Solutions_aiats Jee(adv)-2020(xi Studying)_test-3a (code-e & F)_paper-1_(24-02-2019).pdf

  • Uploaded by: Sritam
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Solutions_aiats Jee(adv)-2020(xi Studying)_test-3a (code-e & F)_paper-1_(24-02-2019).pdf as PDF for free.

More details

  • Words: 7,022
  • Pages: 20
Test - 3A (Paper - 1) (Code-E) (Answers)

All India Aakash Test Series for JEE (Advanced)-2020

All India Aakash Test Series for JEE (Advanced)-2020 TEST - 3A (Paper-1) - Code-E Test Date : 24/02/2019

ANSWERS PHYSICS

CHEMISTRY

1.

(A)

21.

(B)

41.

(C)

2.

(C)

22.

(D)

42.

(A)

3.

(B)

23.

(D)

43.

(B)

4.

(C)

24.

(A)

44.

(C)

5.

(A)

25.

(B)

45.

(B)

6.

(A)

26.

(B)

46.

(C)

7.

(A, C)

27.

(A, C, D)

47.

(A, B, C)

8.

(A, B, C)

28.

(B, C, D)

48.

(A, C)

9.

(B, C)

29.

(B, C, D)

49.

(B)

10.

(A, C)

30.

(A)

50.

(B)

11.

(B, C)

31.

(B)

51.

(C)

12.

(A, D)

32.

(A, C)

52.

(B)

13.

(A, B)

33.

(A, B, C)

53.

(C)

14.

(A, B)

34.

(A, B, C)

54.

(A)

15.

(B, C)

35.

(B, C)

55.

(B)

16.

A  (R)

36.

56.

A  (Q, S)

17.

A  (P, T)

MATHEMATICS

B  (Q, T)

B  (P, Q, R, S, T)

B  (Q, R, S, T)

C  (Q, T)

C  (P)

C  (R, S, T)

D  (P, S)

D  (P, Q, R, S)

D  (R, S, T)

A  (Q, T)

37.

A  (Q, R, T)

57.

A  (R, T)

B  (R)

B  (P, S)

B  (Q, R, T)

C  (P)

C  (Q, R, T)

C  (Q, R, T)

D  (Q, S, T)

D  (Q, R, T)

D  (Q, R, S, T)

18.

(03)

38.

(07)

58.

(04)

19.

(03)

39.

(06)

59.

(05)

20.

(09)

40.

(04)

60.

(02)

1/10

All India Aakash Test Series for JEE (Advanced)-2020

Test - 3A (Paper - 1) (Code-E) (Hints & Solutions)

HINTS & SOLUTIONS PART - I (PHYSICS) 1.

Answer (A)

3.

Answer (B) Hint:

I Hint: T = 2 Mgd

Based on Doppler effect observer will observe the frequency of wave which is emitted by source.

Solution:

Solution:

 M 2 M 2  I =  12  16   

0 (v )  = (v  v cos ) s

vs 



  cot   v sin  vs

7M 2 I= 48

vs = v cos T=

2

7M 

2

 48  Mg 4

2.

4.

Solution:

Hint: Add the total no. of mole by

 dn  

Pdv RT

Solution:  T  T0  T = T0   L x  L 

PA dx = dn RT n

PA dx   dn R T T 0 L

 TL  PV n = (T  T )R ln  T  L 0  0

2/10

Answer (C)

Calculate the effective phase difference at point P.

Answer (C)

T0

4 3 , cos = 5 5

Hint:

7 3g

using :

0

sin2 

sin =

2 7  = 2 3g = 



2   2    3 cos   3   6   6 cos  

2 6 3

3 cos  

1 3 3

8 cos     9  = cos–1 (8/9) Y  tan  D

17 Y  8 D

P 

S1 S2



Test - 3A (Paper - 1) (Code-E) (Hints & Solutions)

All India Aakash Test Series for JEE (Advanced)-2020

5.

12. Answer (A, D)

Answer (A) Hint:

Hint and Solution of Q. Nos. 10, 11 to 12

Temperature of each body will change based on their heat capacity.

Hint:

Solution: ms

dT1 kA  (T2  T1 ) dt 

2ms

t 6.

dT2 kA  (T2  T1 ) dt 

2ms  4  n  3kA 3

Answer (A)

Process for system will be adiabatic. More over work done by external force will be used to raise the internal energy. Solution: fext dx = (P1 – P2) dV = 2nCvdT  1 1  nRT    dV  2nCv dT V0  V V0  V  (   1)

V

0 V2 0

T  V dV  ln   2 V  T0 

Hint:

13. Answer (A, B)

Heat flow through conductor is constant.

14. Answer (A, B)

Solution:

15. Answer (B, C)

Req 

(b  r ) 4k br

Hint and Solution of Q. Nos. 10, 11 to 12 Hint: Based on equation of travelling waves

dT b(T1 T2 )  (b  r )r dr

Solution:

7.

Answer (A, C)

P = B

8.

Answer (A, B, C)

9.

