SULIT 3472/1 Additional Mathematics Kertas 1 Peraturan Pemarkahan August 2009 BAHAGIAN PENGURUSAN SEKOLAH BERASRAMA PENUH DAN SEKOLAH KLUSTER KEMENTERIAN PELAJARAN MALAYSIA PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2009
PEPERIKSAAN PERCUBAAN SPM TAHUN 2009
ADDITIONAL MATHEMATICS KERTAS 1
PERATURAN PEMARKAHAN
UNTUK KEGUNAAN PEMERIKSA SAHAJA
www.tutormuruli.blogspot.com
Question 1 (a)
1
Marks 1
1 (b)
3
1
2 (a)
Working / Solution
g 1
2(b)
2
4 , x 2 x2 4 4 , x 0 or x2 f ( x) x
f ( x)
Total 2
4
B1
x 3
2
4
B1
4 2 x 3(a)
(b)
4
5
g ( x)
6 5x 2
2
6 2x y 5 5 p= 2 6 5( x 2) 8 px 2 b = - 5 and c = - 2
4
B1 2 B1 3
b = - 5 or c = - 2
B2
5 2 ( x – 2) ( 3x + 1) = 0 OR x 2 x 0 3 3
B1
4 x5
3
2 2
( x 5)( x 4) 0 OR
4
5
x
B1 Must indicate the range correctly by shading or other method or 4
5
www.tutormuruli.blogspot.com
Question 6
Working / Solution q 60 p 5 2
q 15(2 p ) 2 5
7
6 p 3n or 5 q 15n 2 3
2
2( x 2) 4
8
9
5 2( x 2) or 1 x 1 x2 3 x log x 2
Marks 3
Total 3
B2 B1 3
3
B2 5 4 x OR 25 2 x
B1 3
3
B2 B1
2k h 1 2h k
4
2 log 5 3 log 5 2 log 5 5
4
B3
2 log 5 2 log 5 3 log 5 2 2 log 5 2 log 5 5 or log 5 2 2 log 5 3 or
B2
log12 3 log12 2 log12 5 2
log 5 90 or 2 log 5 3 or 2 log52 log 5 12 10
n = 42 5 (n 1)(2) 87 d=2
11
1 6
B1 3 B2 B1 3
1 9
B2
1 1 3 1 r 3
B1
www.tutormuruli.blogspot.com
3
3
Question 12
13
Working / Solution p = 2 and q 1 p = 2 or q 1 3 (5) p or 5q 5 40 y 2 x px 2 5q 3 9 y x 4 2
P ( 0,8) or Q (-6,0) or m PQ
15
16
3 4
(10, 7)
3 1 h ) 2 4 7 i 2 j
3
B1 3
B2 B1 3
3
B2
3
3
~
B2 B1
11 i 5 j 4 i 3 j
17
3
B1
53 OC 53 ~ o
B2 B1
3
x 10 or y 7 x0 y 8 2 or 3 5 5 h=7 1 4 2 or 3 = (1 h) 2
~
Total 4
B2
3 y 0 ( x 6) 4
14
Marks 4 B3
~
~
~
o
90 , 123.69 ,270o,303.69o
4
90o, 270o or 123.69o, 303.69o
B3
cos x(3 cos x 2 sin x) 0
B2
3 cos 2x + 2 sin x cosx = 0
B1
www.tutormuruli.blogspot.com
4
Question 18 (a)
Working / Solution
1.842 5 6.5
(b)
23.025 1 2 (5) (1.842) * (candidate’s from a) 2
19
60
20
21
x 3 2(5 3 x)1 (3) (5 3 x) 2 3 x 2
B2
2(5 3 x)(3) or 3 x 2 10 2 2 3 2 4 or 3 2 4 x 2 dp 2 3 2 dr x h=3
B1
B2
h h – =7 3 [2(3) 5] [2(2) 5]3
B2
23
h ( with the correct l imit ) or x 32 3 (2 x 5) 2 a) m=5
3
4
3
3
B1 3
3
B1 2
2m 3 8 m 1 7 3
B1
b) 21 1 or an equivalent single fraction 15
1 3
3 2 2 6 5 6
B2
3 2 2 or or 6 5 6
B1
www.tutormuruli.blogspot.com
Total
2 B1
3
3
22
Marks 2 B1
3
3
Question
Working / Solution
24(a)
14 or 2.8 5
24(b)
1.296
Marks 1
Total 3
2
2 2 7 1 or equivalent 5 5
B1
25 (a)
1.1 0.1357
2 B1
25(b)
61.2
2
70 *1.1 (candidate’s k) 8
“END OF MARKING SCHEME”
www.tutormuruli.blogspot.com
B1
4
3472/2 Matematik Tambahan Kertas 2 2 ½ jam Ogos 2009
SEKOLAH BERASRAMA PENUH BAHAGIAN PENGURUSAN SEKOLAH BERASRAMA PENUH DAN KLUSTER KEMENTERIAN PELAJARAN MALAYSIA PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2009
ADDITIONAL MATHEMATICS Kertas 2 Dua jam tiga puluh minit
MARKING SCHEME
Skema Pemarkahan ini mengandungi 13 halaman bercetak
www.tutormuruli.blogspot.com
2 QUESTION NO.
1
SOLUTION
MARKS
y = 3 - 2x
P1
x (3 - 2x ) - 2(3 - 2x ) + 5 = 0
K1
2
2x - 7x + 1 = 0
- (- 7) ±
5
(- 7)2 - 4(2)(1)
K1
2(2)
x = 3.351 or 0.149
N1
y = - 3.702 or 2.702
N1
5 2 a)
b)
c)
7 ] 2 1 1 7 = 2[x 2 - 2x + ( (- 2))2 - ( (- 2)2 + ] 2 2 2 5 = 2[(x - 1)2 + ] 2 2 = 2(x - 1) + 5
f (x ) = 2[x 2 - 2x +
Minimum value = 5
K1
2 N1
N1
1
23 Shape – P1 Max point – P1 Other 2 points – P1
13 7
-
3
(1,5) -2 0 d)
f (x ) = - 2(x - 1)2 - 5
3
1
N1
7
www.tutormuruli.blogspot.com
3
3 a)
36 , x , 20.25 x 20.25 36 x 3 x 4
(b)
(c)
3 T10 36 4 2.703
2
K1 N1 9
K1
2
N1
1 (0.75) n 36 140 1 0.75 n log 0.75 log 0.02778 n 12.46 n 13
K1
3
N1 N1
7 4 (a)
2
sin x cos x cos x sin x 2 sin x cos x sin 2 x cos 2 x sin 2 x
(b)
K1 2 N1
y 2 0.25
2
2
x
Sine curve……………P1 1 period………………P1 Max/min value 2/-2…………P1 Sketcht straight line.….K1
x …………….N1 4 No. of solutions = 3…….N1
6
y
www.tutormuruli.blogspot.com
8
4
5(a)
14.5 or 8 or 9 33+m
P1
1 4 (33 m) 9 5 15.125 8 m7
b)
K1 3 N1
Refer the graph paper Uniform scale, correct frequency and upper boundary Method to find the mode Mode = 22
3
K1 K1 N1
6 6 (a)
3 (i ) AT ( AO OB ) or MT MA AT 4 3 AT (12 a 4 b) ~ ~ 4 9 a 3b ~
(ii )
3 N1
~
MW hMT MO OW h( a 3 b) ~
~
1 (12 a ) kOB h( a 3 b) ~ ~ ~ 3 4 a k (4 b) h a 3h b ~
7 (a)
N1
~
2 MT (12 a ) 3 b 9 a ~ ~ 3 ~ a 3b ~
(b)
K1
4 h h4 dy 2x dx 2x = 4 x =2
~
~
or
K1
3
~
4k 12 , k3
K1 N1
K1 N1 www.tutormuruli.blogspot.com
7
5 2
A1 x 2 3 dx
(b)
2
0
2
x3 = 3x 3 0 8 = 6 0 3 26 2 = or 8 or 8.667 3 3
1 A2 2 (7 9) 2 = 16 A 16
= 2
(c)
K1 K1
K1 5
26 3
K1
22 1 or 7 or 7.33 3 3
N1
V x 2 3 dx 2
0
2
= x 4 6 x 2 9 dx 0
3
2
x 5 6 x3 = 9x 3 5 0
K1
25 = 2(2)3 9(2) 0 5 2 202 = 40.4 or 40 or 5 5
K1 N1 10
8 (a)
log10 (x +1)
0.30
0.48
0.60
0.70
0.78
0.85
log10 y
0.70
0.81
0.89
0.95
1
1.04
N1 N1 2
(b)
refer to the graph paper
www.tutormuruli.blogspot.com
6 (c)
log10 y = k log10 (x + 1) + log10 h (i) log10 h = 0.515 h = 3.27
P1 K1 N1 5
(ii) k =
1.04 0.7 0.85 0.3
K1 N1
= 0.6
10 9 (a)
(b) (i)
10 EAD tan 1 12 0.6948 rad
N1
COD 1.3896 rad
arc length 6(1.3896) 8.3376
(ii)
2
K1
K1 N1
AC 2 6 2 6 2 2(6)(6) cos 100.39 o
5
K1
9.2187 Perimeter of shaded region 10 8.3376 2.4432 20.7808
(c)
1 2 (6) (1.7524) 2
or
1 (6)(6) sin 100.39 0 2
Area of segment ABC
K1 N1
3
K1
1 2 1 (6) (1.7524) (6)(6) sin 100.39 0 2 2
K1
= 31.5432 – 17.7049 = 13.8383
N1
10 www.tutormuruli.blogspot.com
