Stat Formulas Jen.docx

  • Uploaded by: ErzaTitaniaAsuna Grace
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Stat Formulas Jen.docx as PDF for free.

More details

  • Words: 2,261
  • Pages: 15
Statistics Formulas Sample Mean

x

x

i

n

Population Mean

x  

xi

N

Interquartile Range

IQR  Q3  Q1 Sample Variance

Sample Standard Deviation

 x  x  

2

s2

2

i

sx 

n 1

Population Variance

  2

 x  x  i

n 1

Population Standard Deviation

2   x    i x

 x   

2

x 

N

i

x

N

Coefficient of Variation

 Standard Deviation  CV   100 % Mean   Z-Score

Zi 

xi  x x  or Z i  i s 

Sample Covariance

s xy 

 x  x y i

i

y



n 1

Population Covariance

 xy  

xi   x yi   y  N

Pearson Product Moment Correlation Coefficient (Pearson R): Sample Data

rxy 

s xy sx s y

Population Data

 xy 

 xy  x y -1-

Statistics Formulas Weighted Mean

xw 

w x w

i i i

Sample Mean for Grouped Data

xg 

fM i

Population Mean for Grouped Data

g  

i

n

Sample Variance for Grouped Data

s g2 

 f M i

i

 xg

n 1



2

sg 

 

n 1



N

Population Variance for Grouped Data

 g2  

Sample Standard Deviation for Grouped Data

f i M i  xg

fi M i

f i M i   g 

2

N

Population Standard Deviation for Grouped Data

2

g 

-2-



f i M i   g 

2

N

Statistics Formulas Counting Rule for Combinations n

Cr 

n! r!(n  r )!

Counting Rule for Permutations n Pr 

n! (n  r )!

Computing Probability Using the Complement

P( A)  1  P( AC ) Addition Law P( A  B)  P( A)  P( B)  P( A  B) Conditional Probability P( A  B) P( A | B)  or P( B) Multiplication Law P( A  B)  P( B) P( A | B)

P( B | A) 

or

P( A  B) P( A)

P( A  B)  P( A) P( B | A)

Multiplication Law for Independent Events P( A  B)  P( A) P( B) Expected Value of a Discrete Random Variable E ( x)     x f ( x) Variance of a Discrete Random Variable 2 Var ( x)   2   x    f ( x) Binomial Probability Function

f ( x) 

n! p x (1  p ) ( n  x ) x!(n  x)!

Expected Value and Variance for the Binomial Distribution

E ( x)    np

Var ( x)   2  np(1  p)

Poisson Probability Function

 xe f ( x)  x!

where f (x) = the probability of x occurrences in an interval = the expected value or mean number of occurrences in an interval  e = 2.718 -3-

Statistics Formulas Sampling & Sampling Distributions

Standard Deviation of For a Finite Population

x 

x

N n     N 1  n 

(Standard Error) For an Infinite Population

x 



n

Sampling Proportions Standard Deviation of



For a Finite Population

N n N 1

 pˆ 

For an Infinite Population

pˆ qˆ n

Interval Estimate of a Population Mean:

xE

Where

Where

 pˆ 

pˆ qˆ n



Known



Unknown

   E  Z   n

Interval Estimate of a Population Mean:

xE

(Standard Error)

 s  E  t  n  

Sample Size for an Interval Estimate of a Population Mean

Z 2 2 n E2 Interval Estimate of a Population Proportion

pˆ  Z

pˆ qˆ n

Sample Size for an Interval Estimate of a Population Proportion

Z 2 p *q * n E2

-4-

Statistics Formulas Sampling Proportions Test Statistic for Hypothesis Tests About a Population Proportion

