Stat Lect1

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Stat Lect1 as PDF for free.

More details

  • Words: 703
  • Pages: 17
‫اﻻﺣﺼﺎء اﻻﺳﺘﺪﻻﻟﻰ‬ ‫‪ -1‬ﻣﺮاﺟﻌﺔ أهﻢ اﻟﻤﻔﺎهﻴﻢ‬

Population

Simple Random

Sample

X Q R H E A C S Z L N Y T M P V G U F J I W D B K O

Population

A F G P T

Stratified Random

Sample

B C R

D

E

25%

H

I K L 50% N O X U Z Y 25% Q V S W

25% 50% 25%

Population

AB OP

CD QR

MN

Sample

EFG HI

JKL

Cluster Random

STU

AB

Population

OP

CD QR

MN

STU EFG HI

JKL

B

I F

G

Two- Stage Random

Sample

Population

Systematic Non-Random

Sample

A F L Q V

B CDE G HIJ MKNO RPST WU X Y

Population Easily Accessible

Convenience Non-Random

Sample

X Q R H E A C S N Y T Z L M P V G U F J I W D B K O

Population Especially Qualified

Purposive Non-Random

Sample

X Q R A C Z L N V P G J B W O

H E S Y T M U F I D K

‫أﺧﻄﺎء اﻟﻌﻴﻨﺎت‬ ‫) اﻟﻔﺮق ﺑﻴﻦ إﺣﺼﺎءات اﻟﻌﻴﻨﺔ وﻣﻌﺎﻟﻢ اﻟﻤﺠﺘﻤﻊ (‬

‫أﺧﻄﺎء ﺗﺤﻴﺰ‬

‫ﺗﺤﻴﺰ ﻓﻰ اﺧﺘﻴﺎر‬ ‫اﻟﻌﻴﻨﺔ ﻣﺜﻞ ﺗﺒﺪﻳﻞ‬ ‫وﺣﺪات ﻣﻌﺎﻳﻨﺔ ﻣﺤﻞ‬ ‫أﺧﺮى ‪ ،‬واﻟﻔﺸﻞ ﻓﻰ‬ ‫اﻟﺤﺼﻮل ﻋﻠﻰ‬ ‫ﺑﻴﺎﻧﺎت ﺟﺰء آﺒﻴﺮ‬ ‫ﻣﻦ اﻟﻌﻴﻨﺔ‬

‫أﺧﻄﺎء ﻣﻌﺎﻳﻨﺔ‬ ‫ﺘﺤﻴﺯ ﻓﻰ ﺤﺴﺎﺏ‬ ‫ﺍﻟﺘﻘﺩﻴﺭﺍﺕ ﻨﺘﻴﺠﺔ‬ ‫ﻋﺩﻡ ﺍﺴﺘﺨﺩﺍﻡ‬ ‫ﺍﻷﺴﺎﻟﻴﺏ ﺍﻹﺤﺼﺎﺌﻴﺔ‬ ‫ﺍﻟﻤﻨﺎﺴﺒﺔ‬

‫ﺍﺴﺘﺨﺩﺍﻡ ﺒﻴﺎﻨﺎﺕ ﺍﻟﻌﻴﻨﺔ‬ ‫ﺒﺩﻻ ﻤﻥ ﺍﻟﻤﺠﺘﻤﻊ ﻭﺘﻌﺘﻤﺩ‬ ‫ﻫﺫﻩ ﺍﻷﺨﻁﺎﺀ ﻋﻠﻰ ﺤﺠﻡ‬ ‫ﺍﻟﻌﻴﻨﺔ ﻭﺘﺒﺎﻴﻥ ﺍﻟﻤﺠﺘﻤﻊ‬ ‫ﻭﻁﺭﻕ ﺍﺨﺘﻴﺎﺭ ﺍﻟﻌﻴﻨﺔ‬

‫ﻧﻔﺮض أن ﻟﺪﻳﻨﺎ ﻣﺠﺘﻤﻊ ﻳﺘﻜﻮن ﻣﻦ أرﺑﻊ درﺟﺎت )‬ ‫‪ (2,4,6,8‬وأردﻧﺎ اﺧﺘﻴﺎر ﻋﻴﻨﺎت ﺗﺸﻤﻞ آﻞ ﻣﻨﻬﺎ‬ ‫وﺣﺪﺗﻴﻦ أو درﺟﺘﻴﻦ ‪ ،‬ﻓﺈن آﻞ اﻟﻌﻴﻨﺎت اﻟﻌﺸﻮاﺋﻴﺔ‬ ‫اﻟﻤﻤﻜﻦ اﻟﺤﺼﻮل ﻋﻠﻴﻬﺎ ﻣﻦ ذﻟﻚ اﻟﻤﺠﺘﻤﻊ هﻰ‪:‬‬