Answer (B, C) Hint and Solution of Q. Nos. 7, 8 to 9 Hint: Draw the corresponding PV diagram and calculate corresponding quantities. Solution: P = kV

RT  kV V RT = kV 2 2nV = nT 2

dV dT  V T

2

dV 1  VdT T

10. Answer (A, C) 11. Answer (B, C)

dy dx

 y  vp = v s    x  P  vp = v s    B0  v s    ap = B  t   0 

v s P0 = B  x  vs 0 0

ap 

v s2 p0 B0 x 0

16. Answer A(R), B(Q, T), C(Q, T), D(P, S) Hint: Heat flow across section will be constant. Temperature gradient is inversely proportional to area. Solution: In all case heat current flow will be same. Use electrical analogy for heat circuit to compute temperature and gradient.

3/10

All India Aakash Test Series for JEE (Advanced)-2020 17. Answer A(Q, T), B(R), C(P), D(Q, S, T)

Test - 3A (Paper - 1) (Code-E) (Hints & Solutions) Solution:

Hint: Distance will be maximum when velocity of each is same. Solution:

31   4 2 1 =

This has to be solved using

1 = 600 Hz

Phasor diagram

A

3A

2Asin =

19. Answer (03) Hint: T = constant

 

 = 3

Solution :

B

 = 2 or 2 – 2 2 4 or 3 3

=

2 3

d 1    dT 3 T 20. Answer (09) Hint:

When they are at same position.

  x = A sin     2 



A0 2

=

A

B  

  2

Solution :

N  2

18. Answer (03)

N=8

Hint:

 9 nodes

0 = 2

PART - II (CHEMISTRY) Solution:

21. Answer (B) Hint: R R

C = CH2

Reductive ozonolysis

R

C =O & H – C – H

Solution: CH 2

Non-aromatic

O

R

H B

Antiaromatic

CH 2

B CH 2

CH 2

O3 6HCHO Zn–H2 O

H 

Aromatic CH 2

CH 2

22. Answer (D) Hint: Aromatic is non-aromatic compound as it is non-planar molecule.

4/10

Test - 3A (Paper - 1) (Code-E) (Hints & Solutions)

All India Aakash Test Series for JEE (Advanced)-2020 Solution:

23. Answer (D) Hint: Basic strength  lone pair concentration.

CH = CH 2

Solution: (+I) Et

(+I) Et

N

NH 2

CH – CH 3

NH 2

>

>

 CH – CH 3

HCl

Ph (–R) >

Cl

NH



Ph (–R)

NO2 (–I, –R)

Cl–

CH3

hydride ion shift

CH 3 

Cl–1

ring expansion

24. Answer (A) Hint:

Cl Na/ dry ether

CH2 – (CH 2)4 – CH 2 Br

28. Answer (B, C, D)

Br

Hint: 1, 2 & 1, 4 addition of HCl

Solution: CH4

Solution:

Cl2/h

D CH3 – CH = CH 2

CH3 – Cl A alc KOH

NBS

Br – CH2 – CH = CH2 E

(Et) 2CuLi

CH 3 – CH – CH3 C Cl

Na, dry ether

Na/ dry ether

CH 3 – CH2 – CH3 B

CH3 – CH = CH – CH = CH 2

Cl2/h

CH3 – CH = CH – CH – CH 3

CH2 = CH – CH2 – CH 2 F CH = CH 2

CH 2 –(CH 2)4 – CH2 – Br G Br

Hint: Properties of canonical structure.

CH3 – CH = CH – CH – CH3 Cl– CH3 – CH – CH = CH – CH3 Cl



CH3 – CH – CH = CH – CH3 Cl 1, 4 addition product

29. Answer (B, C, D) Hint: Electrophilic addition reaction Solution:

Solution: One canonical structure will not explain all the properties of molecule. 26. Answer (B) Hint: H



Ring opening

CH 2 – CH = CH 2 

Solution: 

H

carbonium ion

 rearrangment

CH2 – CH = CH 2

H

Cl (1-2-addition product)



HBr/ Proxide

25. Answer (B)

O 

H

H

–H

H2 O

 CH2 – CH = CH2

HBr & HCl both follow Markownikoff with carbonium ion rearrangement

Br2

Br 

30. Answer (A) Hint: Br2/high temperature will do allylic substitution Solution:  O–H

O

O–H



CH2 = CH – CH 2 – OH 

H



27. Answer (A, C, D) Hint: Carbonium ion rearrangement.

5/10

All India Aakash Test Series for JEE (Advanced)-2020 OH

OH

OH

Test - 3A (Paper - 1) (Code-E) (Hints & Solutions) 34. Answer (A, B, C) Hint:



 Ring



Expansion

Deprotonation (–H +)

Electrophilic aromatic substitution Solution: (P)



CH2

NBS

OH

E

O More activating

CH2 O (major)

Br

(Q)

E

31. Answer (B) Hint:  bonds which are not the part of aromatic ring, can undergo addition reaction. Solution:

35. Answer (B, C) Hint: Friedel Craft alkylation reaction

OH

OH

OH

alc KOH

Br 2

Br

Me

CH3 &

Br Br (Q)

Solution:

(R)

CH3

has greater electron Me

Me

(S) CH3

density than

32. Answer (A, C) Hint:

36. Answer A(P, T); B(P, Q, R, S, T); C(P), D(P, Q, R, S)

HO

Hint: Alkene decolourise Br2/CCl4.

is aromatic compound.

