اﻻﺣﺼﺎء اﻻﺳﺘﺪﻻﻟﻰ -1ﻣﺮاﺟﻌﺔ أهﻢ اﻟﻤﻔﺎهﻴﻢ
Population
Simple Random
Sample
X Q R H E A C S Z L N Y T M P V G U F J I W D B K O
Population
A F G P T
Stratified Random
Sample
B C R
D
E
25%
H
I K L 50% N O X U Z Y 25% Q V S W
25% 50% 25%
Population
AB OP
CD QR
MN
Sample
EFG HI
JKL
Cluster Random
STU
AB
Population
OP
CD QR
MN
STU EFG HI
JKL
B
I F
G
Two- Stage Random
Sample
Population
Systematic Non-Random
Sample
A F L Q V
B CDE G HIJ MKNO RPST WU X Y
Population Easily Accessible
Convenience Non-Random
Sample
X Q R H E A C S N Y T Z L M P V G U F J I W D B K O
Population Especially Qualified
Purposive Non-Random
Sample
X Q R A C Z L N V P G J B W O
H E S Y T M U F I D K
أﺧﻄﺎء اﻟﻌﻴﻨﺎت ) اﻟﻔﺮق ﺑﻴﻦ إﺣﺼﺎءات اﻟﻌﻴﻨﺔ وﻣﻌﺎﻟﻢ اﻟﻤﺠﺘﻤﻊ (
أﺧﻄﺎء ﺗﺤﻴﺰ
ﺗﺤﻴﺰ ﻓﻰ اﺧﺘﻴﺎر اﻟﻌﻴﻨﺔ ﻣﺜﻞ ﺗﺒﺪﻳﻞ وﺣﺪات ﻣﻌﺎﻳﻨﺔ ﻣﺤﻞ أﺧﺮى ،واﻟﻔﺸﻞ ﻓﻰ اﻟﺤﺼﻮل ﻋﻠﻰ ﺑﻴﺎﻧﺎت ﺟﺰء آﺒﻴﺮ ﻣﻦ اﻟﻌﻴﻨﺔ
أﺧﻄﺎء ﻣﻌﺎﻳﻨﺔ ﺘﺤﻴﺯ ﻓﻰ ﺤﺴﺎﺏ ﺍﻟﺘﻘﺩﻴﺭﺍﺕ ﻨﺘﻴﺠﺔ ﻋﺩﻡ ﺍﺴﺘﺨﺩﺍﻡ ﺍﻷﺴﺎﻟﻴﺏ ﺍﻹﺤﺼﺎﺌﻴﺔ ﺍﻟﻤﻨﺎﺴﺒﺔ
ﺍﺴﺘﺨﺩﺍﻡ ﺒﻴﺎﻨﺎﺕ ﺍﻟﻌﻴﻨﺔ ﺒﺩﻻ ﻤﻥ ﺍﻟﻤﺠﺘﻤﻊ ﻭﺘﻌﺘﻤﺩ ﻫﺫﻩ ﺍﻷﺨﻁﺎﺀ ﻋﻠﻰ ﺤﺠﻡ ﺍﻟﻌﻴﻨﺔ ﻭﺘﺒﺎﻴﻥ ﺍﻟﻤﺠﺘﻤﻊ ﻭﻁﺭﻕ ﺍﺨﺘﻴﺎﺭ ﺍﻟﻌﻴﻨﺔ
ﻧﻔﺮض أن ﻟﺪﻳﻨﺎ ﻣﺠﺘﻤﻊ ﻳﺘﻜﻮن ﻣﻦ أرﺑﻊ درﺟﺎت ) (2,4,6,8وأردﻧﺎ اﺧﺘﻴﺎر ﻋﻴﻨﺎت ﺗﺸﻤﻞ آﻞ ﻣﻨﻬﺎ وﺣﺪﺗﻴﻦ أو درﺟﺘﻴﻦ ،ﻓﺈن آﻞ اﻟﻌﻴﻨﺎت اﻟﻌﺸﻮاﺋﻴﺔ اﻟﻤﻤﻜﻦ اﻟﺤﺼﻮل ﻋﻠﻴﻬﺎ ﻣﻦ ذﻟﻚ اﻟﻤﺠﺘﻤﻊ هﻰ:
2،2 2،4 2،6 2،8
-
4،2 4،4 4،6 4،8
6،26،46،66،8-
8،28،48،68،8-
إذا أردﻧﺎ رﺳﻢ ﺗﻮزﻳﻊ ﻋﻴﻨﺔ اﻟﻤﺘﻮﺳﻄﺎت ،ﻓﺈﻧﻨﺎ ﻧﻘﻮم ﺑﺤﺴﺎب ﻣﺘﻮﺳﻂ آﻞ ﻋﻴﻨﺔ أوﻻ آﻤﺎ هﻮ ﻣﻮﺿﺢ ﻓﻰ اﻟﺠﺪول
اﻟﻤﺘﻮﺳﻂ
ﺍﻟﺩﺭﺠﺎﺕ
ﺍﻟﺜﺎﻨﻴﺔ
ﺍﻷﻭﻟﻰ
ﺍﻟﻌﻴﻨﺔ ) (Χ
2
2
2
1
3
4
2
2
4
6
2
3
5
8
2
4
3
2
4
5
4
4
4
6
5
6
4
7
6
8
4
8
4
2
6
9
5
4
6
10
6
6
6
11
7
8
6
12
5
2
8
13
6
4
8
14
7
6
8
15
8
8
8
16
وﻳﻤﻜﻦ ﺗﻤﺜﻴﻞ ﺗﻮزﻳﻊ ﻋﻴﻨﺔ اﻟﻤﺘﻮﺳﻄﺎت ﺑﺎﺳﺘﺨﺪام اﻟﻤﺪرج اﻟﺘﻜﺮارى اﻟﺘﺎﻟﻰ : اﻟﺘﻜﺮار
4 3 2 1
9
8
7
6
5
4
3
2
1
0
The Theoretical Normal Curve
(from http://www.music.miami.edu/research/statistics/normalcurve/images/normalCurve1.gif
Properties of the Normal Curve: Theoretical construction Also called Bell Curve or Gaussian Curve Perfectly symmetrical normal distribution The mean of a distribution is the midpoint of the curve The tails of the curve are infinite Mean of the curve = median = mode The “area under the curve” is measured in standard deviations from the mean
Properties (cont.)
Has a mean = 0 and standard deviation = 1. General relationships: ±1 s = about 68.26% ±2 s = about 95.44% ±3 s = about 99.72%
68.26%
95.44% 99.72%
-5
-4
-3
-2
-1
0
1
2
3
4
5
The Normal Curve
34% of scores between the mean and 1 SD above or below the mean An additional 14% of scores between 1 and 2 SDs above or below the mean Thus, about 96% of all scores are within 2 SDs of the mean (34% + 34% + 14% + 14% = 96%)
Note: 34% and 14% figures can be useful to remember
Mean = 65 S=2 0.70 0.60 Relative Frequency
There are known percentages of scores above or below any given point on a normal curve
0.50 0.40
99.72% of cases 95.44% of cases 68.26% of cases
0.30 0.20 0.10 2% 14% 34% 34% 14% 2% 0.00 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 -3S -2S -1S 0 +1 S +2S +3S
The Standard Normal Curve “A standard score expresses a score’s position in relation to the mean of the distribution, using the standard deviation as the unit of measurement” “A z-score states the number of standard deviations by which the original score lines above or below the mean” Any score can be converted to a z-score.
X−X z= S