXQF 3RSXOD LD vQ YkUVW GH PXQF
dar în incapacitate) -3RSXOD LDvQDIDUDYkUVWHLGHPXQF F 5HVXUVHGLVSRQLELOH
GDUFDUHOXFUHD]
);
7RWDOSRSXOD LHDSW GHPXQF 3RSXOD LDvQYkUVW GHPXQF GDU
-
DIODW vQLQFDSDFLWDWHGHPXQF 3RSXOD LDvQDIDUDYkUVWHLGHPXQF GDUFDUHOXFUHD] G 5HVXUVH GLVSRQLELOH
7RWDO SRSXOD LH 3RSXOD LD vQ DIDUD YkUVWHL GH PXQF GDU FDUH
OXFUHD] 3RSXOD LDDIODW vQLQFDSDFLWDWHGHPXQF H 5HVXUVH GLVSRQLELOH
7RWDO SRSXOD LH DSW GH PXQF
- (OHYL VWXGHQ L PLOLWDUL vQ
WHUPHQúRPHULFDVQLFH 3RSXOD LDDIODW vQLQFDSDFLWDWHGHPXQF
19) Durata mediHD]LOHLGHOXFUXVHFDOFXOHD]
DZ ):
durata lunii de lucru durata zilei de lucru ; totalul orelor - om lucrate b) DZ = totalul om - zilelor lucrate ; totalul om - zilelor lucrate DZ = durata lunii de lucru ; c) totalul om - zilelor lucrate DZ = totalul om - orelor lucrate ; d) a) DZ =
totalul om - zilelor lucrate numarul mediu al salariatilor .
DZ = e)
20) 6HFXQRVFXUP
WRDUHOHGDWH
Indicatori
- mld. lei Modificarea (‘94/’93) %
1993
1994
12.670
31.442
+ 2,6
&RQVXPXODGPLQLVWUD LHL
2.566
7.011
+ 3,1
)RUPDUHDEUXW DFDSLWDOXOXLIL[
3.584
10.096
+ 20,7
4) Modificarea stocurilor
2.212
2.253
- 57,0
5) Exportul net
- 996
- 1.028
- 72,0
&RQVXPXOILQDODOJRVSRG ULLORU
5DWDLQIOD LHLvQLQWHUYDOXO DIRVWHJDO FXFDOFXOHFXYDORULURWXQMLWH
-
a) 73 %; b) 173 %; c) 313 %; d) 141 %; e) 256 %.
21) 'DF
VHQRWHD]
L - durata medie a lunii de lucru; S -GXUDWDPHGLHDV SW PkQLLGHOXFUX Z - durata medie a zilei de lucru; TH - volumul om-orelor lucrate; TZ - volumul om-zilelor lucrate; WH, WZ -SURGXFWLYLWDWHDRUDU úL]LOQLF
$WXQFLSLHUGHUHDGHSURGXF LHFDXUPDUHDQHIRORVLULLLQWHJUDOHD]LOHLGHOXFUXVHGHWHUPLQ
a) ∆Q = ( D L - durata normata) WH ;
b) ∆Q = ( DZ - durata normata) TH • WH ; c) ∆Q = ( D L - DS ) TH • WZ ; d) ∆Q = ( DZ - DS ) TH • WH ; e) ∆Q = ( DZ - 8) DS • WZ .
22) Dac
VHQRWHD]
wi - productivitatea muncii pe subdiviziuni organizatorice ( i = 1,n ) iw -LQGLFLLLQGLYLGXDOLDLSURGXFWLYLW LLPXQFLL T -QXP UXOPHGLXDOVDODULD LORU g(T) -VWUXFWXUDVDODULD LORUSHVXEGLYL]LXQLRUJDQL]DWRULFH 0,1 -SHULRDGHOHFRPSDUDWHED] HIHFWLY $WXQFLHVWHYDODELO UHOD LD
a)
∑ w1 g(T) ∑ w0 T 1 1 = ∑ T1 ∑ w0 g (T) 0 ;
∑ w0 g (T) ∑ w0 T 1 ∑ w0 T 0 1 b) : = (T) ∑ T1 ∑ T0 ∑ w1 g 1 ;
∑ w1 T 1 ∑ w0 T 1 ∑ w1 T 1 ∑ w1 T 1 : = = 1 ∑ T1 ∑ T1 ∑ w0 T 1 ∑ w w1 T 1 i ; ∑ w0 T 0 ∑ w1 T 1 ∑ w1 T 1 d) : = ∑ T0 ∑ T1 ∑ w0 T 0 ; c)
e)
∑ w1 g (T) 0 ∑ w0 g (T) 0
=
∑ w1 T 1 ∑ w0 T 1 : ∑ T1 ∑ T1 .
23) &RQWXOVLQWHWLFGHEXQXULFRQWXO DUHvQFRPSRQHQ
XUP WRULLLQGLFDWRUL
a) R î9DORDUHDSURGXF LHLLQWHUQHSURGXF LHEUXW
- firme - stat -JRVSRG ULLPHQDMH × Import de bunuri -79$QHGHGXFWLELO
U × Consum intermediar - firme - stat -JRVSRG ULLPHQDMH × Consum final - privat - guvernamental î,QYHVWL LLEUXWH
× Impozite pe import
- firme - guvern × Export de bunuri 7RWDOXWLOL] UL
Total resurse
b) R × Valoarea ad ugat
QHW
× Import de bunuri -79$QHGHGXFWLELO × Impozite pe import
U × Consum intermediar - firme - stat -JRVSRG ULL × Consum final - privat - guvernamental î,QYHVWL LLEUXWH
- firme - guvern × Export de bunuri Total resurse
7RWDOXWLOL] UL
c) R î9DORDUHDSURGXF LHLLQWHUQHSURGXF LHEUXW
- firme - guvern (stat) -PHQDMHJRVSRG ULL × Import de bunuri -79$QHGHGXFWLELO
U × Amortizarea capitalului fix - firme - guvern (stat) -JRVSRG ULL × Consum final - privat - guvernamental î,QYHVWL LLEUXWH
× Impozite pe import
- firme - guvern 7RWDOXWLOL] UL
Total resurse d) R î9DORDUHDSURGXF LHLLQWHUQHSURGXF LHEUXW
- firme - guvern (stat) -PHQDMHJRVSRG
U )
ULL
× Consum intermediar - firme - guvern (stat) -JRVSRG ULL
× Export de bunuri -79$QHGHGXFWLELO
× Consum final - privat - guvernamental
× Impozite pe export
î,QYHVWL LLEUXWH
- firme - stat (guvern) × Import de bunuri 7RWDOXWLOL] UL
Total resurse e) R
U
î9DORDUHDSURGXF LHLLQWHUQHSURGXF LHEUXW
- firme - guvern (stat) -PHQDMHJRVSRG
ULL
× Export de bunuri - TVA nedeductLELO
× Consum intermediar - firme - guvern (stat) -JRVSRG ULLPHQDMH × Consum final - privat - guvernamental × Amortismente - firme - guvern
Total resurse
7RWDOXWLOL] UL
24) 'DF
X = reprezinta vectorul productiei ramurilor X1 X2 . . . . X n Y = - vectorul productiei finale Y1 Y2 . . . . Y n a11 a12 ... a1n a a ... a2n A = 21 22 matricea coeficientilor cheltuielilor directe ... ... ... ... an1 ann ... ann I - matricea unitate; T - transpus Corect HVWHUHOD LD a) Y = (I - A)-1 X; b) Y = (I - A) X; c) X = (1 - A) Y; d) X = [AT]-1 X + Y; e) Y = (1 - A) XT.
25) 5DWDDQXDO
DLQIOD LHLUHSUH]LQW
D &UHúWHUHD SUH XULORU GH FRQVXP P VXUDW SULQ LQGLFHOH SUH XULORU GH FRQVXP vQ OXQD
decembrie a anului curent ID GHOXQDGHFHPEULHDDQXOXLSUHFHGHQW b) &UHúWHUHDSUH XULORUGHFRQVXPP VXUDW SULQLQGLFHOHSUH XULORUGHFRQVXPvQOXQDGHFHPEULH DDQXOXLFXUHQWID
GHOXQDRFWRPEULHOXQDSUHPHUJ WRDUHOLEHUDOL] ULLSUH XULORU
F &UHúWHUHD SURFHQWXDO D SUH XULORU GH FRQVXP P VXUDW SULQ LQGLFHOH SUH XULORU GH FRQVXPvQDQXOFXUHQWID
GHDQXOGHED]
G 0HGLD FUHúWHULORU OXQDUH DOH SUH XULORU P VXUDW SULQ LQGLFHOH SUH XULORU GH FRQVXP FDOFXODW FD PHGLH JHRPHWULF D LQGLFLORU OXQDUL DL SUH XULORU GH FRQVXP FX ED] PRELO ODQ GLQDQXOGHFDOFXO H 6F GHUHDSURFHQWXDO DSUH XULORUGHFRQVXPP VXUDW SULQLQGLFHOHSUH XULORUGHFRQVXP vQDQXOFXUHQWID
GHDQXOGHED]
26) 6HFXQRVFXUP
WRDUHOHGDWHUHIHULWRDUHODUHVXUVHOH3,%SHQWUXDQXl 1997 (miliarde lei): - industrie: 88.944,7 -DJULFXOWXU VLOYLFXOWXU H[IRUHVWLHU -FRQVWUXF LL - servicii: 84.689,3 -DMXVWDUHSHQWUXSURGXF LDVHUYLFLLORUEDQFDUH- 4.415,0 -LPSR]LWHúLVXEYHQ LLSHSURGXV,6 -YDORDUHDG XJDW EUXW
Produsul intern brut pentru anul 1997 este egal cu: a) 479.484,8; b) 249.750,2; c) 254,165,2; d) 229.734,6; e) 459.469,2.