Solution: Solution:

+ H 2/Ni  CH3 – CH 2 – CH3

OH

Compound R is

It is aromatic cyclic and stable Has acidic H-atom

,

CH2 &

, CH

33. Answer (A, B, C) Hint:

are unsaturated compound can give bromine water test

Electrophilic aromatic substitution

CH3 – C CH + CH 3MgBr

CH4 + CH3 – C C Mg Br

Solution: O

O – O – C – CH 3

(activating

(deactivating i.e. – R) –Cl  deactivating –O–CH3  more activating –NO2  deactivating

6/10

+

R)

&

– C – CH 3



Can react with Na as it has acidic hydrogen atom

CH3 – C  CH H

Hydrogen is acidic due to aromaticity

 aromatic



+



Test - 3A (Paper - 1) (Code-E) (Hints & Solutions)

All India Aakash Test Series for JEE (Advanced)-2020

37. Answer A(Q, R, T); B(P, S); C(Q, R, T); D(Q, R, T)

39. Answer (06)

Hint:

Hint: Decarboxylation reaction

Reaction intermediate singlet carbene is sp 2 hybridised.

Solution: O

Solution:

O COOH

R1

COOH COOH

HOOC

C

COONa

NaOH NaOOC

R2

COONa COONa (salt) electrolysis

Singlet carbene hybridisation is sp2. and have a vacant 2p orbital hence can behave like an electrophile.

O

38. Answer (07) + 4 CO 2 (m = 4)

Hint: Kjeldahl method Solution:

Tautomerise

m.e of H2SO4 used for NH3

OH

= (25 × 2) – 30 × 0.5 × 2 = 50 – 30 = 20  No. of m.e of NH3 = 20 % mass of nitrogen in organic compound =

=

Hint: RMgX  RH

(20)(14)  100 (1000)(4)

= 20 

(DBE = 4)

2m  d  6 2 40. Answer (04)

Solution:

1.4 4

C6H5 SO3H,

C 6H5OH

NO 2

2  14 7 4

OH ,

i.e 7

OH

NH2

PART - III (MATHEMATICS) Solution:

41. Answer (C) Hint: z  z  z – z  2

|x| + |y| = 1

|z1 + z2|2 + |z1 – z2|2 = 2(|z1|2 + |z2|2) | – z3|2 + |z1 – z2|2 = 2(2)

Solution:

zz  z–z 2

|x| + |y| = 1

Locus of z is a square and z  i  z – i  2 Locus of z is a straight line z = –i satisfies the given equations

|z1 – z2|2 = 3  | z1  z2 |  3 Similarly | z2  z3 |2  | z3  z1 |  3 Thus,  whose vertices are z1, z2 and z3 is equilateral triangle and its side is of length

3

3 4

 3

42. Answer (A) Hint: Area =

3 2 a 4

Therefore, area of triangle 

2



3 3 4

7/10

All India Aakash Test Series for JEE (Advanced)-2020 43. Answer (B)

Test - 3A (Paper - 1) (Code-E) (Hints & Solutions) 47. Answer (A, B, C)

Hint : Number of exhaustive cases = 74

Hint:

Solution:

2 – 4  0 48. Answer (A, C)

Total no. of ways = (7)4 7

Hint:

4

Now no. of favourable case C2  (2  2)  21 14 Now probability of required event 

21 14 (7)4



6 49

49. Answer (B) Hint: z  –

44. Answer (C) Hint: greatest value of series when x1 = x2 = .....xn Solution: The value of the sum is greatest when x1 = x2 = ... xn 

2 – 4 > 0

  and required value is n sin   n n

45. Answer (B)

Solution for Q. Nos. 47 to 49 z2 + z + 1 = 0 z

   2  4 2

Case 1 –2 <  < 2 2 – 4 < 0

Hint: sinx = cosecx and tany = coty

  i 4   2 2

Solution:

z

sin x  cosecx  2 and tany + coty  2

  y 2  1 x2 2 x2 + y2 = 1

So, sinx = 1, tany = 1   , y 2 4

 x

Case 2

y tan    2  1 which satisfies t2 + 2t – 1 = 0 2 46. Answer (C)

Put

n

sin t

  1  lim  2  t 0 t (1  t 2 )  



log l  lim – sin t log(t 2 (1  t 2 )) t 0

2log(t )  log(1  t 2 ) t 0 cosect

 lim

2 sin2 t =0l=1 t 0 t cos t

 lim

8/10

2 – 4 > 0    2  4    2  4 x ,y  0 2 2

    2  4      2  4  z1   ,0  , z2   ,0      2 2    

t

 1   4    = lim  t  t 0 1  2  1  t 

>2

z

Solution:

1

x



sin t

One root lies inside the unit circle and other will lie outside the unit circle. Case 3 When  is very large

    2  4   z   z   2  

   2  4 1 2    2    2  4 50. Answer (B) z

Test - 3A (Paper - 1) (Code-E) (Hints & Solutions) 51. Answer (C)

