Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1 1.
(a) hk
–1
(b) kh
2. (a) p
p
–1
(– 4) = – 2
[1]
(– 2) = – 4
[1]
–1
3x 4x
(x) =
–1
3y
(y) = 4 y
3y 4 y
x =
x(4–y) = 3y 4x – xy = 3y y(x+3) = 4x
4x x3
y =
p(x)
(b)
=
p (5)
=
3.
[1]
4x x3
,
x ≠ –3
[1]
4(5) 53
5 2
[1]
g(x) = 4 – 3x y = 4 – 3x 3x = 4–y x = g – 1(x) =
f(x) = fgg
4 y 3 4 x 3
–1
[1]
(x) =
4 x
fg 3
= 2
4 x 3 5
[1]
=
23 2 x 3
[1]
Learning To Score 2006 Jabatan Pelajaran Perak
Halaman 1
Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1
4.
y = 3 + 5x – 4x2
y = t ,
3 + 5x – 4x2 =
t
4x2–5x +t–3 = 0
[1]
Bersilang pada dua titik , guna (–5)2 – 4(4)(t–3) > 16t
5.
b
0
<
73
t <
73 16
2
– 4ac > 0 [1]
[1]
5(2x–1) = 3(x2 – 2) 3 x 2 – 10 x – 1 = 0 Guna
x =
[1]
b b 2 4ac 2a
x =
(10) (10) 2 4(3)(1) 2(3)
x =
10 112 6
x =
3.43,
x = – 0. 0972
[1]
[ 1 ] kedua – dua
g (x) = 4 – 2 ( x + h ) 2
6.
x+h = 0 ,
x = –h
(–h , 4 )
= (3 , k )
;
y = 4
(a)
h = –3
[1]
(b)
k = 4
[1]
(c)
Paksi simetri :
Learning To Score 2006 Jabatan Pelajaran Perak
x = 3
[1]
Halaman 2
Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1 7 . 2
6 ( x+3 ) x ½
– 3x
= 2
3(x+3) = –3x 8 x = – 11 x =
11 8
8 . log 2 ( x – 1 ) + log 2 4 ( x – 1 ) 4x – 4 x2–4x + 4 (x–2)2 x
2 = = = = =
9.
. 2
–2(x+ 1)
[1]
+ [ –2x – 2 ]
[1] [1]
2 = log 2 22 = log 2 4
= 2 log 2 x log 2 x 2 x2 0 0 2
[1]
[1] [1]
32 x 3 log 2 2 log 2 32 log 2 x 3 log 2 y 2 y = log 2 2 5 3 log 2 x 2 log 2 y
[1] [1]
= 5+3p–2r 10 .
Sn = Tn = T 5 = = = =
[1]
5n –3 S n – S n–1 S5 – S4 [ 5(5) – 3 ] – [ 5(4) – 3 ] 22 – 17 5
11 . (a) r =
2 = 1
[1] [1]
– 2
[1]
(b) T 1 , T 2 , ……… T 5 , T 6 , ……….. T 15 Hasil tambah
S 15 =
S5 =
=
S
15
– S5
1 (2)15 1 2 = – 5461.5 (2) 1
1 (2) 5 1 2 = (2) 1
S 15 – S 5 =
Learning To Score 2006 Jabatan Pelajaran Perak
– 5456
– 5.5
;
[1]
[1] [1]
Halaman 3
Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1 12 . 47, 44, 41, ………… (a) d= 44 – 47 = –3 (b) Sn=
[1]
n [ 2 a ( n 1) d ] 2
n [ 2( 47) (n 1)( 3)] = 2 3n2 – 97n– 2650
–1325
[1]
= 0
(3n + 53)(n – 50) = 0 n = 50
[1] [1]
13 . y = p x q ( a ) log
10
y = log
log
10
p = 2
p + q log 10 x
p = 10 2 = 100
[1]
20 1 04 2
[1]
q = ( b ) log
10
10
y = 2 + ½ log
x = 10 , log 10 y log 10 y y y
= = = =
10
x
2 + ½ log 10 10 2.5 10 2.5 316 . 2
[1]
[1]
Kaedah Alternatif y= pxq = 100 x ( 10 ) ½ = 316 . 2 14 .