27) 'DF
vQDQXOFkúWLJXOVDODULDOPHGLXQRPLQDOQHWDIRVWFRPSDUDWLY
cu anul 1996,
LDUSUH XULOHGHFRQVXPDXHYROXDWDVWIHO
-P UIXULDOLPHQWDUH -P UIXULQHDOLPHQWDUH - servicii: 276,5 în structura pe cele trei categorii: -P UIXULDOLPHQWDUH -P UIXULQHDOLPHQWDUH - servicii: 11,8 % 'LQDPLFDVDODULXOXLPHGLXUHDODIRVWvQDQXOFRPSDUDWLYFXHJDO FX
a) 112,5; b) 88,9; c) 53,9; d) 250,1; e) 77,6.
28) 8WLOL]DUHDEXQXULORUúLVHUYLFLLORUvQHFRQRPLDQD LRQDO a) Consumul priYDW FRQVXPXO JXYHUQDPHQWDO FDSLWDOXOXLIL[PRGLILFDUHDVWRFXULORU
PRGLILFDUHD VWRFXULORU
EXQXUL úL VHUYLFLL
FRQVXPXO WRWDO IRUPDUHD EUXW D
XWLOL]DUHDILQDO DEXQXULORUúLVHUYLFLLORU
E &RQVXPXO SULYDW FRQVXPXO JXYHUQDPHQWDO
capitalul fix +
VHVWDELOHúWHFRQIRUPUHOD LHL
FRQVXPXO ILQDO LQYHVWL LLOH EUXWH vQ
XWLOL]DUHD ILQDO vQ LQWHULRUXO
ULL H[SRUWXO GH
XWLOL]DUHD ILQDO D EXQXULORU LPSRUWXO GH EXQXUL úL VHUYLFLL
-
XWLOL]DUHD
bunurilor ce compun PIB; F &RQVXPXOSULYDWFRQVXPXOJXYHUQDPHQWDOLQYHVWL LL
le nete + modificarea stocurilor +
importul - exportul = utilizarea bunurilor; G &RQVXPXO VWDWXOXL JXYHUQDPHQWDO LQYHVWL LLOH EUXWH GH FDSLWDO H[SRUWXO GH EXQXUL úL
-
servicii -LPSRUWXOGHEXQXULúLVHUYLFLL-XWLOL]DUHDILQDO serviciilor ce compun PIB;
DEXQXULORU
XWLOL]DUHDEXQXULORUúL
H &RQVXPXO SULYDW FRQVXPXO VWDWXOXL JXYHUQDPHQWDO LQYHVWL LLOH QHWH GH FDSLWDO IL[ PRGLILFDUHDVWRFXULORUH[SRUWXOQHW
XWLOL]DUHDEXQXULORUúLVHUYLFLLORUFHFRPSXQ3,%
29) 6HFXQRVFXUP -
WRDUHOHGDWH
Produsul Intern Brut (PIB) în anul 1996: 108396 mld. lei pr. curente PIB 1997: 249750 mld. lei pr. curente PIB 1998 (previziune): 411.135 mld. lei pr. curente Modificarea PIB: 1997/1996 : - 6,6 % 1998/1997 : 0 %
5DWDLQIOD LHLvQLQW
ervalul 1996 - 1998 va fi de:
a) 64,50 %; b) 125,75 %; c) 115,12 %; d) 305,99 %; e) 225,75 %.
30) &DUH GLQ HOHPHQWHOH GH PDL MRV FH LQWU
vQ FRQVXPXO GLUHFW DO SRSXOD LHL VH LQFOXGH vQ FDOFXOXO
LQGLFHOXLSUH XULORUGHFRQVXP
a) cheltuieli aferenWH SO LL PXQFLL SHQWUX SURGXF LD JRVSRG ULHL DUDW VHP îngrijirea culturilor, cositul fânului, tratamentul medical al animalelor etc.); E FKHOWXLHOLFDUHVH UHIHU ODSO
QDW SU úLW
LOHHIHFWXDWHODFUHGLWH UDWHGHDVLJXUDUHDPHQ]LMRFXULGH
noroc, impozite etc.; F FKHOWXLHOLSHQWUXSURFXUDUHDSURGXVHORUYkQGXWHSHSLD D
U QHDVF
G FKHOWXLHOL FX FDUDFWHU GH LQYHVWL LL úL DFXPXODUH FXPS UDUHD GH ORFXLQ H PDWHULDOH GH FRQVWUXF LLIRORVLWHSHQWUXFRQVWUXLUHDGHORFXLQ HQRLVDXHIHFWXDUHDGHUHSDUD LLODORFXLQ HOH
vechi etc.); H FRQVXPXO GLQ UHVXUVH SURSULL UHSUH]HQWkQG FRQWUDYDORDUHD FDQWLW
LORU GH SURGXVH
FRQVXPDWHGHSRSXOD LHDOWHOHGHFkWGLQFXPS U WXULVWRFSURGXF LHSURSULHFDGRXULHWF
TESTUL 14 3HQWUX GLVWULEX LD DQJDMD LORU XQHL FRPSDQLL GXS QLYHOXO GH SUHJ WLUH SURIHVLRQDO QX VH SRDWH
calcula: a) structura; E WRWDOXODQJDMD LORU
c) valoarea medie; G YDORDUHDPRGDO H IUHFYHQ HOHQXOHGDF H[LVW 5DWDúRPDMXOXLQXVHSRDWHFDOFXODUDSRUWkQG
a) popula LDQHRFXSDW
ODSRSXOD LDFXUHQWDFWLY
E QXP UXOGHúRPHULODSRSXOD LDDFWLY F SRSXOD LDQHRFXSDW ODSRSXOD LDDFWLY G QXP UXOGHúRPHULODSRSXOD LDWRWDO H QXP UXOGHúRPHULODIRU DGHPXQF
3) Pe termen lung poate fi doar atenuat, dar QXHYLWDWúRPDMXO a) ciclic; b) structural; c) tehnologic; d) nici una din formele de mai sus; H SRWILHYLWDWHWRDWHIRUPHOHGHúRPDM 7LWOXULOHUHSUH]HQWDWLYHDOHS U LORUVRFLDOHGHILQHVFvQ&RQWDELOLWDWHD1D LRQDO D REOLJD LXQLOH
b) bonurile de tezaur; c) orice hârtie de valoare; G DF LXQLOH H DFHDVW GHILQL LHQXDSDUHLQ&RQWDELOLWDWHD1D LRQDO ,QWHUYDOXO GH vQFUHGHUH SHQWUX HVWLPDUHD PHGLHL SRSXOD LHL JHQHUDOH SRUQLQG GH OD YDORDUHD FDOFXODW SHQWUXHúDQWLRQVHPDLQXPHúWHúL
a) evantaiul valorilor estimate; b) parametru de încredere; c) interval previzionat; G FODV HYDOXDW H QXH[LVW VLQRQLPSHQWUXQR LXQHDGHLQWHUYDOGHvQFUHGHUH ,QGLFDWRUXOWHQGLQ HLFHQWUDOHFHVLQWHWL]HD] YDORULOHvQUHJLVWUDWHDOHXQHLFDUDF
este: a) cuartila a 3-a; b) coeficientul de asimetrie; c) media; d) mediana; H QXH[LVW XQDVWIHOGHLQGLFDWRU
teristici cantitative
&RQWXO VWDWLVWLF vQ FDUH VH vQUHJLVWUHD] WUDQ]DF LLOH GH EXQXUL úL VHUYLFLL vPSUHXQ FX
transferurile publice sau private dintr-RSHULRDG
vQWUHR DU úLH[WHULRUUHS H]LQW
r
D EDODQ DFRPHUFLDO E EDODQ DGHSO
L
F EDODQ DRSHUD LXQLORUFXUHQWH G EDODQ DOHJ WXULORUGLQWUHUDPXUL
e) tabelul input-output. 8) Sinonimul pentru ecart statistic este: a) difHUHQ VHPQLILFDWLY b) abatere; c) echilibru; d) clopotul lui Gauss;
H HFXD LHVWDWLVWLF
&DUWRJUDPDVHIRORVHúWHSHQWUXDUHSUH]HQWDJUDILF
D XQLW
b) c)
LVWDWLVWLFHFXGRX GLPHQVLXQLvQWRWGHDXQDGXS RFDUDFWHULVWLF
XQLW XQLW
G XQLW
LVWDWLVWLFHFXGRX GLPHQVLXQLvQWRWGHDXQDGXS PDLPXOWHFDUDFWHULVWLFL LVWDWLVWLFHFXGRX GLPHQVLXQLQLFLRGDW GXS PDLPXOWHFDUDFWHULVWLFL LVWDWLVWLFHFXGRX GLPHQVLXQLGXS XQDVDXPDLPXOWHFDUDFWHULVWLFL
e) cartograma nu este un grafic utilizatGHVWDWLVWLF 0XO LPHDXQLW
LORUVWDWLVWLFHH[WUDVHDOHDWRULXGLQWU RFROHFWLYLWDWHVWDWLVWLF HVWHGHQXPLW úL
-
D SURE E HúDQWLRQDUH F VFKHP SUREDELOLVWLF G SDVGHQXP UDUH H ED] GHVRQGDM
3HQWUXDRE LQHFHUHUHDLQWHUQ EUXW VHDGXQ ODFHUHUHDLQWHUQ QHW
D LPSR]LWHOHLQGLUHFWHI U VXEYHQ LL E YHQLWXOQD LRQDO F LPSR]LWHOHLQGLUHFWHFXVXEYHQ LL
d) amortizarea; e) cei doi indicatori sunt egali. 'DF GLQ311H[SULPDWvQSUH XULOHSLH HLVHVFDGLPSR]LWHOHLQGLUHFWHI U VXEYHQ LLVHRE LQH
D YHQLWXOQD LRQDO
b) PNN; c) PIB; G 311H[SULPDWvQSUH XULOHIDFWRULORU
e) PNB.
