Spb Addmaths Answer Spm 2009

  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Spb Addmaths Answer Spm 2009 as PDF for free.

More details

  • Words: 2,531
  • Pages: 19
SULIT 3472/1 Additional Mathematics Kertas 1 Peraturan Pemarkahan August 2009 BAHAGIAN PENGURUSAN SEKOLAH BERASRAMA PENUH DAN SEKOLAH KLUSTER KEMENTERIAN PELAJARAN MALAYSIA PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2009

PEPERIKSAAN PERCUBAAN SPM TAHUN 2009

ADDITIONAL MATHEMATICS KERTAS 1

PERATURAN PEMARKAHAN

UNTUK KEGUNAAN PEMERIKSA SAHAJA

www.tutormuruli.blogspot.com

Question 1 (a)

1

Marks 1

1 (b)

3

1

2 (a)

Working / Solution

g 1

2(b)

2

4 , x  2 x2 4 4  , x  0 or x2 f ( x) x

f ( x) 

Total 2

4

B1

x  3

2

4

B1

4 2 x 3(a)

(b)

4

5

g ( x) 

6  5x 2

2

6  2x y 5 5 p= 2 6  5( x  2)  8  px 2 b = - 5 and c = - 2

4

B1 2 B1 3

b = - 5 or c = - 2

B2

5 2 ( x – 2) ( 3x + 1) = 0 OR x 2  x   0 3 3

B1

4 x5

3

2 2

( x  5)( x  4)  0 OR

4

5

x

B1 Must indicate the range correctly by shading or other method or 4

5

www.tutormuruli.blogspot.com

Question 6

Working / Solution q  60 p  5 2

q  15(2 p ) 2  5

7

 6 p  3n or 5  q  15n 2  3

2

2( x  2)   4

8

9

5 2( x  2) or 1 x 1  x2 3  x  log   x 2

Marks 3

Total 3

B2 B1 3

3

B2 5 4 x OR 25 2 x

B1 3

3

B2 B1

2k  h  1 2h  k

4

2 log 5 3  log 5 2  log 5 5

4

B3

2 log 5 2  log 5 3 log 5 2 2  log 5 2  log 5 5 or log 5 2 2  log 5 3 or

B2

log12 3  log12 2  log12 5 2

log 5 90 or 2 log 5 3 or 2 log52 log 5 12 10

n = 42 5  (n  1)(2)  87 d=2

11

1 6

B1 3 B2 B1 3

1 9

B2

1 1 3 1 r 3

B1

www.tutormuruli.blogspot.com

3

3

Question 12

13

Working / Solution p = 2 and q  1 p = 2 or q  1 3  (5) p or 5q  5 40 y  2 x  px 2  5q 3 9 y  x 4 2

P ( 0,8) or Q (-6,0) or m  PQ  

15

16

3 4

(10, 7)

 3  1  h )          2  4  7 i 2 j

3

B1 3

B2 B1 3

3

B2

3

3

~

B2 B1

11 i  5 j  4 i  3 j

17

3

B1

53 OC  53 ~ o

B2 B1

3

x  10 or y  7 x0 y 8  2 or 3 5 5 h=7 1 4  2 or 3 =  (1  h) 2

~

Total 4

B2

3 y  0   ( x  6) 4

14

Marks 4 B3

~

~

~

o

90 , 123.69 ,270o,303.69o

4

90o, 270o or 123.69o, 303.69o

B3

cos x(3 cos x  2 sin x)  0

B2

3 cos 2x + 2 sin x cosx = 0

B1

www.tutormuruli.blogspot.com

4

Question 18 (a)

Working / Solution

  1.842 5  6.5

(b)

23.025 1 2 (5) (1.842) * (candidate’s  from a) 2

19

60

20

21

x 3 2(5  3 x)1 (3)  (5  3 x) 2 3 x 2

B2

2(5  3 x)(3) or 3 x 2 10 2  2     3  2   4 or  3  2   4 x  2    dp 2  3 2 dr x h=3

B1

B2

h h – =7 3 [2(3)  5] [2(2)  5]3

B2

23

  h ( with the correct l imit ) or x 32  3  (2 x  5)  2 a) m=5

3

4

3

3

B1 3

3

B1 2

2m  3  8  m  1 7 3

B1

b) 21 1 or an equivalent single fraction 15

1 3

3 2 2   6 5 6

B2

3 2 2 or or 6 5 6

B1

www.tutormuruli.blogspot.com

Total

2 B1

3

3

22

Marks 2 B1

3

3

Question

Working / Solution

24(a)

14 or 2.8 5

24(b)

1.296

Marks 1

Total 3

2

2  2 7   1   or equivalent 5  5

B1

25 (a)

1.1 0.1357

2 B1

25(b)

61.2

2

70    *1.1 (candidate’s k) 8

“END OF MARKING SCHEME”

www.tutormuruli.blogspot.com

B1

4

3472/2 Matematik Tambahan Kertas 2 2 ½ jam Ogos 2009

SEKOLAH BERASRAMA PENUH BAHAGIAN PENGURUSAN SEKOLAH BERASRAMA PENUH DAN KLUSTER KEMENTERIAN PELAJARAN MALAYSIA PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2009

ADDITIONAL MATHEMATICS Kertas 2 Dua jam tiga puluh minit

MARKING SCHEME

Skema Pemarkahan ini mengandungi 13 halaman bercetak

www.tutormuruli.blogspot.com

2 QUESTION NO.

1

SOLUTION

MARKS

y = 3 - 2x

P1

x (3 - 2x ) - 2(3 - 2x ) + 5 = 0

K1

2

2x - 7x + 1 = 0

- (- 7) ±

5

(- 7)2 - 4(2)(1)

K1

2(2)

x = 3.351 or 0.149

N1

y = - 3.702 or 2.702

N1

5 2 a)

b)

c)

7 ] 2 1 1 7 = 2[x 2 - 2x + ( (- 2))2 - ( (- 2)2 + ] 2 2 2 5 = 2[(x - 1)2 + ] 2 2 = 2(x - 1) + 5

f (x ) = 2[x 2 - 2x +

Minimum value = 5

K1

2 N1

N1

1

23 Shape – P1 Max point – P1 Other 2 points – P1

13 7

-

3

(1,5) -2 0 d)

f (x ) = - 2(x - 1)2 - 5

3

1

N1

7

www.tutormuruli.blogspot.com

3

3 a)

36 , x , 20.25 x 20.25  36 x 3 x 4

(b)

(c)

3 T10  36  4  2.703

2

K1 N1 9

K1

2

N1

1  (0.75) n  36   140  1  0.75  n log 0.75  log 0.02778 n  12.46 n  13

K1

3

N1 N1

7 4 (a)

2



sin x cos x  cos x sin x 2 sin x cos x  sin 2 x  cos 2 x  sin 2 x

(b)

K1 2 N1

y 2 0.25

 2

2

x

Sine curve……………P1 1 period………………P1 Max/min value 2/-2…………P1 Sketcht straight line.….K1

x …………….N1 4 No. of solutions = 3…….N1

6

y

www.tutormuruli.blogspot.com

8

4

5(a)

14.5 or 8 or 9 33+m

P1

1   4 (33  m)  9   5  15.125 8     m7

b)

K1 3 N1

Refer the graph paper Uniform scale, correct frequency and upper boundary Method to find the mode Mode = 22

3

K1 K1 N1

6 6 (a)

 3      (i ) AT  ( AO  OB ) or MT  MA  AT 4  3 AT  (12 a  4 b) ~ ~ 4   9 a  3b ~

(ii )

3 N1

~

  MW  hMT   MO  OW  h( a  3 b) ~

~

 1  (12 a )  kOB  h( a  3 b) ~ ~ ~ 3  4 a  k (4 b)  h a  3h b ~

7 (a)

N1

~

 2 MT  (12 a )  3 b  9 a ~ ~ 3 ~   a 3b ~

(b)

K1

 4  h h4 dy  2x dx 2x = 4 x =2

~

~

or

K1

3

~

4k  12 , k3

K1 N1

K1 N1 www.tutormuruli.blogspot.com

7

5 2

A1   x 2  3 dx

(b)

2

0

2

 x3  =   3x  3 0 8  =   6  0 3  26 2 = or 8 or 8.667 3 3

1 A2   2  (7  9) 2 = 16 A  16 

= 2

(c)

K1 K1

K1 5

26 3

K1

22 1 or 7 or 7.33 3 3

N1

V     x 2  3 dx 2

0

2

=   x 4  6 x 2  9 dx 0

3

2

 x 5 6 x3  =    9x 3 5 0

K1

 25  =    2(2)3  9(2)   0 5  2 202 = 40.4 or 40  or  5 5

K1 N1 10

8 (a)

log10 (x +1)

0.30

0.48

0.60

0.70

0.78

0.85

log10 y

0.70

0.81

0.89

0.95

1

1.04

N1 N1 2

(b)

refer to the graph paper

www.tutormuruli.blogspot.com

6 (c)

log10 y = k log10 (x + 1) + log10 h (i) log10 h = 0.515 h = 3.27

P1 K1 N1 5

(ii) k =

1.04  0.7 0.85  0.3

K1 N1

= 0.6

10 9 (a)

(b) (i)

 10  EAD  tan 1    12   0.6948 rad

N1

COD  1.3896 rad

arc length  6(1.3896)  8.3376

(ii)

2

K1

K1 N1

AC 2  6 2  6 2  2(6)(6) cos 100.39 o

5

K1

 9.2187 Perimeter of shaded region  10  8.3376  2.4432  20.7808

(c)

