QUATION: From the system below, determine: (a). Block diagram (b). Closed transfer function with vi as input variable and x as output variable. (c). Function x(t )
v
k
o
R R
R2 R
vf vi
b x
3
M
4
f (t )
1 _ +
R
vs
L
R
C
1
N
S R
2
Solution:
vs
L
R3
C
eb
i KVL in RLC circuit di 1 v s = iR + L + ∫ idt + eb , eb is a back emf dt C Back emf effect of x displacement dx eb = K 1 , K1 is a constant and x is the mass (M) position dt Electromagnetic force generate by solenoid t f (t ) = K 2 i , K 2 is a constant Laplace form equation (3) is F (s) = K 2 I (s) Substitution equation (2) into equation (1): di 1 dx v s = iR + L + ∫ idt + K 1 dt C dt Laplace form of equation (5)
Markah 1
Markah 1 Markah 1
Vs ( s) = LsI ( s) + RI ( s ) +
1 I ( s ) + K 1 sX ( s) Cs
CLs 2 + RCs + 1 I ( s) + K 1 sX ( s ) Vs ( s) = Cs
Markah 1
Force related with mass M kX (s )
b s X (s )
M
M s 2 X (s) F (s) f (t ) = Mx + bx + kx Laplace form of equation (7) F ( s ) = Ms 2 X ( s) + bsX ( s) + kX ( s ) F ( s ) = ( Ms 2 + bs + k ) X ( s ) Equation (4) = equation (8), therefore K 2 I ( s) = ( Ms 2 + bs + k ) X ( s ) Then ( Ms 2 + bs + k ) I (s) = X ( s) K2 Substitution equation (9) into equation (6): CLs 2 + RCs + 1 Ms 2 + bs + k Vs ( s) = X ( s) + K 1 sX ( s) Cs K2 (CLs 2 + RCs + 1)( Ms 2 + bs + k ) X ( s ) + K 1 sX ( s ) Vs ( s) = K 2 Cs (CLs 2 + RCs + 1)( Ms 2 + bs + k ) + K 1 s X ( s ) Vs ( s) = K 2 Cs Open loop transfer function K 2 Cs X (s) = 2 Vs ( s) (CLs + RCs + 1)( Ms 2 + bs + k ) + K 1 K 2 Cs 2
Feedback voltage
Markah 1
Markah 1
Markah 1
Markah 2
R3 vo R3 + R4 Laplace form R3 V f (s) = Vo ( s ) R3 + R4 Op-amp has function as comparator and gain R v s = 2 (vi − v f ) R1 Laplace form equation (13) R Vs ( s) = 2 (Vi ( s) − V f ( s )) R1 (a) Block diagram of system is vf =
Markah 1
Markah 1
Markah 1
Markah 4
V s(s) V i(s )
+
R R
_
2 1
K 2C s (C L s + R C s + 1)(M s 2 + b s + k ) + K 1K 2C s 2
X (s) 2
V (s) f
R3 R3 + R
4
(b) Then the closed loop transfer function is R2 K 2 Cs 2 R1 (CLs + RCs + 1)( Ms 2 + bs + k ) + K 1 K 2 Cs 2 X (s) = R3 R K 2 Cs Vi ( s ) 1+ 2 2 2 2 R1 (CLs + RCs + 1)( Ms + bs + k ) + K 1 K 2 Cs R3 + R4
X (s) = Vi ( s )
R2 K 2 Cs R1 R3 R (CLs + RCs + 1)( Ms + bs + k ) + K 1 K 2 Cs + 2 K 2 Cs R1 R3 + R4 2
2
Markah 4
2
(c) Function x in time with vi as input R R3 R X ( s ) (CLs 2 + RCs + 1)( Ms 2 + bs + k ) + K 1 K 2 Cs 2 + 2 K 2 Cs = Vi ( s ) 2 K 2 Cs R1 R3 + R4 R1 4 3 2 (CLM ) s X ( s) + (bCL + CMR ) s X ( s ) + (ckL + bCR + M + K 1 K 2 C ) s X ( s ) + (CkR + b +
R R2 R3 K 2 C ) sX ( S ) + kX ( s ) = Vi ( s ) 2 K 2 Cs R1 ( R3 + R4 ) R1
Markah 2
d 4x d 3x d 2x − ( bCL + CMR ) − ( ckL + bCR + M + K K C ) + 1 2 dt 4 dt 3 dt 2 R R K C dx R (CkR + b + 2 3 2 ) + 2 K 2 C vi (t ) Markah 1 R1 ( R3 + R4 ) dt R1 kx(t ) = −(CLM )
(CLM ) d 4 x (bCL + CMR ) d 3 x (ckL + bCR + M + K 1 K 2 C ) d 2 x − − − k k k dt 4 dt 3 dt 2 R R K C dx R (CkR + b + 2 3 2 ) + 2 K 2 C vi (t ) Markah 2 R1 ( R3 + R4 ) dt R1
x(t ) = −