,QGLFDWRUXO FH FDUDFWHUL]HD] DFWLYLWDWHD XQHL HFRQRPLL QD LRQDOH SULQ vQVXPDUHD RSHUD LXQLORU HIHFWXDWHGHDJHQ LLHFRQRPLFLVHPDLQXPHúWH
a) aglomerat macroeconomic; E VXP PDFURHFRQRPLF
c) agregat macroeconomic; d) agent macroeconomic; e) acord macroeconomic. $F LXQHDGHFRUHFWDUHDYDORULORUvQUHJLVWUDWHDOHXQXLIHQRPHQHFRQRPLFR WHQGLQ
-social la curba sa de
GHILQHúWHRSHUD LXQHDGH
a) eliminare a valorilor aberante; b) ajustare; c) grupare; G HúDQWLRQDUH H FRUHF LHDHURULORUVLVWHPDWLFH
m
15) Prin formula
n
∑∑ f i =1 j =1
ij
(
)
⋅ y j − y ⋅ (xi − x )
VHGHILQHúWH
D QXP U WRUXOUDSRUWXOXLGHFRUHOD LH
b) numitorul coeficientului GHFRUHOD LHOLQLDU
F QXP U WRUXOFRHILFLHQWXOXLGHFRUHOD LHOLQLDU G QXPLWRUXOUDSRUWXOXLGHFRUHOD LH H FRHILFLHQWXOGHFRUHOD LHOLQLDU
&RPSOHWD LVSD LXOOLEHUGLQDILUPD LD
³&RYDULDQ D UHSUH]LQW JHQHUDOL]DUHD QR LXQLL GH ««« DSOLFDELO XQXL VHW GH SHUHFKL GH GDWH
(atribute statistice)”, alegând dintre variantele: a) variabilitate; E YDULDQ
F YDULD LH G YDULDQW H YDULDELO
&RHILFLHQWXOGHHODVWLFLWDWHVHFDOFXOHD] DVWIHO
a) ritmul de modificare a variabilei factoriale raportat la ritmul de modificare a variabilei rezultative; E ULWPXO GH PRGLILFDUH D YDULDELOHL IDFWRULDOH vQPXO LW FX ULWPXO GH PRGLILFDUH D YDULDELOHL
rezultative; c) ritmul de modificare a variabilei rezultative raportat la ritmul de modificare a variabilei factoriale; G ULWPXO GH PRGLILFDUH D YDULDELOHL UH]XOWDWLYH vQPXO LW FX ULWPXO GH PRGLILFDUH D YDULDELOHL
factoriale; H PRGLILFDUHD DEVROXW D YDULDELOHL UH]XOWDWLYH UDSRUWDW OD PRGLILFDUHD DEVROXW D YDULDELOHL
factoriale.
18) Extrapolarea UHSUH]LQW
RSHUD LXQHDVWDWLVWLF GH
a) prelungire a valorilor unei serii cronologice dincolo de perioada pe care s-au efectuat REVHUYD LLOHFRQIRUPXQHLOHJLGHWHQGLQ
b) interpolare; c) estimare a unei valori dintr-o serie de date continue, cunoscâQGYDORULOHGLQGUHDSWDúLGLQ stânga sa; d) determinare a unui interval de încredere; H GHWHUPLQDUHDWHQGLQ HLGHHYROX LHDXQXLIHQRPHQ
&XQRVFkQG GHILQL LLOH QR LXQLORU GH PHGLH DULWPHWLF úL DUPRQLF GDF DFHVWHD VXQW FDOFXODWH SHQWUXDFHODúLVHWGHGDWHSUHFL]D LFHDILUPD LHHVWHDGHY UDW
D RFUHúWHUHDYDORULLPHGLHLDULWPHWLFHYDGHWHUPLQDRFUHúWHUHDYDORULLPHGLHLDUPRQLFH E YDULD LDPHGLHLDULWPHWLFHGHWHUPLQ YDULD LDvQVHQVFRQWUDUDPHGLHLDUPRQLFH F FUHúWHUHD PHGLHL DUPRQLFH YD DWUDJH GXS VLQH vQ PRG DXWRPDW FUHúWHUHD PHGLHL
aritmetice; G VF GHUHDYDORULORUFDUDFWHULVWLFLLVWDWLVWLFHvQUHJLVWUDWHYDDWUDJHGXS VLQHVF GHUHDPHGLHL DUPRQLFHúLDULWPHWLFH H PHGLD DULWPHWLF HVWH LQGHSHQGHQW GH FHD DUPRQLF úL DPkQGRX VXQW LQGHSHQGHQWH GH HYROX LDYDORULORUvQUHJLVWUDWHDOHFDUDFWHULVWLFLL
9DORULOHDMXVWDWHDOHXQHLVHULLGHWLPSSRWILID
GHFHOHvQUHJLVWUDWH
a) <; b) >; c) =; d) <, =, >; e) nu se pot compara. 'DF SHQWUX R VHULH FURQRORJLF VXPD YDORULORU DMXVWDWH HVWH DSUR[LPDWLY HJDO FX VXPD
valorilor înregistrate, atunci: D PHWRGDGHDMXVWDUHDOHDV QXHVWHSRWULYLW E PHWRGDGHDMXVWDUHDOHDV HVWHRSWLP
c) metoda de aMXVWDUHDOHDV
HVWHXQLF
G PHWRGDGHDMXVWDUHDOHDV HVWHFRUHFW H PHWRGDGHDMXVWDUHDOHDV HVWHH[DFW
5DSRUWXOGLQWUHRYDORDUHvQUHJLVWUDW úLFHDWHRUHWLF DIODW SHFXUEDGHUHJUHVLHSRDWHIL
a) supraunitar; b) subunitar; c) unitar; d) negativ; e) pozitiv. $OHJH L FRPELQD LD SRWULYLW GLQWUH FHOH QRWD
te cu majuscule: A = a,b,d; B = b,d,e; C = a,b,c; D =
a,b; E = a
'DF vQ XUPD JUXS ULL XQXL VHW GH GDWH SH LQWHUYDOH GH YDULD LH HJDOH VH RE LQ IUHFYHQ H QXOH DWXQFLVHUHFRPDQG D V VHUHJUXSH]HGDWHOHGXS RDOW FDUDFWHULVWLF
b) se utilizea]
vQFRQWLQXDUHDFHHDúLGLVWULEX LHQH LQkQGFRQWGHIUHFYHQ HOHQXOH
F VHXWLOL]HD] vQFRQWLQXDUHGLVWULEX LDGDF HVWHGRDURVLQJXU IUHFYHQ
QXO
G VHUHJUXSHD] GDWHOHP ULQGQXP UXOGHLQWHUYDOHGHYDULD LH H VHUHJUXSHD] GDWHOHP ULQGGL
mensiunea intervalului.