All India Aakash Test Series for JEE (Advanced)-2020 Now | z |2 

52. Answer (B) Hint: Use projection formula

cos( A  B ) 

4 5

 sin( A  B ) 





3 3 , tan( A  B )  5 4





 AB 1 tan    2  3

Hint:



(A)

z  z  i

2 1 | z |2 

z = unimodular |z|



Radius of the circumcircle =



1 3 5 × hypotenuse  2 2

53. Answer (C)

z z  2i   2i |z| |z|

z  unimodular complex no. |z|

1  6  3 = 9 sq. units 2

9 3    3 5 s 363 5  2   2  

and lies on perpendicular bisector of 2i and –2i 

z   1  z   | z |  a real number |z| Im (z) = 0

(B)  = ei z

1  2 1  e 2i    2cos   ei 

(C) 2b = 8 a2 = 7

2be = 6

54. Answer (A) e=

55. Answer (B)  2  2 (1   )2

3 4

Equation of ellipse

x2 y 2  1 7 16

(D) Iz – 2 – 3i| = 1

Solution: | z |2 

zz 1  | z |2

Solution:

So triangle ABC is right angle triangle

2

1 | z |2

56. Answer A(Q, S); B(Q, R, S, T); C(R S, T); D(R, S, T)

ab C 1 cot  ab 2 3

Hint: z 

2 1 | z |2

2i   ( z  z ) (1   ) 

 C  90

r 



zz

zz

2i  zz 1 

 ( A  B)  2 tan    2  3  AB 4 1  tan2    2 

Area of ABC 

1  | z |2

 2  ( z  z ) (1   ) 

 AB is an acute angle ∵ 2 



| z |2



Solution:

 1 1  1   1  | z |2  1  1  1 

( x  2)2  ( y  3)2  1

 2  2 2

(1   )



  2 2

(1   )



 1 

x  2  cos , y  3  sin  x  [1, 3], y  [2, 4]

9/10

All India Aakash Test Series for JEE (Advanced)-2020

Test - 3A (Paper - 1) (Code-E) (Hints & Solutions) 59. Answer (05)

57. Answer A(R, T); B(Q, R, T); C(Q, R, T); D(Q, R, S, T) Hint: x – 1  x

Hint:

Solution: (A) lim(sin x  cos x )cosecx  e

z1  C is

sin x  cos x 1 x 0 sin x lim

 10

x 0

 3  z2  C is     10 

=e  4  n 10  (B) L  lim  n   5  Le

L L

lim n 

n

(1 form)

Solution:

1    4  (10) n  5  n   5  

z1  C is

 3  z2  C is     10 

1 ln(10) 5 e

 3   3    z1  z2   cos  cos  + i  sin  sin    10 10  10 10 

1 5  10



 10

L5 2 5

 10  2 5  10  2 5  1 z1  z2    i   2 4

xx  1 (C) xlim 0  2 L= 2

| z1  z2 | 2 

5 x  x  x  3

(D) L  lim

60. Answer (02) Hint:

 x  x x  3  1   3   3  

|a – d|, |a|, |a + d| be three distances Solution:

5  x  5 x 5 x 1    x  3  x  3  x 3 lim

x

3 5 2

As perpendicular distances are in A.P. Let |a – d|, |a|, |a + d| be these distances

5 x 5  x  3  3

so the co-ordinates of point P are (±(a – d), ± a, ± (a + d)

58. Answer (04) Solution:

According to question

sin   sin 2  sin3  0  sin2 (1 + 2cos) = 0 ..(1)

2a2 + d2 – 2ad = 5

...(i)

2a2 + 2d2 = 10

...(ii)

2

2

cos   cos 2  cos 3  0  cos2 (1 + 2cos) = 0 ..(2)

2a + d + 2ad = 13

From (1) and (2)

we get

1 2  Number of values of   [–2, 2] is 4

a = ±2, d = ±1

Solving (i), (ii) and (iii)

cos   –

so points P (±1, ±2, ±3) Now  = 1,  = 2,  = 3



10/10





...(iii)

Test - 3A (Paper - 1) (Code-F) (Answers)

All India Aakash Test Series for JEE (Advanced)-2020

All India Aakash Test Series for JEE (Advanced)-2020 TEST - 3A (Paper-1) - Code-F Test Date : 24/02/2019

ANSWERS PHYSICS

CHEMISTRY

1.

(A)

21.

(B)

41.

(C)

2.

(A)

22.

(B)

42.

(B)

3.

(C)

23.

(A)

43.

(C)

4.

(B)

24.

(D)

44.

(B)

5.

(C)

25.

(D)

45.

(A)

6.

(A)

26.

(B)

46.

(C)

7.

(A, C)

27.

(A, C, D)

47.

(A, B, C)

8.

(A, B, C)

28.

(C, D)

48.

(A, C)

9.

(B, C)

29.

(B, C, D)

49.

(B)

10.

(A, C)

30.

(A)

50.

(B)

11.

(B, C)

31.

(B)

51.

(C)

12.

(A, D)

32.

(A, C)

52.

(B)

13.

(A, B)

33.

(A, B, C)

53.

(C)

14.

(A, B)

34.

(A, B, C)

54.

(A)

15.

(B, C)

35.

(B, C)

55.