Z

p  p0 p0 1 p0  n



Standard Deviation of For a Finite Population

 pˆ 

N n N 1

pˆ 1  pˆ  n

Interval Estimate of a Population Mean:

xE

Where

Where

For an Infinite Population

 pˆ 



pˆ 1  pˆ  n

Known

   E  Z   n

Interval Estimate of a Population Mean:

xE

(Standard Error)

   x  Z   n



Unknown

 s  x  t x   n

 s  E  t x   n

Interval Estimate of a Population Proportion

pZ



p 1 p n



Interval Estimate of the Difference Between Two Population Proportions

p1  p2  Z







p1 1  p1 p2 1  p2  n1 n2



 Z  n

Sample Size for an Interval Estimate of Population Proportions and Normal Distributions 

Z 2 p *q * n E2

2

2

E2

-5-

2 x

Statistics Formulas Z-Value Formulas for Normal and “Approximately Normal” Distributions – Calculations of Test Statistics

Z

x  x 

t

 Known

x  0  Unknown

Sx n

n

Test Statistic for Hypothesis Tests About Two Independent Proportions

p  p  1 1 p 1  p    n n

Z

1

2



1

2



Standard Error of x1  x2

 x x 1

 12 2

n1



 22 n2

Degrees of Freedom for the t Distribution Using Two Independent Random Samples 2

 s12 s22      n1 n2  d. f .  2 2 2 2    1 s 1 s   1    2  n1  1  n1  n2  1  n2  Test Statistic for Hypothesis Tests About Two Independent Means; Population Standard Deviations Unknown

t

x  x  D 1

2

0

s12 s22  n1 n2

Test Statistic for Hypothesis Tests Involving Matched Samples

t

d  d sd n -6-

Statistics Formulas Mean Difference Involving Matched (or Dependent) Samples

 d 

d

i

n

Standard Deviation Notation Used for Matched Samples

 d  d 

2

sd 

i

n 1

Interval Estimate of Means of Matched Samples

d  t / 2  S dn Test Statistic for Hypothesis Tests About a Population Variance



2

 n  1s 2  

 2 d. f .  n 1

2 0

Test Statistic for Hypothesis Tests About Two Population Variances when  12   22

s12 F 2 s2

df numerator  n1  1

and

df denominator  n2  1

Interval Estimate of the Difference Between Two Population Means: σ1 and σ2 Known and Unknown

x1  x2  Z / 2

 12 n1



 22 n2

(σ known)

x1  x2  t / 2

S12 S 22  n1 n2

(σ unknown)

Pooled Sample Standard Deviation (Assumptions that σ1 and σ2 are equal and populations are

approximately normal) & Test Statistic for Comparison of Independent Samples

Sp 

n1  1S12  n2  1S 22 n1  n2  2

d . f .  n1  n2  2

-7-

t

x  x  D 1

Sp

2

1 1  n1 n2

0

Statistics Formulas Chi-Square Goodness of Fit Test Statistic

  2

 f o  f e 2 fe

; d . f .  (c  1)

Chi-Square Test for Independence Test Statistic

   2

i

 f oij  f eij 2 f eij

; d . f .  (c  1)(r  1)

j

Testing for the Equality of k Population Means—ANOVA Sample Mean for Treatment j nj