8QULWPGHPRGLILFDUHDXQXLIHQRPHQULWPFHDUHYDORDUHDSR]LWLY LPSOLF vQPRGQHFHVDU D YDORDUHDVXSUDXQLWDU DLQGLFHOXLGHGLQDPLF E YDORDUHDQHJDWLY DPRGLILF ULLDEVROXWH F YDORDUHDQHJDWLY DVSRUXOXLFXED] IL[ G GHVFUHúWHUHDIHQRPHQXOXL
e) stagnarea fenomenului . 3HQWUXVHULDGHGDWHUHSUH]HQWkQGGLVWULEX LDIDPLOLLORUGXS QLYHOXOGHYHQLW
Venit
Foarte VF
Nr. familii
6F ]XW
Mediu
Ridicat
20
40
20
]XW
10
Foarte ridicat 10
coeficientul de asimetrie propus de Pearson este: a) zero; b) unitar; c) egal cu -1; d) nu se poate calcula; H HJDOFXFRHILFLHQWXOGHYDULD LH
'DF GRX VHULL GH GLVWULEX LH SDUDOHOH SUH]LQW R WHQGLQ P VXUDUHDLQWHQVLW
FXUELOLQLH SURQXQ DW DWXQFL
LLOHJ WXULLGLQWUHFHOHGRX YDULDELOHVHDSUHFLD] vQIXQF LHGHYDORDUHD
D FRHILFLHQWXOXLGHFRUHOD LHOLQLDU E FRYDULDQ HL F UDSRUWXOXLGHFRUHOD LH
d) valorilor ajustate; H QX VH SRDWH FDOFXOD XQ LQGLFDWRU FH LQGLF LQWHQVLWDWHD OHJ WXULL GDF DFHDVWD
este
curbilinie. 9DULD LDXQHLFDUDFWHULVWLFLVWDWLVWLFHWLQGHOD]HURGDF FROHFWLYLWDWHDDQDOL]DW HVWH
a) de volum normal; E QRUPDOGLVWULEXLW GXS RFDUDFWHULVWLF F HWHURJHQ G RPRJHQ H DVLPHWULF
28) 'DF
SHQWUX VHULH GH GLVWULEX LH GH IUHFYHQ H FRHILFLHQWXO GH YDULD LH LQGLF XQ QLYHO ULGLFDW GH
HWHURJHQLWDWH DWXQFL VH UHFRPDQG vPS U LUHD FROHFWLYLW
semnificativ, ceea ce va duce la:
LL vQ JUXSH GXS XQ IDFWRU GH JUXSDUH
D FUHúWHUHDJUDGXOXLGHRPRJHQLWDWHvQLQWHULRUXOJUXSHORU
b FUHúWHUHDJUDGXOXLGHHWHURJHQLWDWHvQLQWHULRUXOJUXSHORU F VF GHUHDJUDGXOXLGHRPRJHQLWDWHvQLQWHULRUXOJUXSHORU G FUHúWHUHDQLYHOXOXLFRHILFLHQWXOXLGHYDULD LHvQLQWHULRUXOJUXSHORU
e) nivelul de omogenitate în interiorul grupei va fi întotdeauna egal cu cel calculat pentru GLVWULEX LDPDUJLQDO 3HQWUXRSLD
FXQRDúWHPGDWHOH
Bunuri
3UH XUL
A B C D E
(u.m.) 45 90 260 115 118
&DQWLW
L
(u.c.) 300 500 900 300 800
3UH XUL
&DQWLW
(u.m.) 65 105 320 150 128
L
(u.c.) 400 500 1100 600 700
Atunci: D ÌQFRVW FXPDLPXOWGHFkWvQSHQWUXDDFKL]L LRQDDFHHDúLFDQWLWDWHGH PDUI E ÌQFRVWDFXPDLSX LQGHFkWvQSHQWUXDDFKL]L LRQDDFHHDúLFDQWLWDWHGH PDUI FDvQ F $FHHDúLFDQWLWDWHGHEXQXULFXPS UDWHvQODSUH XULOHGLQFRVW FXPDL VFXPSGHFkWHYDOXDWHODSUH XULOHGLQ G 'DF FDQWLW
LOHFXPS UDWHvQV-DUILDFKL]L LRQDWODSUH XULOHGLQDUILFRVWDWFX 20,41% mai scump; e) sunt date insuficiente pentru a alege a,b,c, sau d.
'DF vQWU R DU VDODULXOPHGLXDIRVWvQDQXOW0GHPLOLRQOHLúL,3&
în anul t1VDODULXOPHGLXDDMXQVODQLYHOXOGHPLOLRDQHOHLúL,3& FRQGL LLsalariul real: a) a crescut; E DVF ]XW F DU PDVQHVFKLPEDW G QXVHSRDWHSUHFL]DHYROX LDVD
e) este egal cu cel nominal din anul t1. 3 WUDWXODEDWHULLWLSP VRDU
a) amplitudinea dispersiei unui set de date în jurul mediei lor; b) omogenitatea unui set de date; F DVLPHWULDXQHLGLVWULEX LL G WHQGLQ DFHQWUDO DXQXLVHWGHGDWH H JUDGXOGHFRQFHQWUDUHDIUHFYHQ HORU 2UDW GHVFUHVF WRDUHDLQIOD LHLSRDWHV GXF OD D FUHúWHUHDúRPDMXOXL E GHVFUHúWHUHDú
omajului; c) stagnarHDúRPDMXOXL
G úRPDMXOHVWHXQIHQRPHQLQGHSHQGHQWGHLQIOD LH
,33
,33
LDU
ÌQDFHVWH
d)
VXQW LQVXILFLHQWH LQIRUPD LL SHQWUX D SXWHD SUHFL]D LQIOXHQ D IHQRPHQHORU GH FUHúWHUH JHQHUDOL]DW DSUH XULORUDVXSUDúRPDMXOXL
3XWHUHDGHFXPS UDUHDPRQHGHLQD LRQDOHHVWHLQYHUVSURSRU LRQDO FX D QLYHOXOSUH XULORU
b) nivelul veniturilor; c) nivelul PIB/locuitor; G YROXPXOEXQXULORUúLVHUYLFLLORURIHULWHSHSLD
H HVWHRP ULPHLQGHSHQGHQW /D R EDQF VH DQDOL]HD] GLVWULEX LD GHELWRULORU GXS VLWXD LD ]LOHORU GH vQWkU]LHUH D UDPEXUV ULL
creditelor, astfel: ,QWHUYDOHGHYDULD LHDQXP UXOXL GH]LOHGHvQWkU]LHUHDSO
LL
Nr. debitori “mai mult decât OLPLWDLQIHULRDU ´
10-20 20-30 30-40 40-50 50-60 60-70
120 85 37 16 7 2
9DORDUHDPHGLDQ FDOFXODW XWLOL]kQGIUHFYHQ HUHODWLYHHVWH
a) 25 zile; b) 35 zile; c) 27 zile; d) 23 zile; H QXVHSRDWHFDOFXODPHGLDQDXWLOL]kQGIUHFYHQ HUHODWLYH
35) Dintr-XQVRQGDMDXUH]XOWDWGDWHOHUHIHULWRDUHODJUDGXOGHvQDYX LUHDVWIHO 1LYHOGHvQDYX LUH Procente ale populD LHL $1LYHOIRDUWHVF ]XW 50 %1LYHOVF ]XW 25 C. Nivel minim acceptabil de avere 10 '1LYHOPHGLXGHvQDYX LUH 10 (1LYHOULGLFDWGHvQDYX LUH 3 F. Nivel extrem de ridicat ...
6WUXFWXUDDYX LHL
10 20 10 15 25 ...