(B)

16.

A  (Q, T)

36.

56.

A  (R, T)

17.

A  (Q, R, T)

MATHEMATICS

B  (R)

B  (P, S)

B  (Q, R, T)

C  (P)

C  (Q, R, T)

C  (Q, R, T)

D  (Q, S, T)

D  (Q, R, T)

D  (Q, R, S, T)

A  (R)

37.

A  (P, T)

57.

A  (Q, S)

B  (Q, T)

B  (P, Q, R, S, T)

B  (Q, R, S, T)

C  (Q, T)

C  (P)

C  (R, S, T)

D  (P, S)

D  (P, Q, R, S)

D  (R, S, T)

18.

(09)

38.

(04)

58.

(02)

19.

(03)

39.

(06)

59.

(05)

20.

(03)

40.

(07)

60.

(04)

1/10

All India Aakash Test Series for JEE (Advanced)-2020

Test - 3A (Paper - 1) (Code-F) (Hints & Solutions)

HINTS & SOLUTIONS PART - I (PHYSICS) 1.

Answer (A)

4.

Hint:

Hint:

Heat flow through conductor is constant.

Based on Doppler effect observer will observe the frequency of wave which is emitted by source.

Solution:

Req 

2.

Solution:

(b  r ) 4k br

0 (v )  = (v  v cos ) s

dT b(T1 T2 )  (b  r )r dr Answer (A) Hint:

  cot   v sin  vs

Temperature of each body will change based on their heat capacity.

vs = v cos

Solution:

0



dT kA ms 1  (T2  T1 ) dt  dT kA 2ms 2  (T2  T1 ) dt 

sin2 

sin = 5.

2ms ⎛ 4 ⎞ t n⎜ ⎟ 3kA ⎝3⎠ 3.

Answer (B)

Answer (C) Hint: Add the total no. of mole by

Answer (C) Hint:

using :

Calculate the effective phase difference at point P.

2 ⎤ ⎡ 2 ⎢   3 cos   3 ⎥  6 ⎣ ⎦ 6 cos  

2 6 3

3 cos  

1 3 3

⎛ T  T0 T = T0  ⎜ L ⎝ L

P 



Y  tan  D Y 17  D 8

2/10

⎞ ⎟x ⎠

PA dx = dn RT

S1 S2

T

n

PA 0 dx  ∫ dn R T∫ T 0 L

⎛8⎞ cos   ⎜ ⎟ ⎝9⎠ =

Pdv

∫ dn  ∫ RT

Solution:

Solution:

cos–1

4 3 , cos = 5 5

⎛ TL ⎞ PV n = (T  T )R ln ⎜ T ⎟ L 0 ⎝ 0⎠

(8/9) 6.

Answer (A) Hint: T = 2

I Mgd

vs 



Test - 3A (Paper - 1) (Code-F) (Hints & Solutions)

All India Aakash Test Series for JEE (Advanced)-2020

Solution:

Solution:

⎛ M 2 M 2 ⎞ I = ⎜⎜ 12  16 ⎟⎟ ⎝ ⎠

fext dx = (P1 – P2) dV = 2nCvdT

I=

7M 2 48

⎡ 1 1 ⎤ nRT ⎢  ⎥ dV  2nCv dT V  V V 0 V ⎦ ⎣ 0 (   1)∫

V

0

T=

=

2

7M 2  48  Mg 4

2 7  2 3g

= 

7 3g

7.

Answer (A, C)

8.

Answer (A, B, C)

9.

Answer (B, C) Hint and Solution of Q. Nos. 7 to 9 Hint: Draw the corresponding PV diagram and calculate corresponding quantities. Solution: P = kV

RT  kV V RT = kV 2 2nV = nT

2 2

dV dT  V T dV 1  VdT T

V02

⎛T ⎞ V dV  ln ⎜ ⎟ 2 V ⎝ T0 ⎠

13. Answer (A, B) 14. Answer (A, B) 15. Answer (B, C) Hint and Solution of Q. Nos. 13 to 15 Hint: Based on equation of travelling waves Solution: P = B

dy dx

⎛ y ⎞ vp = v s ⎜ ⎟ ⎝ x ⎠ ⎛P ⎞ vp = v s ⎜ ⎟ ⎝ B0 ⎠ v s ⎛  ⎞ ap = B ⎜ t ⎟ ⎠ 0 ⎝ v s P0 = B  x  vs 0 0

ap 

v s2 p0 B0 x 0

16. Answer A(Q, T), B(R), C(P), D(Q, S, T) Hint: Distance will be maximum when velocity of each is same. Solution:

10. Answer (A, C)

This has to be solved using

11. Answer (B, C)

Phasor diagram

12. Answer (A, D)

2Asin =

Hint and Solution of Q. Nos. 10 to 12 Hint: Process for system will be adiabatic. More over work done by external force will be used to raise the internal energy.

=

3A

 3

 = 2 or 2 – 2 =

2 4 or 3 3

A   B

3/10

All India Aakash Test Series for JEE (Advanced)-2020 When they are at same position.

