Sr. No 1 2 3 4 5 6 7 Declaration

  • Uploaded by: Robert Wilson
  • 0
  • 0
  • July 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Sr. No 1 2 3 4 5 6 7 Declaration as PDF for free.

More details

  • Words: 1,800
  • Pages: 10
Index Sr. No 1 2 3 4 5 6 7

Page No

Contents Declaration Certificate Acknowledgement Abstract Index List of figures List of tables

i

i ii iii iv vii xii xvii

Chapter 1 Introduction 1.1 1.2 1.3

General Introduction Why Nanotechnology? Nanotechnology: An Emerging Trend in Polymer

1 3 4

1.4

Technology Micron Size Fillers and Importance of Nanofillers for

6

Polymer Composite Inorganic Filler Particles Polymer Nanocomposites (PNC) Applications of Nano Structural Polymer Composites Rheology of Nanocomposites Applications in Polyamide Nanocomposites Motivation References

7 8 11 12 14 15 17

1.5 1.6 1.7 1.8 1.9 1.10

Chapter 2 Literature Review 2.1 2.2 2.2.1 2.3 2.3.1 2.4 2.5 2.6

Introduction Synthetic Routes for Nanoparticles and Nanoclay Composites Synthesis of inorganic nano particles Preparation Methods of Mineral Clays and Polymer Nanocomposites Intercalation and exfoliation mechanism of polymer nanocomposites Mechanical, Thermal, Physical and Rheological Properties of Nanocomposites

21 22

Flammability and Thermal Stability Structural Characterization of Nanoparticles and

36 37

22 27 28 29

vii

Nanocomposites 2.6.1 2.7 2.8 2.9 2.10 2.11 2.12

Crystallization behavior study Dynamic Heterogeneity Surface Characterization Dispersion of Clay Rheological Behaviors of Polymer Nanocomposites Polyamide 66 Clay Nanocomposites Structure of PA66/Clay Nanocomposites References

37 38 39 40 40 41 42 45

Chapter 3 Experimental Work 3.1 3.1.1 3.1.2 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.4 3.5 3.5.1 3.5.2 3.6 3.7 3.8 3.9 3.10 3.11

Materials Polyamide Chemicals for nano particle synthesis Other Commercial Fillers Commercial CaCO3 Commercial CaSO4 Commercial Mg(OH)2 Commercial Ca3(PO4)2 Synthesis of Nano Inorganic Filler Nano CaCO3 Nano CaSO4 Nano Mg (OH)2 Nano Ca3(PO4)2 Preparation of Polyamide Nanocomposites Characterization of Polyamide Nanocomposites Tensile Test Hardness test X-Ray Diffraction Pattern Scanning Electron Microscopy (SEM) Atomic Force Microscopy Flame Retardency Thermal Degradation Differential Scanning Calorimeter References

51 51 52 52 52 52 53 53 53 53 54 55 55 56 56 56 57 57 57 58 58 58 59 60

Chapter 4 Results and Discussion 4.1

Characterization of CaCO3, CaSO4, and Mg(OH)2 nano particles by XRD and TEM.

62

4.2

PA: Nano CaCO3 Composites

73

4.2.1

Mechanical properties of nano CaCO3: PA composites

73

viii

4.2.1.1

Tensile strength of nano CaCO3: PA composites

73

4.2.1.2

Elongation at break of nano CaCO3: PA composites

75

4.2.1.3

Young’s modulus of nano CaCO3: PA composites

76

4.2.2

Physical properties of nano CaCO3: PA composites

77

4.2.2.1

Hardness of nano CaCO3: PA composites

77

4.2.3

Thermal properties of nano CaCO3: PA composites

78

4.2.3.1

Thermal gravimetric analysis of nano CaCO3: PA composites

78

4.2.3.2

Flame retardency (FR) of nano CaCO3: PA composites

80

4.3

Nano CaSO4: PA Composites

84

4.3.1

Characterization of nano CaSO4: PA composites

84

4.3.2

Thermal properties of nano CaSO4: PA composites

85

4.3.2.1 4.3.2.2

Thermo gravimetric analysis of nano CaSO4: PA composites Flammability of nano CaSO4: PA composites

85 88

4.3.3

Physical properties of nano CaSO4- PA composites

89

4.3.3.1

Hardness of nano CaSO4: PA composites

89

4.3.4

Mechanical properties of Nano CaSO4: PA composites

90

4.3.4.1

Tensile strength of nano CaSO4: PA composites

90

4.3.4.2

Elongation at break of nano CaSO4: PA composites

94

4.3.4.3

Young’s modulus of nano caso4: PA composites

96

4.4

Nano Ca3(PO4)2: PA composites

98

4.4.1

Physical properties of nano Ca3(PO4)2: PA composites

98

4.4.1.1

Hardness of nano Ca3(PO4)2: PA composites

98

4.4.2

Thermal properties of nano Ca3(PO4)2: PA composites

99

4.4.2.1

Thermal gravimetric analysis of nano Ca3(PO4)2: PA

99

4.4.2.2

Flammability of nano Ca3(PO4)2: PA composites

103

4.4.2.3

Vicat softening composites

4.4.3

temperature

of

nano

Ca3(PO4)2:

Mechanical properties of nano Ca3(PO4)2: PA composites

PA

104 105

4.4.3.1

Tensile strength of nano Ca3(PO4)2: PA composites

105

4.4.3.2

Young’s modulus of nano Ca3(PO4)2: PA composites

109

4.4.3.3

Elongation at break of nano Ca3(PO4)2: PA composites

109

ix

4.5

Nano Mg(OH)2: PA Composites

112

4.5.1

Physical properties of nano Mg(OH)2: PA composites

112

4.5.1.1

Hardness of nano Mg(OH)2: PA composites

112

4.5.2

Mechanical properties of nano Mg(OH)2: PA composites

113

4.5.2.1

Tensile strength of nano Mg(OH)2: PA composites

113

4.5.2.2

Elongation at break of nano Mg (OH) 2: PA composites

116

4.5.2.3

Young’s modulus of nano Mg(OH)2: PA composites

117

4.5.3

Thermal properties of nano Mg(OH)2: PA composites

118

4.5.3.1

Thermal gravimetric composites

PA

118

4.5.3.2

Differential scanning colorimetric of nano Mg(OH)2: PA composites

121

4.5.3.3 4.5.3.4

Flammability of nano Mg (OH) 2: PA composites Vicat softening temperature of nano Mg composites

124 125

4.6

OMMT: PA Composites

127

4.6.1

Physical properties of OMMT: PA composites

127

4.6.1.1

Hardness of OMMT: PA composites

127

4.6.2

Mechanical properties of OMMT: PA composites

128

4.6.2.1 4.6.3

Mechanical properties Flammability

128 130

4.6.4 4.6.5

Vicat softening temperature (VST) Rheological properties

131 132

References

137

analysis

of

Nano

Mg(OH)2:

(OH)2: PA

Chapter 5 Conclusion

140

Curriculum Vitae

143

x

List of Figures

Sr No 1.1

Title Page No Diatoms, like radiolaria, represent the incredible control Nature 01 exerts over the assembly of organic-inorganic materials

2.1

Nanosynthesis of Al2O3 by sol gel technique

24

2.2

Intercalation of polymer chains in nanoparticles layer

28

2.3

XRD patterns of montmorillonite clay modified with Praepagen Salt (OMMT), PA66/MMT, and PA66/OMMT nanocomposites.

43

2.4

43

3.1

TEM photomicrographs of (a) PA66/MMT and (b) PA66/OMMT Nanocomposite. Synthesis of Nano CaCO3 by matrix mediated growth technique

4.1a

X-ray Diffractogram of 21 nm CaCO3

61

4.1b

X-ray Diffractogram of 15 nm CaCO3

62

4.1c

X-ray Diffractogram of 9 nm CaCO3

62

4.2a

X-ray diffractometer of 10 nm CaSO4

63

4.2b

X-ray diffractometer of 15 nm CaSO4

63

4.2c

X-ray diffractometer of 23 nm CaSO4

64

53

xi

4.3a

X-ray diffractometer of 24 nm Mg(OH)2

64

4.3b

X-ray diffractometer of 17 nm Mg (OH)2

65

4.3c

X-ray diffractometer of 10 nm Mg (OH)2

65

4.4a

TEM image of nano CaCO3 (11 nm)

66

4.4b

TEM image of nano CaSO4 (17 nm)

66

4.4c

TEM image of nano Mg (OH)2 (23 nm)

67

4.5

TEM image of Nano CaSO4 particle (30 nm)