'HFLGH LGDF D DYX LDHVWHHJDOGLVWULEXLW
b) curba lui Lorentz coincide cu linia de egalitate; c) DYX LD HVWH GLVWULEXLW LQHFKLWDELO DYDQWDMD L ILLQG FHL FX QLYHO vQDOW úL IRDUWH vQDOW GH vQDYX LUH G DYX LD HVWH GLVWULEXLW LQHFKLWDELO DYDQWDMD L ILLQG FHL FX QLYHO VF ]XW úL IRDUWH VF ]XW GH vQDYX LUH
e) nu se poate discuta echitatea distribuirii veniturilor. ÌQIRUPXODHURULLPD[LPHYROXPXOHúDQWLRQXOXLVHQRWHD] FX
nGDF
a) de serii; E UHDOL]DWSHXQHúDQWLRQIRUPDWGLQXQLW
LFRPSOH[H
F UHDOL]DWSHXQHúDQWLRQIRUPDWGLQXQLW
LVLPSOH
;
VRQGDMXOUHDOL]DWHVWH
G UHDOL]DWSHXQHúDQWLRQIRUPDWGLQXQLW
e) cu nVHQRWHD]
LVLPSOHVDXFRPSOH[HLQGLIHUHQW
GHRELFHLYROXPXOSRSXOD LHLJHQHUDOH
ÌQWUHGHFLODDWUHLDúLDúDSWHDVHDIO
a) 40% din termenii seriei; b) 60% din termenii seriei; c) 50% din termeni seriei; d) 30% din termenii seriei; e) 70% din termenii seriei. 38) Formula lui Sturges se poate aplica pentru determinarea: D DPSOLWXGLQLLYDULD LHLXQHLFDUDFWHULVWLFL
b) valorii maxime dintr-un set de date; c) valorii minime dintr-un set de date; G QXP UXOXLGHJUXSH H QXP UXOXLGHFDUDFWHULVWLFL 'LVSHUVLDHVWHLQYHUVSURSRU LRQDO FX D YROXPXOHúDQWLRQXOXL
b) volumul caracteristicilor studiate; c) abaterea standard; d) coeficientul de asimetrie; H HVWHRP ULPHLQGHSHQGHQW 5DSRUWXO GLQWUH LQGLFHOH DJUHJDW DO SUH XULORU FDOFXODW GXS SURFHGHXO /DVSH\UHV vQWU
-o
HFRQRPLH LQIOD LRQLVW úL LQGLFHOH DJUHJDW DO SUH XULORU FDOFXODW GXS SURFHGHXO 3DDVFKH HVWH GH
obicei: a) supraunitar; b) subunitar; c) unitar; d) negativ; e) QXVHúWLHH[DFW
TESTUL 15
&RHILFLHQWXOGHYDULD LHDUDW D GHFkWHRULHVWHPDLPDUHDEDWHUHDVWDQGDUGWLS ID
GHPHGLDDULWPHWLF
E FXFkWHSURFHQWHHVWHGHS úLW OLPLWDGHRPRJHQLWDWHDGPLV F FXFkWHVWHPDLPDUHDEDWHUHDVWDQGDUGID
GHPHGLDDULWPHWLF
d) de câte ori se cuprinde abaterea standard în medie; H FkWHSURFHQWHGLQDEDWHUHDVWDQGDUGUHSUH]LQW PHGLDDULWPHWLF 'DF XQIHQRPHQHYROXHD] GXS IXQF LDWVXPDS WUDWHORUDEDWHULORUGLQWUHRSDUWHGLQ YDORULOHvQUHJLVWUDWH úLFHOHDMXVWDWHFRQVLGHUkQGYDORULOHFRUHVSXQ] WRDUHGLQ
vectorul timpului : 2,4,5,6,7: a) 0,5; b) 130; c) 133; d) 100; H DOW YDULDQW «
3) Cunoscând dRDUKLVWRJUDPDXQHLGLVWULEX LLGHIUHFYHQ HQXSXWHPUHSUH]HQWDJUDILF a) structura; E RJLYDIUHFYHQ HORUFXPXODWH
c) corelograma; G SROLJRQXOIUHFYHQ HORU H GLVWULEX LDIUHFYHQ HORUUHODWLYH 'XS ULWPLQIOD LDQXSRDWHIL
a) târâtoare; b) GHVFKLV F JDORSDQW
d) deflatoare; H IRUPHOHLQIOD LHLQXVHFODVLILF GXS ULWPXOGHPRGLILFDUH
5) Pentru o serie de momente nu se pot calcula: D VSRUXULFXED] vQODQ E VSRUXULFXED] IL[
c) indici; d) ritmuri; H PHGLDDULWPHWLF DWHUPH
nilor seriei.
&RPSOHWD LVSD LXOOLEHUFXXQDGLQYDULDQWHOHD
- e:
9DULDELOD GLVFUHW ; XUPHD] OHJHD GH UHSDUWL LH ««« D SDUDPHWULORU IUHFYHQ DVDHVWHFRQIRUP
f = Cnx ⋅ p x ⋅ (1 − p)
n− x
D QRUPDO E ELQRPLDO
, n > 1, n ∈ Ν ,0 < p < 1 ¨
n úL p , atunci când
c) Student; d) Gauss Laplace; H QXH[LVW DFHDVW IXQF LHGHUHSDUWL LH 6WDELOL LFHUHOD LHHVHDGHY UDW
a) PIB = VA + TVA + taxe vamale - servicii bancare imputate nerepartizate; b) PIB = VA + TVA + taxe vamale; c) PIB = VA + TVA; d) PIB = e) PIB = VA + TVA + taxe vamale + servicii bancare imputate nerepartizate.
VA;
7HUPHQXOVWDWLVWLFGHUDW HVWHVLQRQLPFXFHOGHLQGLFH
a) întotdeauna; E QLFLRGDW F GRDUGDF UDWDH[SULP RHYROX LH G GRDUGDF H[SULP SRQGHUHDXQHLS U LvQvQWUHJ
e) doar
vQFD]XOH[FHS LLORU
/DUHFHQV PkQWVHFXOHJLQIRUPD LLGHQDWXU D GHPRJUDILF HFRQRPLF VRFLDO E FXOWXUDO F GRDUHFRQRPLF G GRDUVRFLDO H GRDUGHPRJUDILF 6LQRQLPXOSHQWUXDEDWHUHDWLSQXVHPDLQXPHúWH
a) abatere standard; E DEDWHUHPHGLHS WUDWLF
c) ecart tip; G YDULDQ
H YDULDQW &RPSRQHQWDVH]RQLHU DXQHLVHULLGHWLPSDSDUHFDUH]XOWDWDODF LXQLL D IOXFWXD LLORU OHJDWH GH DQRWLPS VDX FH VH UHSURGXF VLPLODU vQ WLPS vQ FXUVXO XQHL ]LOH V SW PkQLOXQL
trimestre;
E IOXFWXD LLORUFLFOLFH
c) factorilor aleatori; G WHQGLQ HL
e) componenta sezonieU
QXH[LVW
&RPSRQHQWDFLFOLF DSDUHFDXUPDUHDDF LXQLL
a) factorilor sezonieri; E IDFWRULORUFHGHWHUPLQ ID]HOHGHFRQWUDF LHúLUHOD[DUHDIHQRPH
nelor;
c) factorilor aleatori; G WHQGLQ HL H QXH[LVW DFHDVW FRPSRQHQW &XQRVFkQGRJLYDIUHFYHQ HORUFXPXODWHQXVHSRDWHUHSUH]HQWDJUDILFvQFRQWLQXDUH
a) structura; b) histograma;
c) poligonul frecYHQ HORUDEVROXWH G SROLJRQXOIUHFYHQ HOor relative; H JUDILFXOGHHYROX LH 'DF UDSRUWXO GLQWUH LQGLFHOH DJUHJDW DO SUH XULORU úL LQGLFHOH DJUHJDW DO YROXPXOXL IL]LF HVWH
supraunitar, atunci, indicele valorii poate fi: a) supraunitar; b) subunitar; c) unitar; d) a,b,c; e) negativ. 15) 3HQWUX P VXUDUHD HYROX LHL SUH XULORU OD QLYHOXO DJHQWXOXL HFRQRPLF VH UHFRPDQG sistemului de ponderare:
XWLOL]DUHD
a) Laspeyres; b) Paasche; c) Fisher; d) Edgeworth; e) nici unul din cele precizate mai sus. 3HQWUX P VXUDUHD HYROX LHL SUH XULORU OD QLYHO PDFURHFRQRPLF vQ 5RPkQLD VH XWLOL]HD]
sistemul de ponderare: a) Laspeyres; b) Paasche; c) Fisher; d) Edgeworth; e) nici unul din cele precizate mai sus. 17) În anul t1ULWPXOFLIUHLGHDIDFHULDXQHLILUPHDIRVWGHID
GHW0
. În anul XUP
WRUW2
, cifra GHDIDFHULDFUHVFXWFXùWLLQGF VSRUXODEVROXWDOFLIUHLGHDIDFHULvQSHULRDGDW2 - t0 a fost de 100 u.m., cifra de afaceri din anul t1 a fost de: a) 60 u.m.; b) 120 u.m.; c) 20 u.m.; d) 27,27 u.m.; e) nu se poate calcula datorLW 18)
LQIRUPD LHLLQVXILFLHQWH
'DF SH R SHULRDG GH FLQFL DQL LQGLFHOH PHGLX GH FUHúWHUH D SURGXF LHL XQXL DJHQW HFRQRPLF D
IRVW GH vQ FRQGL LLOH vQ FDUH SURGXF LD HVWH R YDULDELO vQVXPDELO úWLLQG F vQ XOWLPXO DQ QLYHOXO SURGXF LHLDIRVWFXGHXQLW
LPDLPDUHGHFkWvQSULPXODQYDORDUHDLQL LDO DSURGXF LHLDIRVWGH
a) 44,21; b) 4,21; c) 2,24; d) 3; e) nu se poate calcula. 'DF FKHOWXLHOLOH SHQWUX FRQVXP VXQW XP úL LQYHVWL LLOH UHSUH]LQW GLQ YHQLWXO QD LRQDO LPSRUWXO UHSUH]LQW
comerciale este:
GLQ YHQLW úL H[SRUWXO
GLQ LQYHVWL LL DWXQFL VROGXO EDODQ HL
a) 875 u.m.; b) -875 u.m.; c) 1250 u.m.; d) 375 u.m.; e) 500 u.m.. $JUHJDWHOHPDFURHFRQRPLFHVHFDOFXOHD]
D vQXQLW
LIL]LFH
E vQXQLW
LYDORULFH
;
F H[FOXVLYvQSUH XULOHIDFWRULORU G H[FOXVLYvQSUH XULOHSLH HL H vQSUH XULOHIDFWRULORUúLvQSUH XULOHSLH HL
$FWLYLWDWHDGHUHGLVWULEXLUHDYHQLWXULORUDUHORFGDF
D VHSO WHVFDMXWRDUHOHVRFLDOH E VHSO WHVFVDODULLOHDQJDMD LORU
statului;
F VHSO WHVFSHQVLLOH G VHDFKLW LPSR]LWHOH
e) a, c. 6ROGXOEDODQ HLFRPHUFLDOHVHFDOFXOHD]
D FDUDSRUWLQWUHYDORDUHDH[SRUWXOXLúLYDORDUHDLPSRUWXOXL E FDGLIHUHQ
vQWUHFDQWLWDWHDH[SRUWDW úLFHDLPSRUWDW
F FDGLIHUHQ
vQWUHYDORDUHDLPSRUWXOXLúLDH[SRUWXOXL
G FDGLIHUHQ
vQWUHYDORDUHDH[SRUWXOXLúLDLPSRUWXOXL
H FDGLIHUHQ
vQWUHFDQWLWDWHDLPSRUWDW úLFHDH[SRUWDW
'DF GLQDPLFD FDQWLW
LL RIHULWH SH R SLD
HVWH GH úL D SUH XOXL HVWH GH FRH
ficientul
GHHODVWLFLWDWHDFHUHULLODHYROX LDSUH XOXLHVWH
a) unitar; b) supraunitar; c) subunitar; d) 3; e) 0,33. 8QDJUHJDWPDFURHFRQRPLFFHFDUDFWHUL]HD] QLYHOXOGHGH]YROWDUHDHFRQRPLHLQD LRQDOHHVWH
a) IPC; b) IPP; c) PNN/locuitor; d) PIB real; H YROXPXOSURGXF LHLWRWDOH
25) Sunt egale cu zero: D HURDUHDPD[LP GDF GLVSHUVLDHVWHHJDO FX E UDSRUWXOGHQHGHWHUPLQD LHGDF YDULD LDUH]LGXDO HVWHHJDO FX]HUR F PHGLDGDF VXPDYDORULORUFDUDFWHULVWLFLLHVWHHJDO FX]HU
o;
G FRHILFLHQWXOGHDVLPHWULHGDF PHGLDQDHVWHHJDO FXYDORDUHDPRGDO
e) coeficientul de reprezentativitate, dac media este un indicator reprezentativ. 6WDELOL L QXP UXO FRHILFLHQ LORU vQWRWGHDXQD VXSUDXQLWDUL VWXGLD L GH 6WDWLVWLFD 6RFLDO
-
(FRQRPLF D WR LFRHILFLHQ LLVXQWVXSUDXQLWDUL
b) nici unul nu este întotdeauna supraunitar; F WR LFRHILFLHQ LLVXQWVXEXQLWDUL G PDMRULWDWHDFHORUVWXGLD L
e) indicii. &RHILFLHQWXOGHDVLPHWULHSURSXVGH3HDUVRQVHDIO vQUHOD LHGHLQYHUV SURSRU LRQDOLWDWHFX
a) abaterea standard; E DEDWHUHDVWDQGDUGúLYDORDUHDPRGDO F GLVSHUVLDúLYDORDUHDPRGDO G PHGLDDULWPHWLF H YDORDUHDPRGDO
&RHILFLHQWXOGHFRUHOD LHOLQLDU VHDIO vQUHOD LHGHGLUHFW SURSRU LRQDOLWDWHFX
a FRYDULDQ D E DEDWHUHDVWDQGDUGFDOFXODW SHQWUXYDULDELODIDFWRULDO F DEDWHUHDVWDQGDUGFDOFXODW SHQWUXYDULDELODUH]XOWDWLY
d) volumul datelor studiate; e) este un indicator independent. 'DF XQ IHQRPHQ HFRQRPLF vQUHJLVWUHD] VF GHUL FX R UDW FUHVF WRDUH DWXQFL XOWLPXO QLYHO
observat va fi, comparativ cu primul: a) mai mare; b) mai mic; c) egal; d) nu se poate compara; H LQIRUPD LDSUH]HQWDW HVWHLQVXILFLHQW
³([WHULRUXO´UHSUH]LQW vQ&RQWDELOLWDWHD1D LRQDO
D DJHQ LLHFRQRPLFLQD LRQDOLLPSOLFD LvQWUDQ]DF LLFXVWU LQ WDWHD E DJHQ LHFRQRPLFLGLQFHOHODOWHHFRQRPLLQD LRQDOH F DJHQ LLHFRQRPLFLFHGHVI úRDU DFWLYLW
LGHFRPHU H[WHULRU
d) a,b,c; e) b,c. ,QWHUYDOXOGHvQFUHGHUHSHQWUXPHGLDDULWPHWLF HVWHFXDW
ât mai mic cu cât:
D YROXPXOHúDQWLRQXOXLHVWHPDLPLF E SUREDELOLWDWHDFXFDUHVHJDUDQWHD] UH]XOWDWHOHHVWHPDLPLF F UD LDGHVRQGDMHVWHPDLPDUH G YROXPXOHúDQWLRQXOXLVFDGH H SUREDELOLWDWHDGHJDUDQWDUHDUH]XOWDWHORUHVWHFRQVWDQW
32),QIOD LDHVWHFDX]DW
GHGHILFLWXOEXJHWDUGDF
D FUHúWHUHDFKHOWXLHOLORUVWDWXOXLGHS úHúWHFUHúWHUHDYHQLWXULORU E FKHOWXLHOLOHVWDWXOXLGHS úHVFYHQLWXULOH F FUHúWHGDWRULDLQWHUQ DVWDWXOXL G VHHPLWHPRQHG I U DFRSHULUHvQEXQXULúLVHUYL H VHHFKLOLEUHD] EDODQ DGHSO
cii;
L
2SHUD LXQLOHHFRQRPLFHGHFRQVXPVXQWUHDOL]DWHGHF WUH D GRDUGHF WUHDJHQ LLHFRQRPLFLFHHIHFWXHD] RSHUD LXQLDVXSUDEXQXULORUúLVHUYLFLLORU E WR LDJHQ LLHFRQRPLFL F WR LDJHQ LLHFRQRPLFLH[FOXVLYPHQDMHOHúLDGPLQLVWUD LLOHSXEOLFH G DGPLQLVWUD LLOHSULYDWH H VRFLHW
LOHILQDQFLDUHQHILQDQFLDUH
ÌQ&RQWDELOLWDWHD1D LRQDO RSHUD LXQLOHGHUHGLVWULEXLUHDYHQLWXULORUVXQWHIHFWXDWHGHF WUH D DGPLQLVWUD LLOHSXEOLFH
b) administrD LLOHSULYDWH F VRFLHW
LOHGHDVLJXUDUH
G VRFLHW
LOHEDQFDUH
H VRFLHW
LOHFRPHUFLDOHQHILQDQFLDUH
/XQJLPHDRSWLP DXQHLYDORULHVWLPDWHSHED]DGDWHORUGLQHúDQWLRQHVWH D GLIHULW GHFHDFDOFXODW SHQWUXSROXOD LDWRWDO E DSURSLDW GHFHDFDOFXODW SHQWUXSROXOD LDWRWDO F HJDO FXFHDFDOFXODW SHQWUXSROXOD LDWRWDO G QXVHSRDWHGHWHUPLQDRYDORDUHRSWLP
e) variantele a - d sunt false, corect este......… 0HWRGDLQGLFLORUQXSRDWHILXWLOL]DW SHQWUXDQDOL]D
a) compaUD LLORUvQSURILOWHULWRULDO E GHVFRPSXQHULLXQXLIHQRPHQFRPSOH[SHIDFWRULGHLQIOXHQ F GHWHUPLQ ULLJUDGXOXLGHLQIOXHQ
DXQXLIDFWRUDVXSUDDOWXLIDFWRU
G HYROX LHLXQXLIHQRPHQ
e) analiza estimatorilor unui fenomen complex. 37) 9DULD LDWRWDO
DXQHLFDUDFWHULVWLFLVWXGLDWHSHQWUXXQHúDQWLRQHVWHLQYHUVLQIOXHQ DW GH
D YROXPXOHúDQWLRQXOXL E YDULD LDUH]LGXDO F YDULD LDVLVWHPDWLF G YDULD LDH[SOLFDW H FRHILFLHQWXOGHYDULD LH
38) 'DF
VH JUXSHD] XQ VHW GH GDWH SH LQWHUYDOH HJDOH GH YDULD LH SHQWUX D RE LQH R GLVWULEX LH D
IUHFYHQ HORU PDL DSURSLDW GH IRUPD GLVWULEX LHL QRUPDOH QXP UXO GH JUXSH úL GLPHQVLXQHD ILHF UXLLQWHUYDO
D YRUFUHúWH
b) vor scade; F U PkQFRQVWDQWH G HYROXHD] vQVHQVFRQWUDU
e) nu se poate preFL]DHYROX LDORU 39) Cuartila întâi este: D PHGLDDULWPHWLF GLQWUHFXDUWLODDGRXDúLDWUHLD E GLIHUHQ DGLQWUHFXDUWLODDGRXDúLDWUHLD F UDSRUWXOGLQWUHFXDUWLODDGRXDúLDWUHLD G RYDORDUHVLWXDW ODGLQWHUPHQLLVHULHL H HJDO FXYDORDUHDPLQLP DFDUDFWHULVWLFLL ÌQWUHGHFLODD]HFHDúL[minVHDIO
a) 90% din termenii seriei analizate; b) 10% din termenii seriei; c) 100% din termenii seriei; G MXP WDWHGLQWHUPHQLLVHULHL H GHFLODD]HFHDQXH[LVW
TESTUL 16 1) DesprHSURGXF LDPDUI Filiala
DILOLDOHORUXQHLVRFLHW
Structura valorii
0RGLILFDUHDDEVROXW DYDORULLSURGXF LHL
SURGXF LHLPDUI vQ
PDUI FDXUPDUHDPRGLILF ULLSUH XULORU
în T1ID
perioada T0 (%) 25 35 …
A B C
LFRPHUFLDOHVHFXQRVFXUP WRDUHOHGDWH
GH70
0RGLILFDUHDUHODWLY D SUH XULORUvQ71ID
(mld.lei)
GH
T0 (%) +20 +25 +8
10 18 6
6H FXQRDúWH GHDVHPHQHD F YDORDUHD SURGXF LHL PDUI OD ILOLDOD & vQ 70 FDUDFWHUL]D vQ GLQDPLF SURGXF LD PDUI D VRFLHW
a fost 80 mld. lei. Pentru a e s-a determinat indicele valorii,
LL FRPHUFLDO
YROXPXOXL IL]LF úL DO SUH XULORU SUHFXP úL FRHILFLHQWXO GH FRUHOD LH U GLQWUH LQGLFLL LQGLYLGXDOL DL YROXPXOXLIL]LFúLDLSUH XULORU9DORULOHDFHVWRUDvQRUGLQHDSUHFL]DW PDLVXVVXQW
2)
a)
úLU
b)
úLU!