N=8

A

⎛ ⎞ x = A sin ⎜   ⎟ 2 ⎝ ⎠

Test - 3A (Paper - 1) (Code-F) (Hints & Solutions)

B  

 9 nodes 19. Answer (03)

A0 = 2

Hint: T = constant

17. Answer A(R), B(Q, T), C(Q, T), D(P, S)

Solution :

Hint:

d 1    dT 3 T

Heat flow across section will be constant. Temperature gradient is inversely proportional to area.

20. Answer (03)

Solution: In all case heat current flow will be same. Use electrical analogy for heat circuit to compute temperature and gradient.

0 = 2 Solution:

18. Answer (09)

31   4 2

Hint:



Hint:

  2

1 =

Solution :

N  2

2 3

1 = 600 Hz

PART - II (CHEMISTRY) 21. Answer (B) Na/ dry ether

CH2 – (CH2)4 – CH2

Hint: H



Ring opening

CH 2 – CH = CH 2 

Br

Br

Solution:

Solution: 

H

carbonium ion

 rearrangment

CH2 – CH = CH 2

H

O 

H

–H

H2 O

 CH2 – CH = CH2

CH2 = CH – CH 2 – OH

CH4

Cl2/h

D CH3 – CH = CH 2

CH3 – Cl A alc KOH

NBS

Br – CH2 – CH = CH2 E

(Et) 2CuLi

CH 3 – CH2 – CH3 B

CH 3 – CH – CH3 C Cl

Na, dry ether

Cl2/h

CH2 = CH – CH2 – CH 2 F CH = CH 2

22. Answer (B) Hint: Properties of canonical structure. Solution: One canonical structure will not explain all the properties of molecule. 23. Answer (A) Hint:

4/10

Na/ dry ether

HBr/ Proxide

CH2 –(CH2)4 – CH2 – Br G Br

Test - 3A (Paper - 1) (Code-F) (Hints & Solutions)

All India Aakash Test Series for JEE (Advanced)-2020

24. Answer (D)

27. Answer (A, C, D)

Hint: Basic strength  lone pair concentration.

Hint: Carbonium ion rearrangement.

Solution:

Solution:

(+I) Et

(+I) Et

N

CH = CH 2 NH 2

NH 2

>

>

> NO2 (–I, –R)

 CH – CH 3

HCl

Ph (–R)

CH – CH 3

NH

Cl

Ph (–R)



CH3

hydride ion shift

CH 3 

Cl–1

25. Answer (D) Hint: is non-aromatic compound as it is non-planar molecule.

Cl–

ring expansion

Cl

28. Answer (C, D)

Solution:

Hint: 1, 2 & 1, 4 addition of HCl Solution:

Non-aromatic

CH3 – CH = CH – CH = CH 2

H

H

CH3 – CH = CH – CH – CH 3

B

Cl (1-2-addition product)

Antiaromatic B



CH3 – CH = CH – CH – CH3 Cl– CH3 – CH – CH = CH – CH3 Cl



CH3 – CH – CH = CH – CH3

H

Cl 1, 4 addition product



29. Answer (B, C, D)

Aromatic

Hint: Electrophilic addition reaction Solution: HBr & HCl both follow Markownikoff with carbonium ion rearrangement

Aromatic

26. Answer (B) Hint: R R

C = CH2

Br2

Br 

30. Answer (A) Reductive ozonolysis

O

R R

C =O & H – C – H

Br2/high temperature will do allylic substitution Solution:

Solution: CH 2

Hint:

CH 2

 O–H

O CH 2 CH 2 CH 2

O3 6HCHO Zn–H2 O



H

O–H 

CH 2

5/10

All India Aakash Test Series for JEE (Advanced)-2020 OH

OH 

 Ring



Expansion

OH

Test - 3A (Paper - 1) (Code-F) (Hints & Solutions) 34. Answer (A, B, C) Hint:

Deprotonation (–H +)

Electrophilic aromatic substitution Solution:

(P) NBS



CH2

OH

E

O More activating

CH2 O

Br

(major)

(Q)

31. Answer (B) Hint:  bonds which are not the part of aromatic ring, can undergo addition reaction. Solution:

E

35. Answer (B, C) Hint:

OH

OH

OH

alc KOH

Br 2

Br

Friedel Craft alkylation reaction Solution: Me

CH3

Br Br (Q)

(R)

&

(S)

CH3

32. Answer (A, C) Hint:

density than

HO

is aromatic compound.

has greater electron Me

Me CH3

36. Answer A(Q, R, T); B(P, S); C(Q, R, T); D(Q, R, T) Hint:

Solution: OH

Compound R is

Reaction intermediate singlet carbene is sp 2 hybridised.

It is aromatic cyclic and stable Has acidic H-atom

Solution: R1

33. Answer (A, B, C)

C

Hint: R2

Electrophilic aromatic substitution Solution: O

O – O – C – CH 3

(activating

+

R)

&

– C – CH 3

Singlet carbene hybridisation is sp2. and have a vacant 2p orbital hence can behave like an electrophile. 37. Answer A(P, T); B(P, Q, R, S, T); C(P), D(P, Q, R, S)

(deactivating i.e. – R) –Cl  deactivating

Hint: Alkene decolourise Br2/CCl4.

