Solution 01

  • November 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Solution 01 as PDF for free.

More details

  • Words: 1,671
  • Pages: 4
‫ﺑﻪ ﻧﺎم ﺧﺪاي ﺑﺨﺸﻨﺪه ﻣﻬﺮﺑﺎن‬ ‫ﭘﺎﺳﺦ ﺗﻤﺮﻳﻦﻫﺎي درس ﻣﻌﺎدﻻت دﻳﻔﺮاﻧﺴﻴﻞ‬ ‫ﻣﻌﺎدﻻت ﻣﺮﺗﺒﻪ اول ﺳﺎده‬ 1) y ( n ) = 0



y ( n − a ) = y ( n − a +1) dx + ca y ( n −1) = c1 y ( n − 2) = c1 x + c2 y ( n − 3) =

c1 x 2 + c 2 x + c3 2

... y′ =

c1 x n − 2 c2 x n − 3 c3 x n − 4 + + + ... + cn −1 (n − 2)! (n − 3)! (n − 4)!

y=

c1 x n −1 c2 x n − 2 c3 x n − 3 + + + ... + cn −1 x + cn (n − 1)! (n − 2)! (n − 3)!

‫ﻳﺎ ﺑﻪ ﻋﺒﺎرت ﺳﺎدهﺗﺮ‬

y = c1 x n −1 + c2 x n − 2 + c3 x n − 3 + ... + cn −1 x + cn ____________________ 2) y ′′ = xe − x

∫ y = ∫ (−xe − x − e − x + c1 )dx + c2 = xe − x + 2e − x − c1 x + c2 y ′ = xe − x dx + c1 ⇒ y ′ = − xe − x − e − x + c1

____________________ 3) y ′ =

y=



e

x

+1

e

x

−1

ex +1 ex 1 e−x x dx + c = ( + ) dx + c = ln( e − 1 ) + dx + c = ln(e x − 1) + ln(1 − e − x ) + c x x x −x e −1 e −1 e −1 1− e



⇒ y = ln(e x − 1)(1 − e − x ) + c = ln(e x + e − x − 2) + c ____________________ sin x 4) y ′ = x



‫‪sin x‬‬ ‫ﻣﻲ داﻧﻴﻢ ﻛﻪ اﻧﺘﮕﺮال ﺗﺎﺑﻊ‬ ‫‪x‬‬ ‫ﺑﺮاي ﻣﻌﺎدﻟﻪ ﺷﺮط ﻛﻠﻲ ‪ y ( x 0 ) = y0‬را درﻧﻈﺮ ﮔﺮﻓﺖ و آن را ﺑﻪ ﺻﻮرت ﻳﻚ ﻣﺴﺎﻟﻪ ﻣﻘﺪار اوﻟﻴﻪ و از روش اﻧﺘﮕﺮال ﻣﻌﻴﻦ ﺣﻞ ﻛﺮد‪:‬‬

‫ﺑﺮ ﺣﺴﺐ ﺗﻮاﺑﻊ ﻣﻘﺪﻣﺎﺗﻲ ﻗﺎﺑﻞ ﻣﺤﺎﺳﺒﻪ ﻧﻴﺴﺖ‪ .‬و ﺑﻨﺎﺑﺮاﻳﻦ ﺣﻞ ﻋﻤﻮﻣﻲ ﻣﻌﺎدﻟﻪ از ﻃﺮﻳﻖ اﻧﺘﮕﺮال ﮔﻴﺮي ﻣﻴـﺴﺮ ﻧﻴـﺴﺖ‪ .‬ﻣـﻲﺗـﻮان‬

‫‪sin s‬‬ ‫‪ds‬‬ ‫‪s‬‬ ‫‪sin s‬‬ ‫‪ds‬‬ ‫‪s‬‬

‫‪x‬‬

‫‪x‬‬

‫‪x0‬‬

‫‪x0‬‬

‫∫ = )‪∫ y′(s‬‬

‫‪x‬‬

‫∫‬

‫= ) ‪y ( x ) − y ( x0‬‬

‫‪x0‬‬

‫‪sin s‬‬ ‫‪ds + y0‬‬ ‫‪s‬‬

‫‪x‬‬

‫∫‬

‫= )‪y ( x‬‬

‫‪x0‬‬

‫____________________‬ ‫‪5) y ′′ = xe x + e − x , y (0) = 0, y ′(0) = 1‬‬

‫∫‬

‫‪y ′ = ( xe x + e − x )dx + c1 = xe x − e x − e − x + c1‬‬ ‫‪1 = 0 − e 0 − e 0 + c1 = c1 − 2 ⇒ c1 = 3‬‬

‫∫‬

‫‪y = ( xe x − e x − e − x + 3)dx + c2‬‬ ‫‪y = xe x − e x − e x + e − x + 3 x + c2 = xe x − 2e x + e − x + 3 x + c2‬‬ ‫‪0 = 0 − 2e 0 + e 0 + 0 + c 2 ⇒ c 2 = 1‬‬ ‫‪y = xe x − 2e x + e − x + 3 x + 1‬‬

‫____________________‬ ‫‪6) y ′ = tan −1 x, y (0) = 2‬‬

‫∫‬

‫‪y = tan −1 xdx + c‬‬ ‫ﺑﺎ ﻓﺮض ‪ u = tan −1 x‬و ‪ dv = dx‬و ﺣﻞ اