Spm > Matematik Tambahan > Kertas1 Set2 Jawapan

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Spm > Matematik Tambahan > Kertas1 Set2 Jawapan as PDF for free.

More details

  • Words: 1,534
  • Pages: 7
Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 2

1.

2.

a)

3

(1)

b)

4 dan 5

(1)

c)

banyak dengan banyak

(1)

a)

g ( x)  2 x  3

ATAU

g (4)  2(4)  3 = 11

b)

f ( x )  fgg ( x) 1

x3 4 2 x  11 g (4)  11

 x  3  x 3  4   12  1  2   2   x 2  10 1 1 1 ( x  5)( x  )  0 atau x 2  (5  ( )) x  (5)( )  0 2 2 2 9 5 2 x  x 0 2 2 p q x2  x   0 2 2 p  9 , q  5

(1)

(1)

2

3.

4.

5.

k 20 2 b 2  4ac  0 k ( 3) 2  4(1)(  2)  0 2 9  2k  8  0 1  2k  0 1  2k 1 k 2

(1) (1) (1) (1)

(1)

x 2  3x 

(1)

(1)

a)

(2 ,13)

(1)

b)

x20 x  2

(1)

c)

p   (0  2) 2  13 p=9

Learning To Score 2006 Jabatan Pelajaran Perak

(1)

Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 2 6.

3 2 x  3 2 x 1  36 3 2 x (1  3 1 )  36 4 3 2 x ( )  36 3 3 2 x  27 32 x  33

(1)

Menyamakan asas dan indeks

7.

2x  3

(1)

x

(1)

3 2

log m p 2 m log m q

log q p 2 m 

(1)

log m p 2  log m m log m q 2 log m p  log m m  log m q 2(1.292 )  1  0.683 

(1) (1)

= 5.247

8.

a)

b)

9.

a)

b)

(1)

p2 4, q p  4 p  6 , q  10

(1)

p q  3,  3 p 2 q p  6 ,  3 , q = 18 6

(1)

Tn  a  ( n  1) d  11 p  (n  1)3 p  64 p n  26 Menggunakan S n 

S 26 

(1) (1)

n (a  l ) 2

26 ( 11 p  64 p )  689 p 2

(1)

ATAU

n 2a  (n  1)d  2 26  2(11 p )  (26  1)3 p  2

Sn  S 26

= 689p

Learning To Score 2006 Jabatan Pelajaran Perak

(1)

Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 2

10.

a  800 , r  90%  0.9 Tn  ar n 1

T6  800(0.9) 5 = 472.4

11.

a)

5   4 r     0 .5 5   2 T2  ar k  10(0.5) =5

b)

12.

(1) (1) (1)

(1)

(1)

S 

a ( r < 1 dan n yang cukup besar ) 1 r 1 10  p 1  0 .5 1  20 p 1 p 20

(1)

(1)

x  4 x  2 y Bahagi setiap sebutan dengan x

1 1  2( )  4 y x Y  mX  c 1 Pintasan -  4   k y k 4

(1)

(1)

Kecerunan = 2

12  (k ) 2 p0 12  k 2 p 12  (4) 2 p

p=8

Learning To Score 2006 Jabatan Pelajaran Perak

(1)

(1)

Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 2 13.

a) b)

x y  1 4 (3)  nx  mx2 ny1  my 2  ( x, y )   1 ,  nm   nm 0 ,  3   2(4)  1( x) , 2(0)  1( y )  2 1   2 1

(1)

(1)

8 x y  0 ,  3 3 3

x  8 , y  9

L(8,9) 14.

(1) AP

= 2PB

( x  2)  ( y  3)  2 ( x  6) 2  ( y  1) 2 2

2



( x  2) 2  ( y  3) 2  2 2 ( x  6) 2  ( y  1) 2



(1)(1)

x  4 x  4  y  6 y  9  4[ x  12 x  36  y  2 y  1] 2

2

2

2

3 x 2  3 y 2  44 x  14 y  135  0

15.

a)

(1)

MN  MO  ON   5   4     =   4   3

(1)

 1     7

= 

b)

(1)

 1    1 NM        7  7 

NM  ( 1) 2  7 2  50  5 2

vektor unit dalam arah NM =

16.

i7j

(1) (1)

5 2

OR  hOP  k OQ  5i  6 j  h7i  4 j )  k (2i  2 j  = 7 h  2k i  (4h  2k ) j

(1)

Menyamakan pekali : 7 h  2k  5 ………(i)  4 h  2 k  6 ……..(ii) Menyelesaikan persamaan serentak (i) – (ii)

(1)

11h  11 h  1 7 (1)  2 k  5 k 1

Learning To Score 2006 Jabatan Pelajaran Perak

(1)

Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 2

kosek  

17.

a)

1 p sin 

(1)

1 sin   p

b)

p

1

 1 p2  1

tan(360   )   tan  1 =  p2 1 18.

(1) (1)

2  2 sin 2 x  3 sin xkos x  0

2(1  sin 2 x )  3 sin xkos x  0

2kos x  3 sin xkos x  0 kos x(2kos x  3 sin x)  0 kos x  0 , 2 kos x  3 sin x sin x 2  kos x 3 2 tan x  3

(1)

2

kos x  0 , x  90 , 270 atau tan x 

19.

a)

b)

(1)

2 , x  33.69 o , 213 .69 o 3 x  0 o , 33.69 o , 213.69 o , 270 0

(1)

PQ j  QR j (   )  1  2.5 (   )     2.5 3.5     0.8977 rad

(1)

QR = 8(  0.8977) =17.95 Perimeter = 8 + 8 + 17.95 = 33.95

(1) (1)

Learning To Score 2006 Jabatan Pelajaran Perak

(1)

Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 2 Katakan y 

20.

3x  12 x  1

U  (3 x  1) 2 V  x 1 dU dV  2(3 x  1)(3) 1 dx dx dy ( x  1)6(3 x  1)  (3 x  1) 2 (1)  dx ( x  1) 2 (3 x  1)(3 x  7)  ( x  1) 2 A  2 p 2  7 p  15 dA  4 p  7 , p  0.03 dp A dA  p dp A  (4 p  7)(0.03) = 4(5)  7 ( 0.03) =  0.81

21.

 (2 x  1) 2  1 k    (2)(2)  0 4

(1) (1) (1)

(1)

(1) (1)

3

22.

(1)

  1  1 k 2   (2 x  1)  0 3

  1  1 k 2   (2 x  1)  0   1 1 k   1 2 2  ( 2(0)  1)   ( 2(3)  1) 3

 1 1  k 2    1 (1) 2   (5) 1  k   1  1  25   24  k     1  25  25 k 24 23.

a)

8! = 40320

b)

3

C 2 5 C3  30

Learning To Score 2006 Jabatan Pelajaran Perak

(1)

(1) (1) (1) (1)

Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 2 p m  

24.

m 1  mh4 3

h  2m  4 25.

a)

b)

38  42 8  0.5

Z

40  42 ) 8  P( Z  0.25)  P( Z  0.25)  0.4013

(1) (1) (1) (1)

P  X  40   P ( Z 

Learning To Score 2006 Jabatan Pelajaran Perak

(1) (1)

Related Documents