St Gabriels Prelim 2009 Am P2 Solutions

  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View St Gabriels Prelim 2009 Am P2 Solutions as PDF for free.

More details

  • Words: 957
  • Pages: 8
SAINT GABRIEL’S SECONDARY SCHOOL 2009 ‘O’ LEVEL ADDITIONAL MATHEMATICS PRELIMINARY EXAMINATION Secondary Four Express Paper 2

Marking Scheme 1(i)

2(i) amplitude = 1 (B1) 2 Period = (B1) 3 (ii) points : (B1) curve : (B1)

1200 1199e kt  1 1200 66  1199e k ( 5)  1  1200  e  5k    1  1199  66   1200    5k  ln   1  1199   66   k = 0.849 (3dp) N

y 4

3

(M1A1) 2

(ii)

1200 N = 962.76 1199e 0.849(10)  1 1

 total no of students = 963.

(M1A1)

1200 (iii)  0.35  1200 1199e 0.849t  1  1200  e  0.849t    1  1199  420   1200    0.849t  ln   1  1199   420 

t  7.62  number of days = 8 days.

(M1A1)

1 x 2

y = e  ln x , x > 0 1 dy 1 2 x 1  e  (B1,B1) dx 2 x dy For stationary points, 0 dx 1 1 2x 1  (B1) e  2 x 1 1 x Consider y  e 2 , it is an increasing function. 2 1 Consider y  , it is an decreasing function. x Since one is an increasing function & the other is an decreasing, there will only be 1 point of intersection. (B1) 3

1

0.5

1

 6

1.5

 3

2

 2

   ,1 2 

(iii) min turning point =

2x  1 = sin 3x π 2x  1 = sin 3x + 2 π  number of solution = 1.

2 3

(B1)

(iv)

(B1) (B1)

Con’t 3 1

d 2 y 1 2x 1  e  2 dx 2 4 x 1

(B1,B1)

x

Since x > 0, e 2 > 0, and 

1 >0 x2

d2y 0 dx 2

 it is a minimum point.

(B1)

x

 only 1 stationary point for y = e 2  ln x .

[Turn over

x

2

5x  6 5x  6 4(i)  2 ( x  2)( x  4) ( x  2) 2 ( x  2) A B C =   (B1) 2 ( x  2) ( x  2) ( x  2) 5x + 6 = A(x +2)(x 2) + B(x  2) + C(x + 2)2 let x = 2,  C = 1 (B1) let x = 2,  B = 1 (B1) let x = 0. A = 1 (B1) 

5x  6 1 1 1    2 2 ( x  2)( x  4) ( x  2) ( x  2) ( x  2)

(ii)



5x  6 dx 3 ( x  2)( x 2  4) 5

5

1   =  ln( x  2)   ln( x  2) (B3) x2  3 5

1   x2 = ln   x  2 x  2  3 3 1 1 1 = ln   ln   0.819 (A1) 7 7 5 5 6a 2x + 2y = 9 --------- (1) 3x1 = 32  3y x  1 = 2 + y --------- (2) x=3+y (B1) sub (1) into (2) 23+y + 2 y = 9 (23)(2y) + 2y = 9 Let z = 2 y 8z + z = 9 (M1, A1) 9z = 9 z = 1,  y = 0, x = 3 (B1)

6b

radius 2 = (1  3 ) 2 = 2 + 2 3 1 2 2 r h   (8  3 3 ) (B1) 3 3 2(8  3 3 ) 4  2 3 h=  42 3 42 3 28  8 3 4 = 7  2 3 cm

=

(M1,A1)

(B1)

5(i) 3x2 + px + 120 = 0    = 3 ------------ (1)  = 120  3 = 40 -----------(2) Sub  = 3 +  into (2) (B1) (3 + )  = 40 2 + 3  40 = 0 ( + 8)(   5) = 0   =  8 or  = 5  = 5 or  = 8 (rejected) (M1,A1) p +=  3 p 5  8 =   p = 39 (B1) 3 (ii)  +  = 13  = 40 (2 + 2) = ( + )2  2 = (13)2  80 = 89 (M1,A1) 2 2 () = 40 = 1600 (B1) 2 eqn is x  89x + 1600 = 0 (B1) 7(i) ADO = ACO (B1) (s in the same segment, chord = OA) DAC = DOC (B1) (s in the same segment, chord = DC) Or DEA = CEO (vertically opp ) [any of the 2 reasons] triangles AED & CEO are similar. (B1) (ii)

OC AD  , using similar triangles. EC ED

 OC  ED = AD  EC

(M1,A1)

(iii) ADO = ACO ACO = OAC (isos. ) (B1) ODC = OAC (B1) (s in the same segment, chord = OC)  ADC = ADO + ODC = OAC + OAC = 2  OAC (shown) (B1)

2009 AM 4E5N Prelim P2

3

2009 AM 4E5N Prelim P2

[Turn over

4

2009 AM 4E5N Prelim P2

5

2009 AM 4E5N Prelim P2

[Turn over

6

2009 AM 4E5N Prelim P2

7

11(i)

2009 AM 4E5N Prelim P2

[Turn over

8

2009 AM 4E5N Prelim P2

Related Documents