Spm > Matematik Tambahan > Kertas1 Set1 Jawapan

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Spm > Matematik Tambahan > Kertas1 Set1 Jawapan as PDF for free.

More details

  • Words: 1,670
  • Pages: 8
Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1 1.

(a) hk

–1

(b) kh

2. (a) p

p

–1

(– 4) = – 2

[1]

(– 2) = – 4

[1]

–1

3x 4x

(x) =

–1

3y

(y) = 4 y

3y 4 y

x =

x(4–y) = 3y 4x – xy = 3y y(x+3) = 4x

4x x3

y =

p(x)

(b)

=

p (5) 

=

3.

[1]

4x x3

,

x ≠ –3

[1]

4(5) 53

5 2

[1]

g(x) = 4 – 3x y = 4 – 3x 3x = 4–y x = g – 1(x) =

f(x) = fgg

4 y 3 4 x 3

–1

[1]

(x) =

4  x

fg   3 

= 2

4  x  3 5  

[1]

=

23  2 x 3

[1]

Learning To Score 2006 Jabatan Pelajaran Perak

Halaman 1

Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1

4.

y = 3 + 5x – 4x2

y = t ,

3 + 5x – 4x2 =

t

4x2–5x +t–3 = 0

[1]

Bersilang pada dua titik , guna (–5)2 – 4(4)(t–3) > 16t

5.

b

0

<

73

t <

73 16

2

– 4ac > 0 [1]

[1]

5(2x–1) = 3(x2 – 2) 3 x 2 – 10 x – 1 = 0 Guna

x =

[1]

 b  b 2  4ac 2a

x =

 (10)  (10) 2  4(3)(1) 2(3)

x =

10  112 6

x =

3.43,

x = – 0. 0972

[1]

[ 1 ] kedua – dua

g (x) = 4 – 2 ( x + h ) 2

6.

x+h = 0 ,

x = –h

(–h , 4 )

= (3 , k )

;

y = 4

(a)

h = –3

[1]

(b)

k = 4

[1]

(c)

Paksi simetri :

Learning To Score 2006 Jabatan Pelajaran Perak

x = 3

[1]

Halaman 2

Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1 7 . 2

6 ( x+3 ) x ½

– 3x

= 2

3(x+3) = –3x 8 x = – 11 x = 

11 8

8 . log 2 ( x – 1 ) + log 2 4 ( x – 1 ) 4x – 4 x2–4x + 4 (x–2)2 x

2 = = = = =

9.

. 2

–2(x+ 1)

[1]

+ [ –2x – 2 ]

[1] [1]

2 = log 2 22 = log 2 4

= 2 log 2 x log 2 x 2 x2 0 0 2

[1]

[1] [1]

 32 x 3  log 2  2   log 2 32  log 2 x 3  log 2 y 2  y  = log 2 2 5  3 log 2 x  2 log 2 y

[1] [1]

= 5+3p–2r 10 .

Sn = Tn = T 5 = = = =

[1]

5n –3 S n – S n–1 S5 – S4 [ 5(5) – 3 ] – [ 5(4) – 3 ] 22 – 17 5

11 . (a) r =

2 = 1

[1] [1]

– 2

[1]

(b) T 1 , T 2 , ……… T 5 , T 6 , ……….. T 15 Hasil tambah

 S 15 =

 S5 =

=

S

15

– S5

1 (2)15  1 2 = – 5461.5 (2)  1

1 (2) 5  1 2 = (2)  1

S 15 – S 5 =

Learning To Score 2006 Jabatan Pelajaran Perak

– 5456

– 5.5

;

[1]

[1] [1]

Halaman 3

Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1 12 . 47, 44, 41, ………… (a) d= 44 – 47 = –3 (b) Sn=

[1]

n [ 2 a  ( n  1) d ] 2

n [ 2( 47)  (n  1)( 3)] = 2 3n2 – 97n– 2650

–1325

[1]

= 0

(3n + 53)(n – 50) = 0 n = 50

[1] [1]

13 . y = p x q ( a ) log

10

y = log

log

10

p = 2

p + q log 10 x

p = 10 2 = 100

[1]

20 1  04 2

[1]

q = ( b ) log

10

10

y = 2 + ½ log

x = 10 , log 10 y log 10 y y y

= = = =

10

x

2 + ½ log 10 10 2.5 10 2.5 316 . 2

[1]

[1]

Kaedah Alternatif y= pxq = 100 x ( 10 ) ½ = 316 . 2 14 .