1 2 (6) (1.7524) 2

or

1 (6)(6) sin 100.39 0 2

Area of segment ABC 

K1 N1

3

K1

1 2 1 (6) (1.7524)  (6)(6) sin 100.39 0 2 2

K1

= 31.5432 – 17.7049 = 13.8383

N1

10 www.tutormuruli.blogspot.com

7 10

(a)(i) R(0, -4) (ii) x 

P1 2(0)  5(3) 2( 4)  3(11) and y  23 23

K1

Q(3, 5) (b) 14 

N1

1k 5 3 k 2 0 11 5 0

14 

1 11k  25  5k  33 2

6k – 8 = 28

K1

or 8 - 6k = -28

(d)

y

PS 

N1

2 x y x  4 or  1 3 6 4

 x  6

 x  6

2

2

N1

 y 2 or PQ 

 y2  2

 x  3

2

 x  3   y  5  2

 ( y  5)2

2

3 x 2  3 y 2  12 x  40 y  100  0

11

3

K1

k=6

(c)

3

K1 K1

4

N1

10

(a) (i) p = 0.8 , q = 0.2 P(X = 0) = 6C0 (0.8)0 (0.2) 6 or P  X  1  6C1 (0.8)1 (0.2)5 K1

P( X  2)  1   P( X  0)  P( X  1) 

= 1 - 6C0 (0.8)0 (0.2) 6 - 6C1 (0.8)1 (0.2)5 = 1 – 0.000064 – 0.001536 = 0.9984

K1 N1

(ii) 14  n(0.8)(0.2) n = 1225

K1 N1

(b)(i) P ( X  45)  0.2266 Z = -0.75

P1

www.tutormuruli.blogspot.com

5

8 0.75 

  54

(ii)

12(a) (b)

Z

45   12

Z

or

42  54 ( in b(ii)) 12

N1

42  54 12

P  42  X  45   P(1  Z  0.75) = 0.2266 – 0.1587 K1 = 0.0679 N1 v=8 N1

5

10 1

K1

a = 2 – 2t = 0 2t = 2 t=1

3

K1

v = 8 + 2(1) – (1)2

N1

= 9 (c)

K1

v = 8 + 2t – t2 = 0 t2 – 2t – 8 = 0 K1

(t – 4) (t + 2) = 0

N1

t=4 (d)

2

s   (8  2t  t 2 ) dt s  8t  t 2 

t3 c 3

K1

t=0,s=0c=0 s  8t  t 2 

t3 3

t = 4 , s = 8( 4)  (4) 2 

43 80  3 3

or

K1

3

6 t = 6 , s = 8(6)  (6)   12 3

K1

80  80     12  3  3 

N1

2

Total distance = =

124 3

www.tutormuruli.blogspot.com

4

10

9 13

(a)

P08  100  150 32

(i)

K1

P08 = RM 48

(ii)

5

K1

P05 100  110 P03

or

K1

P08 100  130 P05

I 08  03



P08 P05   100 P05 P03 130 110   100 100 100

K1

N1

= 143

(b) (i)

(ii)

115(40) + 150 (20) + 30x + 130 (10)

P1

115(40)  150(20  30 x  130(10)  122 100

K1

x = 110

N1

305 100 P05

K1

P05 = RM 250.00

N1

122 

5

10 14

(a)

cos BAC 

15 2  24 2  18 2 2  15  24

K1

2 = 0.6625  BAC = 48.51o

(b)

 AED = 180o – 48.51o – 60o www.tutormuruli.blogspot.com

N1

K1

10 = 71.49o

DE o

sin 48.51



N1 8 sin 71.49 o

K1

N1

DE = 6.319

(c)

area of ABC =

4

1  15  24 sin 48.51o 2

K1 N1

= 134.83

4 1  24  h  134.83 2

K1

h = 11.24

N1

10 15

. (a)

I : x + y  150 II : y 

1 x 2

3

N1

III : y – x  80

N1

(b) refer the graph paper

3 N1

(c) (i) x = 100 (ii) maximum point ( 35, 115)

N1

Profit = 3(35) + 5(115)

K1

= RM 680

N1

www.tutormuruli.blogspot.com

4

10

11

Q5

frequency

16

14

12

10

8

6

4

2

www.tutormuruli.blogspot.com

0

4.5

9.5

14.5

19.5

24.5

29.5

34.5 34. 34.

UpperBoundary

12 Q8 1.1 x x

1.0 x 0.9

x

x

0.8

x

0.7

correct axes and uniform scale

K1

all points plotted correctly

N1

line of best fit

N1

0.6

0.5

0.4

0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

www.tutormuruli.blogspot.com

0.6

0.7

0.8

0.9

13

Q 15

160

correct axes with uniform scale and one line correct( equation involved x and y) .

K1

all straight lines correct

N1

correct shaded region

N1

140

120 

100

80

60

R

40

20

20

40

60

80

100

www.tutormuruli.blogspot.com

120

140

160

Related Documents