–O–CH3  more activating

Solution:

–NO2  deactivating

6/10

+ H 2/Ni  CH3 – CH 2 – CH3

Test - 3A (Paper - 1) (Code-F) (Hints & Solutions)

All India Aakash Test Series for JEE (Advanced)-2020 O

O COOH

,

CH2 &

,

COOH COOH

HOOC

CH

+

COONa COONa electrolysis

CH4 + CH3 – C C Mg Br –

NaOOC

(salt)

are unsaturated compound can give bromine water test CH3 – C CH + CH 3MgBr

COONa

NaOH



O + 4 CO 2 (m = 4)

Can react with Na as it has acidic hydrogen atom



Tautomerise

OH

CH3 – C  CH (DBE = 4)

Hydrogen is acidic due to aromaticity

H

2m  d 6 2 40. Answer (07) Hint: Kjeldahl method Solution: m.e of H2SO4 used for NH3 = (25 × 2) – 30 × 0.5 × 2 = 50 – 30 = 20  No. of m.e of NH3 = 20 % mass of nitrogen in organic compound 

 aromatic

38. Answer (04) Hint: RMgX  RH Solution: C6H5 SO3H, NO 2

C 6H5OH OH

=

, OH

(20)(14)  100 (1000)(4)

1.4 4 2  14 7 = 4 i.e 7

NH2

= 20 

39. Answer (06) Hint: Decarboxylation reaction Solution:

PART - III (MATHEMATICS) 42. Answer (B) Hint: sinx = cosecx and tany = coty Solution:

41. Answer (C) Solution: Put

1 n

t

⎛ 1 ⎞ ⎜ 4 ⎟   = lim ⎜ t ⎟ t 0 ⎜⎜ 1  1 ⎟⎟ ⎝ t2 ⎠

sin x  cosecx  2 and tany + coty  2

So, sinx = 1, tany = 1

sin t

⎛ ⎞ 1  lim ⎜ 2 ⎟ t 0 t (1  t 2 ) ⎝ ⎠



log l  lim – sin t log(t 2 (1  t 2 )) t 0

2log(t )  log(1  t 2 ) t 0 cosect

 lim

2 sin2 t =0l=1 t 0 t cos t

 lim



sin t

  , y 2 4 y ⎛ ⎞ tan ⎜ ⎟  2  1 which satisfies t2 + 2t – 1 = 0 ⎝2⎠ 43. Answer (C) Hint: greatest value of series when x1 = x2 = .....xn Solution: The value of the sum is greatest when x1 = x2 = ...

 x

xn 

 ⎛⎞ and required value is n sin ⎜ ⎟ n ⎝n⎠

7/10

All India Aakash Test Series for JEE (Advanced)-2020 44. Answer (B)

Test - 3A (Paper - 1) (Code-F) (Hints & Solutions) 49. Answer (B)

4

Hint : Number of exhaustive cases = 7

Hint:

Solution:

z  –

Total no. of ways = (7)4

Solution for Q. Nos. 47 to 49

Now no. of favourable case 7 C2  (24  2)  21 14 Now probability of required event 

21 14 (7)

4



6 49

45. Answer (A) Hint: Area =

3 2 a 4

 ⇒ y 2  1 x2 2 x2 + y2 = 1 Case 2 >2

Similarly | z2  z3 |2  | z3  z1 |  3

2 – 4 > 0

Thus,  whose vertices are z1, z2 and z3 is equilateral triangle and its side is of length Therefore, area of triangle 

3 4

3

 3

2



3 3 4

|x| + |y| = 1

|x| + |y| = 1

Locus of z is a square and z  i  z – i  2 Locus of z is a straight line z = –i satisfies the given equations

47. Answer (A, B, C)

 –4>0 2

8/10

   2  4    2  4 ⇒x ,y  0 2 2

⎛    2  4 ⎞ ⎛    2  4 ⎞ z1  ⎜ ,0 ⎟ , z2  ⎜ ,0 ⎟ ⎜ ⎟ ⎜ ⎟ 2 2 ⎝ ⎠ ⎝ ⎠

Case 3 When  is very large

Solution: zz  z–z 2

z

One root lies inside the unit circle and other will lie outside the unit circle.

46. Answer (C) Hint: z  z  z – z  2

  i 4   2 2

x

|z1 – z2|2 = 3 ⇒ | z1  z2 |  3

Hint:

Case 1

z

| – z3|2 + |z1 – z2|2 = 2(2)

48. Answer (A, C)

   2  4 2

2 – 4 < 0

|z1 + z2|2 + |z1 – z2|2 = 2(|z1|2 + |z2|2)

2 – 4  0

z

–2 <  < 2

Solution:

Hint:

z2 + z + 1 = 0

⎛    2  4 ⎞ ⎟ , z   z⎜ ⎜ ⎟ 2 ⎝ ⎠

   2  4 1 2    2    2  4 50. Answer (B) z

51. Answer (C) 52. Answer (B) Hint: Use projection formula Solution: cos( A  B ) 

4 5

Test - 3A (Paper - 1) (Code-F) (Hints & Solutions)