xj 

x

ij

i 1

nj

Sample Variance for Treatment j

 x nj

s  2 j

ij

i 1

 xj



2

n j 1

Overall Sample Mean (Grand Mean) k

x

nj

 x j 1 i 1

ij

nT



x k

Mean Square Due to Treatments

SSTR MSTR  k 1 Sum of Squares Due to Treatments k



SSTR   n j x j  x j 1

Mean Square Due to Error

-8-



2

Statistics Formulas

MSE 

SSE nT  k

Sum of Squares Due to Error

SSE   n j  1s 2j k

j 1

Test Statistic for the Equality of k Population Means

F

MSTR MSE

Total Sum of Squares nj

k



SST   xij  x j 1 i 1

Partitioning of Sum of Squares



2

SST  SSTR  SSE

Multiple Comparison Procedures Test Statistic for Fisher’s LSD Procedure

t

xi  x j MSE



1 ni

 n1j

Fisher’s LSD

LSD  t / 2 MSE Completely Randomized Designs Mean Square Due to Treatments

 n x k

MSTR 

j 1

j

j



1 ni

-9-

 n1j

x

k 1

Mean Square Due to Error





2



Statistics Formulas

 n k

MSE 

j 1

j

 1s 2j

nT  k

- 10 -

Statistics Formulas F Test Statistic

MSTR F MSE Randomized Block Designs Total Sum of Squares b













k

SST   xij  x i 1 j 1

Sum of Squares Due to Treatments k

2

SSTR  b x  j  x j 1

2

Sum of Squares Due to Blocks b

SSBL  k  x i  x i 1

Sum of Squares Due to Error

2

SSE  SST  SSTR  SSBL

Factorial Experiments Total Sum of Squares a

b

r



SST   xijk  x i 1 j 1 k 1

Sum of Squares for Factor A









a

SSA  br  x i  x i 1

2

Sum of Squares for Factor B b

SSB  ar  x  j  x j 1

- 11 -

2



2

Statistics Formulas Sum of Squares for Interaction a

b



SSAB  r  x ij  x i   x  j  x i 1 j 1

Sum of Squares for Error



SSE  SST  SSA  SSB  SSAB

Simple Linear Regression Formulas Simple Linear Regression Model

y   0  1 x  

Simple Linear Regression Equation

E  y    0  1 x

Estimated Simple Linear Regression Equation

yˆ  b0  b1 x Least Squares Criterion

min   yi  yˆ i 

2

Slope and y-Intercept for the Estimated Regression Equation

b1

 x  x y  y     x  x  i

i

2

i

b0  y  b1 x Total Sum of Squares



SST   yi  y Sum of Squares Due to Error



2

SSE    yi  yˆ i 

2

Sum of Squares Due to Regression

SSR  



- 12 -

yˆ i  y



2

2

Statistics Formulas Total Sum of Squares for Regression

SST  SSR  SSE

Coefficient of Determination

SSR r  SST 2

Sample Correlation Coefficient

rxy  sign of b1  Coefficient of Determination  sign of b1  r 2 Mean Square Error (Estimate of σ2 )

s 2  MSE 

SSE n2

Standard Error of the Estimate

s 2  MSE  Standard Deviation of b1

b  1

SSE n2



 x  x 

2

i

Estimated Standard Deviation of b1

sb1 

s

 x  x 

2

i

t Test Statistic

t

b1 sb1

Mean Square Regression

MSR 

SSR # independent variables

- 13 -

Statistics Formulas F Test Statistic

MSR F MSE Estimated Standard Deviation of

yˆ p

 x  x 1  n  x  x  2

s yˆ p  s Confidence Interval for

p

2

i

E y p 

yˆ p  t / 2 s yˆ p Estimated Standard Deviation of an Individual Value

 x  x 1 1  n  x  x  2

sind  s

p

2

i

Prediction Interval for yp

yˆ p  t / 2 sind

Residual for Observation i

yi  yˆ p Standard Deviation of the i th Residual

s yi  yˆ i  s 1  hi Standardized Residual for Observation i

Leverage of Observation i

ˆi yi  y s yi  yˆ i





2

xi  x 1 hi  n  xi  x



- 14 -



2

Statistics Formulas Nonparametric Method Formulas Mann-Whitney-Wilcoxon Test (Large Sample)

Mean : T 

1

n  n1  n2  1

2 1

Standard Deviation:  T 

n n  n1  n2  1

1 12 1 2

Kruskall-Wallis Test Statistic

k  Ri2  12 W    3  nT  1   nT  nT  1 i 1 ni  Spearman Rank –Correlation Coefficient

rs  1 

6 di2





n n2  1

- 15 -

Related Documents

Stat Formulas[1]
November 2019 6
Stat Formulas Jen.docx
December 2019 4
Stat
June 2020 21
Stat > Stat
November 2019 45
Stat ,
November 2019 50
Formulas
May 2020 26

More Documents from ""