c)
úLU!
d)
úLU
e)
úLU
);
8Q VRQGDM $ GH YROXP Q vQ ED]D F UXLD VH HVWLPHD] PHGLD P D SRSXOD LHL VWDWLVWLFH SHQWUX YDULDELOD ; SULQ HVWLPD LD
x a HVWH PDL HILFLHQW GHFkW VRQGDMXO % GH DFHODúL YROXP Q vQ ED]D
F UXLDVHHVWLPHD] DFHHDúLPHGLHPSULQHVWLPD LD
xb GDF
H[LVW UHOD LD
a) M ( x a ) = M ( x b ) = m si D( x a ) < D( x b ) ; b) M ( x a ) = M ( x b ) sau D ( x a ) < D ( xb ) ; c) M ( x a ) = M ( x b ) m si D ( x a ) > D ( x b ) ; d) M ( x a ) < M ( x b ) si D( x a ) < D( x b ) ; e) M ( x a ) < M ( x b ) sau D ( x a ) < D ( x b ) . 1RW 0[ úL'[ UHSUH]LQW PHGLDúLGLVSHUVLDOXL;
3) Dintre conturile macroeconomice, din SCN, nu are sold: a) FRQWXOGHUHSDUWL LHDYHQLWXULORU b) contul de creare a veniturilor; c) FRQWXOSURGXF LH d) contul sintetic de bunuri; e) contul de modificare a patrimoniului; 4)
3HED]DYDORULORULQGLYLGXDOHDOHDFHOHLDúLYDULDELOHQXPHULFH;vQUHJLVWUDWHODFHOHQXQLW SRSXOD LHLVWDWLVWLFH3V DFDOFXODWPHGLDDULWPHWLF
-
x YDORDUHDPHGLDQ
LDOH
0H úLXQLFDYDORDUH
PRGDO 0R ÌQWUH FHOH WUHL YDORUL VLQWHWLFH V D VWDELOLW F H[LVW XUP WRDUHD LQHJDOLWDWH
-
x < Me < Mo $FHDVW
a)
LQHJDOLWDWH
VXJHUHD] F FHOHPDLPXOWHXQLW
LGLQ3vQUHJLVWUHD] YDORULLQGLYLGXDOHGHSODVDWHF WUH
valorile mari; b)
VXJHUHD] F FHOH PDL PXOWH YDORUL LQGLYLGXDOH GLQ FHOH vQUHJLVWUDWH VXQW GHSODVDWH F WUH
valorile mici; c)
HYLGHQ LHD] FRQFHQWUDUHDYDORULORULQGLYLGXDOHF WUH0R
d)
HYLGHQ LHD] VLPHWULDUHSDUWL LHLVWDWLVWLFH
e)
QXDUHQLFLRVHPQLILFD LHHFRQRPLF
5) Soldul contului macroeconomic „Crearea veniturilor” este:
6)
a)
9DORDUHDDG XJDW EUXW
b)
3URGXVXOLQWHUQEUXWODSUH XULOHIDFWRULORU
c)
3URGXVXOLQWHUQEUXWODSUH XULOHSLH HL
d)
3URGXVXOLQWHUQQHWODSUH XULOHIDFWRULORU
e)
3URGXVXOQD LRQDOQHWODSUH XULOHIDF
torilor.
6H FRQVLGHU R SRSXOD LH VWDWLVWLF 3 GH YROXP 1 QXP UQDWXUDOQHQXOGLIHULWGH/DXQLW
s-D XUP
ULW YDULDELOD QXPHULF ; DOH F
Q
.
k: unde, n- YROXPXO HúDQWLRQXOXL úL N- un LOHGHREVHUYDUHDHúDQWLRQXOXLGHYROXPQ– normal – xi = i (cu I=1,2,…,N). UHL YDORUL LQGLYLduale au fost
'LVSHUVLD PHGLHL GH VHOHF LH vQ FD]XO vQ FDUH HúDQWLRQXO D IRVW IRUPDW DOHDWRU úL I U UHYHQLUH
este:
N +1 N ( N + 1) N (k − 1)( N + 1) k −1 ; (k − 1) 12 2 ; d). 12 b). ; c). ; e). 12 ; a). 2 7)
3HQWUXYHULILFDUHDOHJ WXULLDXWRUHJUHVLYHGHRUGLQXOvQWkLGLQWUHWHUPHQLLXQHLVHULLFURQRORJLFH VHXWLOL]HD] FHOPDLIUHFYHQW
a)
WHVWXOGHYHULILFDUHDQRUPDOLW
LLUH]LGXXULORU
n
d=
∑ (e − e
t −1
t
t =2
)2
n
∑e
2 t
t =1
b) testul Durbin-Watson definit prin
ˆ , unde et = yt − yt este eroarea de
PRGHOUH]LGXDO DIHUHQW YDORULLWDYDULDELOHLWLPS
n
d= c) testul Durbin-Watson definit prin
∑ (e − e t =3
t −1
t
)2
n
∑e t =1
2 t
;
n
d=
∑ (e − e t =2
t −1
t
n
∑e t =1
d) testul Durbin-Watson definit prin
)2
t
;
e) testul Student. 8)
$QDOL]kQG OHJ WXUD GLQWUH 6&1 úL WDEHOXO LQSXW RXWSXW 7,2 FRQVWDW P F SULQ vQVXPDUHD
-
FRPSRQHQWHORUFDGUDQXOXLDO7,2VHRE LQH
a)
3,%ODSUH XULOHSLH HLSULQPHWRGDXWLOL] ULLILQDOH
b)
3,%ODSUH XULOHSLH HLSULQPHWRGDGHSURGXF LH
c) P1%ODSUH XULOHSLH HLSULQPHWRGDXWLOL]
9)
ULLILQDOH
d)
3,%ODSUH XULOHSLH HLSULQPHWRGDYHQLWXULORU
e)
311ODSUH XULOHIDFWRULORU
3HQWUX DFHHDúL VHULH FURQRORJLF WUHQGXO V PHWRG V
-a calculat eroarea mHGLHS
-a determinat prin mai multe metode. Pentru fiecare -
WUDWLF DDMXVW ULL6 DXRE LQXWXUP WRDUHOHUH]XOWDWH
0HWRGDGHDMXVWDUHXWLOL]DW
(URDUHDPHGLHS WUDWLF DDMXVW ULLXP
•
0HWRGDLQGLFHOXLPHGLXGHGLQDPLF 0,0
29.51
•
Metoda sporului mediu (MSM)
27.88
•
Metoda mediilor mobile (MMM) cu periodicitatea p=5 ani
17.14
•
MMM cu p=2 ani
5.97
3UHFL]D LFDUHGLQDILUPD LLOHXUP WRDUHHVWHIDOV
a)
FHDPDLPLF SUHFL]LHvQDMXVWDUHHVWHRIHULW GH0,0
b)
FHYDPDLSUHFLV GDUQXVHPQLILFDWLYPDLEXQ HVWHDMXVWDUHDSULQ06
c)
WHQGLQ D GHWHUPLQDW SULQ 000 FX S SULQ000FXS
HVWH PDL DSURSLDW GH HYROX LD UHDO GHFkW FHD RE LQXW
GHRDUHFHQHWH]LUHDRVFLOD LLORUHVWHPDLDFFHQWXDW
d)
DMXVWDUHDSULQ000FXS
HVWHPDLEXQ GHFkWFHDSULQ000FXS
e)
FHD PDL EXQ DMXVWDUH FRPSDUDWLY FX FHOHODOWH PHWRGH XWLOL]DWH HVWH FHD RE LQXW SULQ 000 FX
