Solution Final Exam Bee 3143

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Solution Final Exam Bee 3143 as PDF for free.

More details

  • Words: 1,042
  • Pages: 4
QUATION: From the system below, determine: (a). Block diagram (b). Closed transfer function with vi as input variable and x as output variable. (c). Function x(t )

v

k

o

R R

R2 R

vf vi

b x

3

M

4

f (t )

1 _ +

R

vs

L

R

C

1

N

S R

2

Solution:

vs

L

R3

C

eb

i KVL in RLC circuit di 1 v s = iR + L + ∫ idt + eb , eb is a back emf dt C Back emf effect of x displacement dx eb = K 1 , K1 is a constant and x is the mass (M) position dt Electromagnetic force generate by solenoid t f (t ) = K 2 i , K 2 is a constant Laplace form equation (3) is F (s) = K 2 I (s) Substitution equation (2) into equation (1): di 1 dx v s = iR + L + ∫ idt + K 1 dt C dt Laplace form of equation (5)

Markah 1

Markah 1 Markah 1

Vs ( s) = LsI ( s) + RI ( s ) +

1 I ( s ) + K 1 sX ( s) Cs

 CLs 2 + RCs + 1   I ( s) + K 1 sX ( s ) Vs ( s) =  Cs  

Markah 1

Force related with mass M kX (s )

b s X (s )

M

M s 2 X (s) F (s) f (t ) = Mx + bx + kx Laplace form of equation (7) F ( s ) = Ms 2 X ( s) + bsX ( s) + kX ( s ) F ( s ) = ( Ms 2 + bs + k ) X ( s ) Equation (4) = equation (8), therefore K 2 I ( s) = ( Ms 2 + bs + k ) X ( s ) Then ( Ms 2 + bs + k ) I (s) = X ( s) K2 Substitution equation (9) into equation (6):   CLs 2 + RCs + 1  Ms 2 + bs + k  Vs ( s) =  X ( s)  + K 1 sX ( s) Cs K2     (CLs 2 + RCs + 1)( Ms 2 + bs + k )   X ( s ) + K 1 sX ( s ) Vs ( s) =  K 2 Cs     (CLs 2 + RCs + 1)( Ms 2 + bs + k )    + K 1 s  X ( s ) Vs ( s) =    K 2 Cs    Open loop transfer function K 2 Cs X (s) = 2 Vs ( s) (CLs + RCs + 1)( Ms 2 + bs + k ) + K 1 K 2 Cs 2

Feedback voltage

Markah 1

Markah 1

Markah 1

Markah 2

R3 vo R3 + R4 Laplace form R3 V f (s) = Vo ( s ) R3 + R4 Op-amp has function as comparator and gain R v s = 2 (vi − v f ) R1 Laplace form equation (13) R Vs ( s) = 2 (Vi ( s) − V f ( s )) R1 (a) Block diagram of system is vf =

Markah 1

Markah 1

Markah 1

Markah 4

V s(s) V i(s )

+

R R

_

2 1

K 2C s (C L s + R C s + 1)(M s 2 + b s + k ) + K 1K 2C s 2

X (s) 2

V (s) f

R3 R3 + R

4

(b) Then the closed loop transfer function is R2 K 2 Cs 2 R1 (CLs + RCs + 1)( Ms 2 + bs + k ) + K 1 K 2 Cs 2 X (s) = R3 R K 2 Cs Vi ( s ) 1+ 2 2 2 2 R1 (CLs + RCs + 1)( Ms + bs + k ) + K 1 K 2 Cs R3 + R4

X (s) = Vi ( s )

R2 K 2 Cs R1 R3 R (CLs + RCs + 1)( Ms + bs + k ) + K 1 K 2 Cs + 2 K 2 Cs R1 R3 + R4 2

2

Markah 4

2

(c) Function x in time with vi as input   R  R3 R X ( s ) (CLs 2 + RCs + 1)( Ms 2 + bs + k ) + K 1 K 2 Cs 2 + 2 K 2 Cs  = Vi ( s ) 2 K 2 Cs  R1 R3 + R4  R1    4 3 2 (CLM ) s X ( s) + (bCL + CMR ) s X ( s ) + (ckL + bCR + M + K 1 K 2 C ) s X ( s ) + (CkR + b +

R  R2 R3 K 2 C ) sX ( S ) + kX ( s ) = Vi ( s ) 2 K 2 Cs  R1 ( R3 + R4 )  R1 

Markah 2

d 4x d 3x d 2x − ( bCL + CMR ) − ( ckL + bCR + M + K K C ) + 1 2 dt 4 dt 3 dt 2  R R K C dx  R (CkR + b + 2 3 2 ) +  2 K 2 C vi (t ) Markah 1 R1 ( R3 + R4 ) dt  R1  kx(t ) = −(CLM )

(CLM ) d 4 x (bCL + CMR ) d 3 x (ckL + bCR + M + K 1 K 2 C ) d 2 x − − − k k k dt 4 dt 3 dt 2  R R K C dx  R (CkR + b + 2 3 2 ) +  2 K 2 C vi (t ) Markah 2 R1 ( R3 + R4 ) dt  R1 

x(t ) = −

Related Documents

Solution Final Exam Bee 3143
November 2019 17
Solution Exam
November 2019 13
Bee
May 2020 41
Final Exam
April 2020 27
Final Exam
June 2020 24
Final Exam
May 2020 24