p q x 2 2 2 q 1 = x 3 3 q 1 3 2 = ( q 1) 3
y = y
p 2 p
Learning To Score 2006 Jabatan Pelajaran Perak
[1] [1]
Halaman 4
Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1
8 i 5 j
15 . ( a ) OB =
~
[1]
~
( b ) Vektor unit dalam arah OB
16 . ( a ) AB
= =
( b ) OR
=
OR
=
OR
17
=
8i 5 j
[1]
89
AO + OB 2 3
–
10 6
12 3
[1]
2(OB) 1(OA) 2 1
2 1 10 2 1 21 6 3
6
= 5
[1]
[1]
1 . + sek 2 x = 3 kot 2 x tan 2 x + sek 2 x = 3
[1]
tan 2 x + 1 + tan 2 x = 3 2 tan 2 x = 2 tan 2 x = 1 tan x = ± 1 x = 45 o , 135 o , 225 o , 315 o
4 18 . ( a ) kos POR = = 0.8 5 POR = 0 . 6435 r
[1] [1,1] [1] [1]
( b ) s PQ = j r = 5 x 0.6435 = 3 . 2175 RQ = 1 cm ,
PR = 3 cm ( Teorem Pythagoras )
Perimeter kawasan berlorek = 3 + 1 + 3. 2175 = 7 . 2175
Learning To Score 2006 Jabatan Pelajaran Perak
[1]
[1]
Halaman 5
Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1
19 . f ( x ) =
4 x (5 2 x ) 2
u = 4x
v =(5–2x)2
du 4 dx
dv ( 2)(5 2 x )( 2) dx
dy dv du u v dx dx dx f ' ( x) 4 x[ 4(5 2 x)] (5 2 x) 2 (4)
[1]
= 4 8 x2 – 160 x + 100
[1]
f ' ' ( x) 96 x 160
20 .
[ 1 ] salah satu
(a) x = t + 3 t 2
dx 1 6t dt
[1]
y = 2t – 1
dy 2 dt
[ 1 ] salah satu
dx dx dt dy dt dy (1 6t )
1 2
[1]
1 (1 6t ) 2
(b) y 3.98 4 = -0.02
[1]
dy 2 dt dy y dt t y t dy dt
0.02 2 0.01
Learning To Score 2006 Jabatan Pelajaran Perak
[1]
Halaman 6
Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1 21 .
dy 4 f ( x )dx
3 dy 3 f ( x)dx 4 2 2 3 1 2 x 3 f ( x)dx 4 3x 2 2 2
[1]
3 1 4 1 4 4 12 12 1 = 2
=
22 . ( a )
6
[1] [1]
C 3 4 C 2 20 6 = 120
[1]
( b ) Jumlah pemain lelaki dan perempuan = 6 + 4 = 10 Bilangan cara pilih 5 orang pemain =
10
C 5 252
[1]
Bilangan cara pilih 1 orang pemain lelaki dan 4 orang pemain perempuan =
6
C1 4 C 4 6 1 6
[1]
Bilangan pasukan yang mesti mengandungi sekurang – kurangnya 2 orang pemain lelaki =
23 .
xm ;
2
x
2
x
2
x
720
m 2 = 144 – 9h2 =
246
[1]
; 2 9h 2
2
n 720 9h2= m2 5
m
252 – 6 =
144 9h 2
Learning To Score 2006 Jabatan Pelajaran Perak
[1] [1] [1]
Halaman 7
Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1 24 . ( a ) Kebarangkalian bahawa susunan itu ialah TUPS =
1 1 1 1 1 6 5 4 3 360
[1]
( b ) Kebarangkalian bahawa susunan itu tidak mengandungi hiasan P 5
= =
6
C4 C4 1 3
[1] [1]
25 . varians = 2 = 9 sisihan piawai = = 3 min = = 10 P ( X < r ) = 0 . 975 Z =
X
r 10 X 10 P = 0 . 975 3 3
[1]
r 10 P Z = 0 . 975 3 r 10 1 – P Z = 0 . 975 3 r 10 P Z 3
[1]
= 1 – 0. 975 = 0 . 025
r 10 3 r Learning To Score 2006 Jabatan Pelajaran Perak
= 1.96
[1]
=
[1]
15.88
Halaman 8