Spm > Matematik Tambahan > M3t Kertas2 Set2

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Spm > Matematik Tambahan > M3t Kertas2 Set2 as PDF for free.

More details

  • Words: 2,310
  • Pages: 13
SULIT 3472/2 Matematik Tambahan Kertas 2 Tahun 2006

JABATAN PELAJARAN PERAK

LEARNING TO SCORE

MATEMATIK TAMBAHAN Kertas 2 Set 2 SKEMA JAWAPAN

Skema jawapan ini mengandungi 13 halaman bercetak.

Matematik Tambahan SPM Kertas 2 Set 2 BAHAGIAN A 1.

n = 8 – 2m m2 + 2mn = 20 m2 + 2m ( 8 – 2m ) = 20 3m2 – 16m + 20 = 0 ( 3m – 10 ) ( m – 2 ) = 0

[1] [1] [1]

10 m= , 2 3 10 4  10  Bila m = , n = 8 – 2  = 3 3 3 n = 8 – 2 (2) = 4

m=2 ,

2.

[1]

[1]

 3 x  1(1) 3 y  1(4)  ,  3 1   3 1 3x  1 3y  4 2 = , 3 = 4 4 16 x =3 , y= 3  16  B  3,   3

a) C (2, 3) = 

b)

mAB =

[1] [1]

[1]

3 4 7  2 1 3

mAQ = 

[1]

3 7

[1]

Persamaan PQ  y –

16 3 = –  x  3 3 7

[1]

21y + 9x = 139

3.

y 2

y  2 sin x

1  O -1 -2

60

90

120

y  kos



180

Learning To Score 2006 Unit Kurikulum Jabatan Pelajaran Perak

3 x 2

x 240 270 300 360



(a) Bentuk graf kos Lengkap 1.5 kalaan

[1] [1]

(b) Tahu y = 2 sin x Bentuk graf sin (1 kalaan) Amplitud = 2

[1] [1] [1]

Bilangan Penyelesaian = 3

[1]

Halaman

2

Matematik Tambahan SPM Kertas 2 Set 2 4.

a)

(i)

m  2  m  3  m  4  2m   4m  9 5

8

9m  14  40 54 m 6 9

[1]

[1]

(ii) x 8 3 2 12 15

Sisihan piawai =

b)

5.

(a)

446 2 8 5 25.2  5.02

[1]

= (i) Min baru = 8(2) + 3 = 19

[1] [1]

(ii) Varians baru = 25.2 ( 22 ) = 100.8

[1] [1]

3 y  x  29 3 y  x  29 1 29 y  x 3 3 1 mnormal  3 dy  3 dx Pada titik A(2, 9),

(b)

x2 64 9 4 144 225 446

[1] [1]

dy p  4( 2)   3 dx ( 2) 2 p  8   3 4 p  4(3  8)  20

dy 20  4 x  2  4 x  20 x  2 dx x 2 4x 20 x 1 20 y   c  2x 2  c 2 1 x Melalui titik A(2, 9),

Learning To Score 2006 Unit Kurikulum Jabatan Pelajaran Perak

[1]

[1]

9  2  2   2

9  8  10  c Persamaan Lengkung

[1]

20 c  2 

[1]

c = 9  8  10 = 9

[1]

20 y  2 x2  9 x

[1]

Halaman

3

Matematik Tambahan SPM Kertas 2 Set 2 6.

(a)

(i) 1, 2, 3, … , 50

82 = 4

Bilangan Baris = 50

(3)

Tinggi h = 50  3 = 150 cm

[1]

5

[1]

50 2(1)  (50  1)1 2

[1]

= 25(51) = 1275 segitiga

[1]

(ii) S50 

Sn  2000

(b)

n 2(1)  (n  1)1  2000 2

[1]

n (1 + n)  4000 n2 + n – 4000  0

[1]

63.75  n  62.75

63.75

62 baris boleh dibina.

[1]

62.75

[1]

BAHAGIAN B 7.

(a)

x3

1.00

8.00

27.00

42.88

64.00

xy

4.50

7.40

16.20

24.15

33.60

[1] [1]

Rujuk graf Lampiran A

(b)

Paksi betul dan skala seragam

[1]

5 titik ditanda betul

[1]

Garis lurus penyuaian terbaik

[1]

xy

1 n 3  x m m

[1]

(i)

1 = pintasan paksi- xy = 4 m

[1]

m= (ii)





1 4

[1]

n 15  8.5 = kecerunan graf = m 24  10

[1]

n = 0.4643 1   4

n  0.1161 Learning To Score 2006 Unit Kurikulum Jabatan Pelajaran Perak

[1] Halaman

4

Matematik Tambahan SPM Kertas 2 Set 2 8.

(a)

(i)

 1  1 (6 x ) = 3 x BC = AD = ~ ~ 2 2    AC = AB + BC = 2 y + 3 x

[1]

~

     BD = BA + AD =  AB + AD =  2 y + 6 x ~

(ii)

     CD = CA + AD =  AC + AD =  (2 y + 3 x ) + 6 x

(iii)

~

= 3x  2y ~

(b)

[1]

~

~

  AE = m AC  m  3 x  2 y   3m x  2m y ~  ~ ~ ~   BE = n BD  n  6 x  2 y   6 n x  2n y ~  ~ ~ ~

(i) (ii)

~

~

[1]

~

[1] [1]

   AE = AB + BE

(c)

3m x  2m y  2 y  6n x  2 n y ~

~

~

~

~

~

[1]

~

3m x  2m y  6n x  2  2n  y ~

~

3m = 6n --------------(1) m = 2n

[1]

2m = 2  2n

m = 1  n -------------(2)

Maka

[1]

2n = 1  n 3n = 1 n=

1 3

1  3

m = 2  

Learning To Score 2006 Unit Kurikulum Jabatan Pelajaran Perak

[1]

2 3

[1]

Halaman

5

Matematik Tambahan SPM Kertas 2 Set 2

9.

a) sin x =

102 = 5

5 8

x 8

x = 38 41’  POQ = 2 x = 77o 22’ = 1.35 rad b)

c)

[1] [1]

Perimeter kaw. Berlorek = Panjang lengkok major PQ + Perentas PQ = 8 (2 ─ 1.35) + 10 = 39.47 + 10 = 49.47

1

[1] [1] [1] [1]



Luas kaw. Berlorek = Luas bulatan   1.358  88 sin 7722' 2 2  2

1

=  (8)2 – [ 43.2 – 31.22] = 201.09 – 11.98 = 189.11

10.

[1] [1] [1] [1]

a) y = 4x – x2 ------- (1) x – 2y = 0 ------- (2) Selesaikan persamaan (1) dan (2) 4x – x2 =

x 2

x ( -2x + 7 ) = 0 x = 0 atau x = y = 4x – x2

7 2

7 7  2 4

maka koordinat A  ,

[1]

dy  4  2x dx 7 = 4 – 2  = – 3 2 1 3 1 7 7 y– = x  3 2 4

[1]

mnormal =

Learning To Score 2006 Unit Kurikulum Jabatan Pelajaran Perak

[1]  12 y = 4x + 7

[1]

Halaman

6

Matematik Tambahan SPM Kertas 2 Set 2 10.

b)

 4 x  x dx 4

Luas kaw. Berlorek =

2

7 2

 4x 2 x 3  =    3  2

4



7 2



 

[1]

49 16

  3   2 4 2  4  =  3   =  32 

1  7  7     2  2  4 

[1]

3  7       7 2  2     2    3   2  

64    24.5  14.29   3.0625 3 

       

4



49 16

7 2

= 10.67 – 10.21 + 3.0625 = 3.5225 unit2

c)

[1]

Isipadu kawasan berlorek = Isipadu kon + 

 4 x  x  4

7 2

2

2

dx



[1]



4 1 7 7 =         7 16 x 2  8 x 3  x 4 dx 3 4 2 2 2

343 =  96 =

343  96

16 x 3 x5  +    2x4   5  3

 512   16121      15   480 

4

7 2

+ 

= 4.1208 unit3

11.

a)

[1]

(i) P ( X = 1 ) = 10 C1 0.2  0.8 = 0.2684 1

(ii) P ( X = 0 ) =

10

9

[1] [1]

C 0 0.2  0.8 0

10

[1] [1]

= 0.1074

Learning To Score 2006 Unit Kurikulum Jabatan Pelajaran Perak

[1]

Halaman

7

Matematik Tambahan SPM Kertas 2 Set 2 11.

b)

 50  60 X   65  60      4   4 = P 2.5  Z  1.25

(i) P 

[1]

= 1 – 0.1056 – 0.00621 = 0.88819

[1]

Bilangan pekerja kilang = 0.88819 x 500 = 444 orang.