7 10
(a)(i) R(0, -4) (ii) x
P1 2(0) 5(3) 2( 4) 3(11) and y 23 23
K1
Q(3, 5) (b) 14
N1
1k 5 3 k 2 0 11 5 0
14
1 11k 25 5k 33 2
6k – 8 = 28
K1
or 8 - 6k = -28
(d)
y
PS
N1
2 x y x 4 or 1 3 6 4
x 6
x 6
2
2
N1
y 2 or PQ
y2 2
x 3
2
x 3 y 5 2
( y 5)2
2
3 x 2 3 y 2 12 x 40 y 100 0
11
3
K1
k=6
(c)
3
K1 K1
4
N1
10
(a) (i) p = 0.8 , q = 0.2 P(X = 0) = 6C0 (0.8)0 (0.2) 6 or P X 1 6C1 (0.8)1 (0.2)5 K1
P( X 2) 1 P( X 0) P( X 1)
= 1 - 6C0 (0.8)0 (0.2) 6 - 6C1 (0.8)1 (0.2)5 = 1 – 0.000064 – 0.001536 = 0.9984
K1 N1
(ii) 14 n(0.8)(0.2) n = 1225
K1 N1
(b)(i) P ( X 45) 0.2266 Z = -0.75
P1
www.tutormuruli.blogspot.com
5
8 0.75
54
(ii)
12(a) (b)
Z
45 12
Z
or
42 54 ( in b(ii)) 12
N1
42 54 12
P 42 X 45 P(1 Z 0.75) = 0.2266 – 0.1587 K1 = 0.0679 N1 v=8 N1
5
10 1
K1
a = 2 – 2t = 0 2t = 2 t=1
3
K1
v = 8 + 2(1) – (1)2
N1
= 9 (c)
K1
v = 8 + 2t – t2 = 0 t2 – 2t – 8 = 0 K1
(t – 4) (t + 2) = 0
N1
t=4 (d)
2
s (8 2t t 2 ) dt s 8t t 2
t3 c 3
K1
t=0,s=0c=0 s 8t t 2
t3 3
t = 4 , s = 8( 4) (4) 2
43 80 3 3
or
K1
3
6 t = 6 , s = 8(6) (6) 12 3
K1
80 80 12 3 3
N1
2
Total distance = =
124 3
www.tutormuruli.blogspot.com
4
10
9 13
(a)
P08 100 150 32
(i)
K1
P08 = RM 48
(ii)
5
K1
P05 100 110 P03
or
K1
P08 100 130 P05
I 08 03
P08 P05 100 P05 P03 130 110 100 100 100
K1
N1
= 143
(b) (i)
(ii)
115(40) + 150 (20) + 30x + 130 (10)
P1
115(40) 150(20 30 x 130(10) 122 100
K1
x = 110
N1
305 100 P05
K1
P05 = RM 250.00
N1
122
5
10 14
(a)
cos BAC
15 2 24 2 18 2 2 15 24
K1
2 = 0.6625 BAC = 48.51o
(b)
AED = 180o – 48.51o – 60o www.tutormuruli.blogspot.com
N1
K1
10 = 71.49o
DE o
sin 48.51
N1 8 sin 71.49 o
K1
N1
DE = 6.319
(c)
area of ABC =
4
1 15 24 sin 48.51o 2
K1 N1
= 134.83
4 1 24 h 134.83 2
K1
h = 11.24
N1
10 15
. (a)
I : x + y 150 II : y
1 x 2
3
N1
III : y – x 80
N1
(b) refer the graph paper
3 N1
(c) (i) x = 100 (ii) maximum point ( 35, 115)
N1
Profit = 3(35) + 5(115)
K1
= RM 680
N1
www.tutormuruli.blogspot.com
4
10
11
Q5
frequency
16
14
12
10
8
6
4
2
www.tutormuruli.blogspot.com
0
4.5
9.5
14.5
19.5
24.5
29.5
34.5 34. 34.
UpperBoundary
12 Q8 1.1 x x
1.0 x 0.9
x
x
0.8
x
0.7
correct axes and uniform scale
K1
all points plotted correctly
N1
line of best fit
N1
0.6
0.5
0.4
0.3
0.2
0.1
0.1
0.2
0.3
0.4
0.5
www.tutormuruli.blogspot.com
0.6
0.7
0.8
0.9
13
Q 15
160
correct axes with uniform scale and one line correct( equation involved x and y) .
K1
all straight lines correct
N1
correct shaded region
N1
140
120
100
80
60
R
40
20
20
40
60
80
100
www.tutormuruli.blogspot.com
120
140
160