p q x 2 2 2 q 1 = x 3 3 q 1  3 2 = ( q  1) 3

y = y

p 2 p

Learning To Score 2006 Jabatan Pelajaran Perak

[1] [1]

Halaman 4

Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1



8 i  5 j

15 . ( a ) OB =

~

[1]

~



( b ) Vektor unit dalam arah OB



16 . ( a ) AB

= =



( b ) OR

=

 OR

=

 OR

17

=

 8i  5 j

[1]

89

  AO + OB   2    3 

– 

10    6

12     3

[1]

2(OB)  1(OA) 2 1

  2  1  10  2    1  21   6   3 

 6

=   5

[1]

[1]

 

1 . + sek 2 x = 3 kot 2 x tan 2 x + sek 2 x = 3

[1]

tan 2 x + 1 + tan 2 x = 3 2 tan 2 x = 2 tan 2 x = 1 tan x = ± 1 x = 45 o , 135 o , 225 o , 315 o

4 18 . ( a ) kos POR = = 0.8 5 POR = 0 . 6435 r

[1] [1,1] [1] [1]

( b ) s PQ = j  r = 5 x 0.6435 = 3 . 2175 RQ = 1 cm ,

PR = 3 cm ( Teorem Pythagoras )

Perimeter kawasan berlorek = 3 + 1 + 3. 2175 = 7 . 2175

Learning To Score 2006 Jabatan Pelajaran Perak

[1]

[1]

Halaman 5

Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1

19 . f ( x ) =

4 x (5  2 x ) 2

u = 4x

v =(5–2x)2

du 4 dx

dv  ( 2)(5  2 x )( 2) dx

dy dv du u v dx dx dx f ' ( x)  4 x[ 4(5  2 x)]  (5  2 x) 2 (4)

[1]

= 4 8 x2 – 160 x + 100

[1]

f ' ' ( x)  96 x  160

20 .

[ 1 ] salah satu

(a) x = t + 3 t 2

dx  1  6t dt

[1]

y = 2t – 1

dy 2 dt

[ 1 ] salah satu

dx dx dt   dy dt dy  (1  6t )  

1 2

[1]

1 (1  6t ) 2

(b) y  3.98  4 = -0.02

[1]

dy 2 dt dy y  dt t y t  dy dt

 0.02 2  0.01 

Learning To Score 2006 Jabatan Pelajaran Perak

[1]

Halaman 6

Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1 21 .

 dy   4 f ( x )dx

3 dy   3 f ( x)dx 4 2 2 3 1  2 x   3 f ( x)dx  4  3x 2   2 2

[1]

3 1  4 1  4   4  12 12  1 = 2

=

22 . ( a )

6

[1] [1]

C 3  4 C 2  20  6 = 120

[1]

( b ) Jumlah pemain lelaki dan perempuan = 6 + 4 = 10 Bilangan cara pilih 5 orang pemain =

10

C 5  252

[1]

Bilangan cara pilih 1 orang pemain lelaki dan 4 orang pemain perempuan =

6

C1  4 C 4  6  1  6

[1]

Bilangan pasukan yang mesti mengandungi sekurang – kurangnya 2 orang pemain lelaki =

23 .

xm ;

2 

x

2

x

2



 x

 720

m 2 = 144 – 9h2 =

246

[1]

;  2  9h 2

2

n 720 9h2=  m2 5

m

252 – 6 =

144  9h 2

Learning To Score 2006 Jabatan Pelajaran Perak

[1] [1] [1]

Halaman 7

Matematik Tambahan SPM Skema Jawapan Kertas 1 Set 1 24 . ( a ) Kebarangkalian bahawa susunan itu ialah TUPS =

1 1 1 1 1     6 5 4 3 360

[1]

( b ) Kebarangkalian bahawa susunan itu tidak mengandungi hiasan P 5

= =

6

C4 C4 1 3

[1] [1]

25 . varians = 2 = 9 sisihan piawai =  = 3 min =  = 10 P ( X < r ) = 0 . 975 Z =

X  

r  10   X  10 P    = 0 . 975 3   3

[1]

r  10   P Z   = 0 . 975 3   r  10   1 – P Z   = 0 . 975 3   r  10   P Z   3  

[1]

= 1 – 0. 975 = 0 . 025

r  10 3 r Learning To Score 2006 Jabatan Pelajaran Perak

= 1.96

[1]

=

[1]

15.88

Halaman 8

Related Documents