(ii)

[1]

P ( X < m ) = 0.75 1 – P ( X  m ) = 0.75 P ( X  m ) = 0.25

 

m  60    0.25 4  m  60  0.674 4

P Z 

[1] [1]

m = 62.7

[1]

BAHAGIAN C 12.

a)

b)

300  100  110 P00 300  100 P00   RM 272.73 110 2(120 )  1(125)  x (111) i)  115 2 1 x 365  111x  115 3 x

[1] [1] [1]

365 + 111x = 345 + 115x 115x – 111x = 365 – 345 4x = 20 x=5

(ii)

[1]

4(110 )  2(120 )  1(125)  5(111) 1360  4  2 1 5 12  113.3 P04  100  113 .3 1800

[1] [1]

113.3  1800 = RM 2039.40 100  120 120  113.3 = 100

[1]

= 135.96

[1]

P04  c)

I 06 / 04

I 06 / 00

Learning To Score 2006 Unit Kurikulum Jabatan Pelajaran Perak

[1]

[1]

Halaman

8

Matematik Tambahan SPM Kertas 2 Set 2 13.

(a)

AB 9.5  sin 42 sin 65

(i)

AB 

[1]

9.5 sin 42  7.01 cm sin 65

[1]

BD2 = (7.01)2 + (2)2  2(7.01)(2) kos 65°

(ii)

[1]

41.29  6.43 cm

BD =

[1]

7.01 6.43  sin ADB sin 65

(iii)

[1]

7.01sin 65  0.9881 6.43

sin ADB 

 ADB = 180  81.15 = 98.85

[1]

 ABC = 180  65  42 = 73

(iv)

Luas  ABC =

[1]

1 7.019.5 sin 73 2

[1]

= 31.84 cm2

[1]

B’

(b)

Jawapan (ii) 6.43 cm

Jawapan (i) 7.01 cm

[1] 65

81.15 D’

A’ 14

a)

x+y5

[1]

y>x

[1]

25x + 20y  400 5x + 4y  80

b)

[1]

Rujuk graf lampiran B Paksi betul dan skala seragam Semua garis lurus betul

[1] [2,1,0]

Rantau R betul c)

[1]

(i) y = x + 2

[1]

Dari graf, jumlah maksimum pemain = 8 + 10 = 18 orang

[1]

(ii) x = 2 Dari graf, 3 orang  bilangan pemain lelaki  17 orang Learning To Score 2006 Unit Kurikulum Jabatan Pelajaran Perak

[1] Halaman

9

Matematik Tambahan SPM Kertas 2 Set 2 15

a)

a = 4t  5

v

4t 2  5t  c 2

[1]

v = 2t2  5t + c Halaju awal = 3, t = 0, v =  3,  c =  3, b)

v = 2t2  5t  3

[1]

v<0 2t2  5t  3 < 0

[1]

(2t + 1)(t  3) < 0

 

[1]

3

1 2

1
0t<3

c)

s=

[1]

2t 3 5t 2 2 5   3t  c  t 3  t 2  3t  c 3 2 3 2

[1]

bila t = 0, s = 0, c = 0

s=

2 3 5 2 t  t  3t 3 2 ds = v = 2t2  5t  3 = 0 dt (2t + 1) (t  3) =0 t= 3

bila t = 3, s =

2 3 5 2 3  3  33  13.5 3 2

Kedua-dua bila t = 4, s =

Learning To Score 2006 Unit Kurikulum Jabatan Pelajaran Perak

[1]

2 3 5 2 4   4   34   9.333 3 2

Halaman 10

Matematik Tambahan SPM Kertas 2 Set 2 15.

t=3

t=4

 9.333

 13.5

x t=0

Jumlah jarak yang dilalui = 13.5 + (13.5  9.333) = 17.67

[1]

(d) v 9

O

3 4

t

Bentuk graf

[1]

Titik (0, 3), (3, 0), (4, 9)

[1]

3

Learning To Score 2006 Unit Kurikulum Jabatan Pelajaran Perak

Halaman 11

Matematik Tambahan SPM Kertas 2 Set 2 Jawapan 7 (a)

Lampiran A

xy

40

35 x

30

25

x

20 x

15

10 x

5 x

0

10

20

Learning To Score 2006 Unit Kurikulum Jabatan Pelajaran Perak

30

40

50

60

70

Halaman 12

x3

Matematik Tambahan SPM Kertas 2 Set 2 Jawapan 14 (a)

Lampiran B

y 22

20

18

16

14

12

R

10

8

6

4

2

0

2

4

Learning To Score 2006 Unit Kurikulum Jabatan Pelajaran Perak

6

8

10

12

14

16

Halaman 13

x

Related Documents