‫„‬ ‫„‬ ‫„‬ ‫„‬

‫‪2،2‬‬ ‫‪2،4‬‬ ‫‪2،6‬‬ ‫‪2،8‬‬

‫‬‫‬‫‬‫‪-‬‬

‫‪4،2‬‬ ‫‪4،4‬‬ ‫‪4،6‬‬ ‫‪4،8‬‬

‫‪6،2‬‬‫‪6،4‬‬‫‪6،6‬‬‫‪6،8-‬‬

‫‪8،2‬‬‫‪8،4‬‬‫‪8،6‬‬‫‪8،8-‬‬

‫إذا أردﻧﺎ رﺳﻢ ﺗﻮزﻳﻊ ﻋﻴﻨﺔ‬ ‫اﻟﻤﺘﻮﺳﻄﺎت‪ ،‬ﻓﺈﻧﻨﺎ ﻧﻘﻮم‬ ‫ﺑﺤﺴﺎب ﻣﺘﻮﺳﻂ آﻞ‬ ‫ﻋﻴﻨﺔ أوﻻ آﻤﺎ هﻮ ﻣﻮﺿﺢ‬ ‫ﻓﻰ اﻟﺠﺪول‬

‫اﻟﻤﺘﻮﺳﻂ‬

‫ﺍﻟﺩﺭﺠﺎﺕ‬

‫ﺍﻟﺜﺎﻨﻴﺔ‬

‫ﺍﻷﻭﻟﻰ‬

‫ﺍﻟﻌﻴﻨﺔ‬ ‫) ‪(Χ‬‬

‫‪2‬‬

‫‪2‬‬

‫‪2‬‬

‫‪1‬‬

‫‪3‬‬

‫‪4‬‬

‫‪2‬‬

‫‪2‬‬

‫‪4‬‬

‫‪6‬‬

‫‪2‬‬

‫‪3‬‬

‫‪5‬‬

‫‪8‬‬

‫‪2‬‬

‫‪4‬‬

‫‪3‬‬

‫‪2‬‬

‫‪4‬‬

‫‪5‬‬

‫‪4‬‬

‫‪4‬‬

‫‪4‬‬

‫‪6‬‬

‫‪5‬‬

‫‪6‬‬

‫‪4‬‬

‫‪7‬‬

‫‪6‬‬

‫‪8‬‬

‫‪4‬‬

‫‪8‬‬

‫‪4‬‬

‫‪2‬‬

‫‪6‬‬

‫‪9‬‬

‫‪5‬‬

‫‪4‬‬

‫‪6‬‬

‫‪10‬‬

‫‪6‬‬

‫‪6‬‬

‫‪6‬‬

‫‪11‬‬

‫‪7‬‬

‫‪8‬‬

‫‪6‬‬

‫‪12‬‬

‫‪5‬‬

‫‪2‬‬

‫‪8‬‬

‫‪13‬‬

‫‪6‬‬

‫‪4‬‬

‫‪8‬‬

‫‪14‬‬

‫‪7‬‬

‫‪6‬‬

‫‪8‬‬

‫‪15‬‬

‫‪8‬‬

‫‪8‬‬

‫‪8‬‬

‫‪16‬‬

‫وﻳﻤﻜﻦ ﺗﻤﺜﻴﻞ ﺗﻮزﻳﻊ ﻋﻴﻨﺔ اﻟﻤﺘﻮﺳﻄﺎت‬ ‫ﺑﺎﺳﺘﺨﺪام اﻟﻤﺪرج اﻟﺘﻜﺮارى اﻟﺘﺎﻟﻰ ‪:‬‬ ‫اﻟﺘﻜﺮار‬

‫‪4‬‬ ‫‪3‬‬ ‫‪2‬‬ ‫‪1‬‬

‫‪9‬‬

‫‪8‬‬

‫‪7‬‬

‫‪6‬‬

‫‪5‬‬

‫‪4‬‬

‫‪3‬‬

‫‪2‬‬

‫‪1‬‬

‫‪0‬‬

The Theoretical Normal Curve

(from http://www.music.miami.edu/research/statistics/normalcurve/images/normalCurve1.gif

Properties of the Normal Curve: Theoretical construction Also called Bell Curve or Gaussian Curve Perfectly symmetrical normal distribution The mean of a distribution is the midpoint of the curve The tails of the curve are infinite Mean of the curve = median = mode The “area under the curve” is measured in standard deviations from the mean

Properties (cont.)

Has a mean = 0 and standard deviation = 1. General relationships: ±1 s = about 68.26% ±2 s = about 95.44% ±3 s = about 99.72%

68.26%

95.44% 99.72%

-5

-4

-3

-2

-1

0

1

2

3

4

5

The Normal Curve

„

„

„

34% of scores between the mean and 1 SD above or below the mean An additional 14% of scores between 1 and 2 SDs above or below the mean Thus, about 96% of all scores are within 2 SDs of the mean (34% + 34% + 14% + 14% = 96%)

Note: 34% and 14% figures can be useful to remember

Mean = 65 S=2 0.70 0.60 Relative Frequency

There are known percentages of scores above or below any given point on a normal curve

0.50 0.40

99.72% of cases 95.44% of cases 68.26% of cases

0.30 0.20 0.10 2% 14% 34% 34% 14% 2% 0.00 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 -3S -2S -1S 0 +1 S +2S +3S

The Standard Normal Curve “A standard score expresses a score’s position in relation to the mean of the distribution, using the standard deviation as the unit of measurement” “A z-score states the number of standard deviations by which the original score lines above or below the mean” Any score can be converted to a z-score.

X−X z= S

Related Documents

Stat Lect1
November 2019 12
Lect1
October 2019 9
Stat
June 2020 21
Stat > Stat
November 2019 45
Stat ,
November 2019 50
Stat
November 2019 37