67

4.6a

TEM image of 24 nm Mg(OH)2

68

4.6b

TEM image of 20nm Mg(OH)2

68

4.6c

TEM image of 11 nm Mg(OH)2

69

4.7a

TEM image of 24 nm Ca3(PO4)2

69

4.7b

TEM image of 20 nm Ca3(PO4)2

70

4.7c

TEM image of 11 nm Ca3(PO4)2

70

4.8

Tensile strength of different sizes of CaCO3 filled PA

72

4.9

Elongation at break of different sizes of CaCO3 filled PA

73

4.10

Young’s Modulus of different sizes of CaCO3 filled PA

74

4.11

Hardness of different sizes of CaCO3 filled PA

75

4.12a

TGA thermogram of nano CaCO3 (23 nm) with varying wt %

76

4.12b

TGA thermogram of nano CaCO3 (17 nm) with varying wt %

77

4.12c

TGA thermogram of nano CaCO3 (11 nm) with varying wt %

78 xii

4.13

Rate of flame retardency of different sizes of CaCO3 filled PA

79

4.14a

AFM of 2 wt % filled commercial CaCO3 in PA

80

4.14b

AFM of 2 wt % filled commercial CaCO3 in PA In 3D view

81

4.15

XRD of different nanocomposites a) Commercial CaSO4 PA Nanocomposite

83

4.16

XRD of different nanocomposites a) PA 23 nm CaSO4

84

4.17

TGA of 10 nm CaSO4 polyamide filled with various sizes of CaSO4

85

4.18

TGA of 15 nm CaSO4 polyamide filled with various sizes of CaSO4

86

4.19

TGA of 23 nm CaSO4 polyamide filled with various sizes of CaSO4

87

4.20

Flame retardency of PA filled with various sizes and varying wt % of CaSO4

88

4.21

Hardness of PA filled with various sizes and varying wt % of CaSO4

89

4.22

Tensile strength of PA filled with various sizes and varying wt % of CaSO4

91

4.23

SEM of micro crack of 1 wt % loading of 10 nm CaSO4 filled Polyamide composite

91

4.24

SEM of micro crack of 4 wt % loading of 10 nm CaSO4 filled Polyamide composite

92

4.25

SEM of micro crack of 1 wt % loading of commercial CaSO4 filled Polyamide composite

92

4.26

SEM of micro crack of 4 wt % loading of commercial CaSO4 filled Polyamide composite

93

4.27

SEM micrograph of 4-wt % of commercial CaSO4 polyamide Composite

93

4.28

Elongation at break of PA filled with various sizes and varying wt %of CaSO4

95

xiii

4.29

Young’s Modulus of PA filled with various sizes and varying wt % of CaSO4

96

4.30

Hardness of PA filled with different fillers

99

4.31

TGA of 11 nm Ca3(PO4)2 polyamide filled with various sizes of CaSO4

101

4.32

TGA of 17 nm Ca3(PO4)2 polyamide filled with various sizes of CaSO4

102

4.33

TGA of 21 nm Ca3(PO4)2 polyamide filled with various sizes of CaSO4

103

4.34

Rate of flame retardency of PA filled with different fillers

104

4.35

VST of PA filled with different Nanofillers

105

4.36

AFM Photograph showing Crack and Filler Dispersion in PA 66 11 nm Ca3(PO4)2 Nanocomposite

107

4.37

AFM 3D Photograph showing Crack and Filler Dispersion in PA 66 - 11 nm Ca3(PO4)2 Nanocomposite

108

4.38

Tensile strength of PA filled with different fillers

108

4.39

Young’s Modulus of PA filled with different fillers

109

4.40

Elongation at break of PA filled with different fillers

110

4.41

Hardness of PA filled with different sizes of Mg(OH)2

112

4.42

Tensile strength of PA filled with different fillers Mg(OH)2

113

4.43

AFM micrograph of 4-wt % of 11nm Mg(OH)2 polyamide composite

114

4.44

AFM 3D Photograph showing Crack and Filler Dispersion in PA 66 - 11 nm Ca3(PO4)2 Nanocomposite

114

4.45

Elongation at break of PA filled with different sizes of Mg(OH)2

116

4.46

Young’s modulus of PA filled with different sizes of Mg(OH)2

117

xiv

4.47

TGA of 24 nm Mg(OH)2polyamide Mg(OH)2composite

118

4.48

TGA of 20 nm Mg(OH)2polyamide Mg(OH)2composite

119

4.49

TGA of 11 nm Mg(OH)2polyamide Mg(OH)2 Composite

119

4.50

DSC of 24 nm-Polyamide Composite

121

4.51

DSC of 20 nm-Polyamide Nanocomposites

122

4.52

DSC of 11 nm-Polyamide Nanocomposites

123

4.53

Flame retardency of PA filled with different sizes of Mg(OH) 2

124

4.54

Vicat Softening Temperature of PA filled with different sizes of Mg(OH) 2

125

4.55

Hardness of polyamide Nanocomposite

127

4.56

Tensile strength of polyamide nanocomposites

129

4.57

Young’s Modulus of polyamide nanocomposites

129

4.58

Elongation at break of polyamide nanocomposites

130

4.59

Rate of Burning of polyamide nanocomposites

131

4.60

Vicat softening temperature of polyamide nanocomposites

132

4.61

Viscosity vs shear rate of polyamide nanocomposites

134

4.62

Log shear stress vs Log shear rate of polyamide nanocomposites

134

4.63

Torque of polyamide Nanocomposites

135

4.64

SEM of 1 wt % of OMMT in polyamide nanocomposite

135

4.65

SEM of 4 wt % of OMMT in polyamide nanocomposites

136

xv

List of Tables Sr No

Contents

Page No 31

2.1

Mechanical Properties of PUU and PUU/ Layered Silicate nanocomposites

2.2

Data sheet of thermal properties of different polymer nanocomposites

37

4.1

Yields and particle size of nano particles

38

xvi

Related Documents

1 2 3 4 5 2. 6 7 8 9
June 2020 16
6-3 5-7
May 2020 8
1 2 3 4 5 6
June 2020 10
A 1 2 3 4 5 6 7 8 9
June 2020 7

More Documents from ""

Introduction 1
July 2020 1
Th Abstract1 Sss
July 2020 1
Ref 4th Chap
July 2020 1
June 2020 40
June 2020 38