p=2. 10) (IHFWXDUHDFDOFXOHORUPDFURHFRQRPLFHvQ6&1QXSRDWHIDFHDEVWUDF LHGHIOX[XULOHJHQHUDWHGH DFWLYLWDWHD VHFWRUXOXL ÄVWDW´ 5HIHULWRU OD DFHVW VHFWRU SUHFL]D L FDUH GLQ XUP WRDUHOH DILUPD LL HVWHIDOV
St St a) veniturile sale provin din impozite de la menaje private ( I M ) , de la firme ( I F ) úLSDU LDO GLQSDUWLFLSDUHDODDFWLYLWDWHDHFRQRPLF
b)
YHQLWXULOH VDOH VXQW IRORVLWH SHQWUX UHPXQHUDUHD DQJDMD LORU GLQ VHFWRUXO SXEOLF SHQWUX FXPS UDUHD GH EXQXUL GH OD ILUPH VXEYHQ LL 6 úLF WUHPHQDMHSULYDWH
-
c)
( PI ST )
(VSTT )
,
SHQWUX WUDQVIHUXUL F WUH ILUPH
M ST
(T ) ;
DFWLYLWDWHD VWDWXOXL GH SURGXFHUH D EXQXULORU FROHFWLYH GH UHJXO VH FRQFHQWUHD] vQ
fluxuri bilaterale; ST ST M M d) I M + I F = VST + PI ST + TST + S + EST , unde EST
e)
GLIHUHQ DGLQWUHYHQLWXULúLFKHOWXLHOL
DFWLYLWDWHDVWDWXOXLJHQHUHD] SUHSRQGHUHQWIOX[XULvQWU
-un singur sens.
11) În cazul sondajului simplu, de volum n, analizându-VH DEDWHUHD PHGLH S
WUDWLF D PHGLHL GH
VHOHF LHFDP VXU WRUDOHURULLPHGLLGHUHSUH]HQWDWLYLWDWHVHFRQVWDW
n ori;
a)
FkQGQFUHúWHSUHFL]LDHVWLP ULLSDUDPHWULORUFUHúWHDSUR[LPDWLYGH
b)
FkQGQFUHúWHSUHFL]LDHVWLP ULLSDUDPHWULORUFUHúWHH[DFWGH
c)
FkQGQVFDGHSUHFL]LDHVWLP ULLSDUDPHWULORUFUHúWHDSUR[LPDWLYGH
d)
FkQGQFUHúWHSUHFL]LDHVWLP ULLSDUDPHWULORUFUHúWHWRWGHQRUL
e)
FUHúWHUHDVDXUHGXFHUHDOXLQQXDIHFWHD] SUHFL]LDHVWLP ULLSDUDPHWULO
n ori; n ori; or.
12) &RQFRUGDQ DvQWUHUDQJXULOHGHODODQDOHYDORULORUYDULDELOHLIDFWRULDOHúLUDQJXULOHGHODOD Q DOH YDORULORU YDULDELOHL HIHFW VH SRDWH H[SULPD QXPHULF FX FRHILFLHQWXO GH FRUHOD LH DO OXL
Spearman (rs úLFX FHODO OXL .HQGDOO Uk). În cazul îQ FDUH Q HVWH PDUH vQWUH FHL GRL FRHILFLHQ L
H[LVW UHOD LD
a)
rs =
2 2 rk rk = rs 3 ; b) 3 ; c) 2rk − 3rs = 1 ; d) rk + rs = 0 ; e) rk = rs .
13) &DOFXOXODYX LHLSURGXFWLYHVHUHDOL]HD]
SHED]DXUP WRDUHORUHOHPHQWH
a)
UHVXUVHOHQDWXUDOHVWRFXULúLUH]HUYHúLEXQXULGHFDSLWDO
b)
VWRFXULúLUH]HUYHSUHFXPúLXWLODMHPDúLQLúLHFKLSDPHQWH
c)
VWRFXULUH]HUYHúLPLMORDFHIL[H
d)
DYX LDGHFRQVXPDPHQDMHORUSULYDWHúLDVWDWXOXLVWRFXULUH]HUYHúLEXQX
e)
VWRFXULúLUH]HUYHXWLODMHPDúLQLHFKLSDPHQWHFRQVWUXF LL
14) 8Q DQDOLVW GH PDUNHWLQJ XUP
ri de capital;
UHúWH HIHFWXO FKHOWXLHOLORU FX UHFODPD [ DVXSUD YHQLWXULORU GLQ
YkQ] UL \ SH R SHULRDG GH GH OXQL ÌQ XUPD SUHOXFU ULL GDWHORU SULPDUH V
-au oE LQXW y = 18.84 . În
σ = 353.44 ; σ = 22.09 ; cov(x,y)= 70.7; x = 75.2 úL urma analizei statistice s-DDMXQV ODFRQFOX]LD F GHSHQGHQ DGLQWUHFHOHGRX YDULDELOH SRDWHIL modelat SULQWU-R IXQF LH GH JUDGXO vQWkL (FXD LD PRGHOXOXL GH UHJUHVLH úL YDORDUHD FDOFXODW D
XUP WRDUHOH UH]XOWDWH
2 x
2 y
OXLWXWLOL]DW SHQWUXWHVWDUHDVHPQLILFD LHLFRHILFLHQWXOXLGHFRUHOD LHvQDFHDVW RUGLQHHVWH
a) yˆ = 3.8 + 0.2 x b) yˆ = 3.8 − 0.2 x
c) yˆ = 0.2 + 3.8 x d) yˆ = 0.2 + 3.8 x e) yˆ = 3.8 + 0.2 x
úLW
úLW
úLW
úLW
úLW
15) Despre patru firme dintr-XQFRQFHUQVHFXQRVFXUP
WRDUHOHGDWH
Firma
6WUXFWXUDSURGXF LH
3URGXF LDUHDOL]DW GHILUPHvQ
A B C D
în perioada T0 (%) 15 25 20 40
T1 în raport cu cea a firmei A 1.0 1.8 1.4 2.5
'HS úLUHDQHUHDOL]DUHD SURJUDPXOXLGHSURGXF LHvQ71
6H PDL FXQRDúWH GH DVHPHQHD F SURGXF LD UHDOL]DW GH ILUPD $ vQ 71 GHYDQVkQGSURGXF LDUHDOL]DW GL DDMXQVODXUP WRDUHDFRQFOX]LH
a)
n T0FXÌQXUPDSUHOXFU
a fost de 75 mld. lei, -
ULLGDWHORUSHQWUXvQWUHJXOFRQFHUQV
SURJUDPXOGHSURGXF LHDIRVWGHS úLWFXLDUSURGXF LDUHDOL]DW GLQ71DIRVWHJDO FXFHD
din T0; b)
(%)
+20 -10 0 +30
SURJUDPXO GH SURGXF LH QX V
-a realizat cu 8.83%,
LDU SURGXF LD UHDOL]DW vQ 71
a fost mai mare
decât cea din T0; c)
LQGLFHOH UHDOL] ULL SURJUDPXOXL GH SURGXF LH vQ 71 D IRVW GH LDU SURGXF LD SURJUDPDW
pentru T1DFUHVFXWID d)
GH70
cu 120%;
LQGLFHOHUHDOL] ULLSURJUDPXOXLGHSURGXF LHDIRVWGHLDUSURGXF LDUHDOL]DW vQ71 PDLPDUHGHFkWFHDUHDOL]DW vQ70
e)
a fost
cu 117.9 mld. lei;
SURJUDPXOGHSURGXF LHSHQWUX71DIRVWGHS úLWFXPOGOHLLDUSURGXF LDUHDOL]DW vQ71
fost mai mare decât cea din T0 cu peste 5%.
a