All India Aakash Test Series for JEE (Advanced)-2020

3 3 ⇒ sin( A  B )  , tan( A  B )  5 4







2i   ( z  z ) (1   ) 

zz 1  | z |2

z  z  i



⎛ AB⎞ 1 tan ⎜ ⎟ ⎝ 2 ⎠ 3

2 1 | z |2 

56. Answer A(R, T); B(Q, R, T); C(Q, R, T); D(Q, R, S, T) Hint: x – 1  x Solution:

ab C 1 cot  ab 2 3

lim

(A) lim(sin x  cos x )cosecx  e x 0

sin x  cos x 1 sin x

x 0

=e

⇒ C  90

So triangle ABC is right angle triangle Area of ABC 

r 



2i  zz 1 

⎡ ( A  B) ⎤ 2 tan ⎢ ⎥ ⎣ 2 ⎦ 3 ⎛ AB⎞ 4 1  tan2 ⎜ ⎟ ⎝ 2 ⎠

⎧ AB is an acute angle ⎨∵ 2 ⎩



zz 2 1 | z |2



1  6  3 = 9 sq. units 2



9 3    3 5 s ⎛363 5 ⎞ 2 ⎜⎜ ⎟⎟ 2 ⎝ ⎠

⎛ 4  n 10 ⎞ (B) L  lim ⎜ n  ⎝ 5 ⎟⎠ Le



lim n 

1

L  e5

n

(1 form)

1 ⎛ ⎞ n 5 4  (10) ⎜ ⎟n ⎜ ⎟ 5 ⎜⎝ ⎟⎠

ln(10) 1

1 3 5 Radius of the circumcircle = × hypotenuse  2 2 53. Answer (C)

L  10 5



L5 2 5

54. Answer (A)

xx  1 (C) xlim 0

55. Answer (B)

 2 L= 2

2

Hint: z 

 2  2 (1   )2

(D) L  lim

x 

Solution: | z |2 

Now | z |2  

 2  2 2

(1   )



  2 2

(1   )



 1 

 1 1  1  ⇒ 1  | z |2  1  1  1  | z |2

⎛ x ⎞ ⎡x⎤ x ⎜⎝ 3  1⎟⎠  ⎢ 3 ⎥  3 ⎣ ⎦ 5 ⎛ x ⎞ 5 ⎡x⎤ 5 x 1    x ⎜⎝ 3 ⎟⎠ x ⎢⎣ 3 ⎥⎦ x 3 lim

x

5 ⎡x⎤ 5  x ⎢⎣ 3 ⎥⎦ 3

57. Answer A(Q, S); B(Q, R, S, T); C(R S, T); D(R, S, T)

1  | z |2

⇒ 2  ( z  z ) (1   ) 

5 ⎡x⎤ x ⎢⎣ 3 ⎥⎦

zz 1 | z |2

Hint:

z = unimodular |z|

9/10

All India Aakash Test Series for JEE (Advanced)-2020

Test - 3A (Paper - 1) (Code-F) (Hints & Solutions)

Solution: (A)

Solving (i), (ii) and (iii)

z z  2i   2i |z| |z|

we get

z  unimodular complex no. |z|

so points P (±1, ±2, ±3)

a = ±2, d = ±1 Now  = 1,  = 2,  = 3

and lies on perpendicular bisector of 2i and –2i

59. Answer (05)

z   1 ⇒ z   | z | ⇒ a real number  |z| Im (z) = 0 (B)  = z

Hint:

z1  C is

ei 1  2 1  e 2i    2cos   ei 

⎛ 3 ⎞ z2  C is ⎜  ⎟ ⎝ 10 ⎠ Solution:

(C) 2b = 8 a2 = 7

2be = 6

z1  C is

3 e= 4 Equation of ellipse

 10

 10

⎛ 3 ⎞ z2  C is ⎜  ⎟ ⎝ 10 ⎠

x2 y 2  1 7 16

(D) |z – 2 – 3i| = 1

 3 ⎞  3 ⎞ ⎛ ⎛  cos ⎟ + i ⎜ sin  sin ⎟ z1  z2  ⎜ cos ⎝ ⎝ 10 10 ⎠ 10 10 ⎠

( x  2)2  ( y  3)2  1

x  2  cos , y  3  sin 

⎛ 10  2 5  10  2 5 ⎞ 1 z1  z2  ⎜ ⎟ i ⎜⎝ ⎟⎠ 2 4

x  [1, 3], y  [2, 4]

58. Answer (02) Hint:

| z1  z2 | 2 

|a – d|, |a|, |a + d| be three distances

3 5 2

60. Answer (04)

Solution: As perpendicular distances are in A.P.

Solution:

Let |a – d|, |a|, |a + d| be these distances

sin   sin 2  sin 3  0  sin2 (1 + 2cos) = 0 ..(1)

so the co-ordinates of point P are

cos   cos 2  cos 3  0  cos2 (1 + 2cos) = 0 ..(2)

(±(a – d), ± a, ± (a + d) According to question

From (1) and (2)

2a2 + d2 – 2ad = 5

...(i)

2a2 + 2d2 = 10

...(ii)

cos   –

2a2 + d2 + 2ad = 13

...(iii)

 Number of values of   [–2, 2] is 4



10/10





1 2

More Documents from "Sritam"