SAINT GABRIEL’S SECONDARY SCHOOL 2009 ‘O’ LEVEL ADDITIONAL MATHEMATICS PRELIMINARY EXAMINATION Secondary Four Express Paper 2
Marking Scheme 1(i)
2(i) amplitude = 1 (B1) 2 Period = (B1) 3 (ii) points : (B1) curve : (B1)
1200 1199e kt 1 1200 66 1199e k ( 5) 1 1200 e 5k 1 1199 66 1200 5k ln 1 1199 66 k = 0.849 (3dp) N
y 4
3
(M1A1) 2
(ii)
1200 N = 962.76 1199e 0.849(10) 1 1
total no of students = 963.
(M1A1)
1200 (iii) 0.35 1200 1199e 0.849t 1 1200 e 0.849t 1 1199 420 1200 0.849t ln 1 1199 420
t 7.62 number of days = 8 days.
(M1A1)
1 x 2
y = e ln x , x > 0 1 dy 1 2 x 1 e (B1,B1) dx 2 x dy For stationary points, 0 dx 1 1 2x 1 (B1) e 2 x 1 1 x Consider y e 2 , it is an increasing function. 2 1 Consider y , it is an decreasing function. x Since one is an increasing function & the other is an decreasing, there will only be 1 point of intersection. (B1) 3
1
0.5
1
6
1.5
3
2
2
,1 2
(iii) min turning point =
2x 1 = sin 3x π 2x 1 = sin 3x + 2 π number of solution = 1.
2 3
(B1)
(iv)
(B1) (B1)
Con’t 3 1
d 2 y 1 2x 1 e 2 dx 2 4 x 1
(B1,B1)
x
Since x > 0, e 2 > 0, and
1 >0 x2
d2y 0 dx 2
it is a minimum point.
(B1)
x
only 1 stationary point for y = e 2 ln x .
[Turn over
x
2
5x 6 5x 6 4(i) 2 ( x 2)( x 4) ( x 2) 2 ( x 2) A B C = (B1) 2 ( x 2) ( x 2) ( x 2) 5x + 6 = A(x +2)(x 2) + B(x 2) + C(x + 2)2 let x = 2, C = 1 (B1) let x = 2, B = 1 (B1) let x = 0. A = 1 (B1)
5x 6 1 1 1 2 2 ( x 2)( x 4) ( x 2) ( x 2) ( x 2)
(ii)
5x 6 dx 3 ( x 2)( x 2 4) 5
5
1 = ln( x 2) ln( x 2) (B3) x2 3 5
1 x2 = ln x 2 x 2 3 3 1 1 1 = ln ln 0.819 (A1) 7 7 5 5 6a 2x + 2y = 9 --------- (1) 3x1 = 32 3y x 1 = 2 + y --------- (2) x=3+y (B1) sub (1) into (2) 23+y + 2 y = 9 (23)(2y) + 2y = 9 Let z = 2 y 8z + z = 9 (M1, A1) 9z = 9 z = 1, y = 0, x = 3 (B1)
6b
radius 2 = (1 3 ) 2 = 2 + 2 3 1 2 2 r h (8 3 3 ) (B1) 3 3 2(8 3 3 ) 4 2 3 h= 42 3 42 3 28 8 3 4 = 7 2 3 cm
=
(M1,A1)
(B1)
5(i) 3x2 + px + 120 = 0 = 3 ------------ (1) = 120 3 = 40 -----------(2) Sub = 3 + into (2) (B1) (3 + ) = 40 2 + 3 40 = 0 ( + 8)( 5) = 0 = 8 or = 5 = 5 or = 8 (rejected) (M1,A1) p += 3 p 5 8 = p = 39 (B1) 3 (ii) + = 13 = 40 (2 + 2) = ( + )2 2 = (13)2 80 = 89 (M1,A1) 2 2 () = 40 = 1600 (B1) 2 eqn is x 89x + 1600 = 0 (B1) 7(i) ADO = ACO (B1) (s in the same segment, chord = OA) DAC = DOC (B1) (s in the same segment, chord = DC) Or DEA = CEO (vertically opp ) [any of the 2 reasons] triangles AED & CEO are similar. (B1) (ii)
OC AD , using similar triangles. EC ED
OC ED = AD EC
(M1,A1)
(iii) ADO = ACO ACO = OAC (isos. ) (B1) ODC = OAC (B1) (s in the same segment, chord = OC) ADC = ADO + ODC = OAC + OAC = 2 OAC (shown) (B1)
2009 AM 4E5N Prelim P2
3
2009 AM 4E5N Prelim P2
[Turn over
4
2009 AM 4E5N Prelim P2
5
2009 AM 4E5N Prelim P2
[Turn over
6
2009 AM 4E5N Prelim P2
7
11(i)
2009 AM 4E5N Prelim P2
[Turn over
8
2009 AM 4E5N Prelim P2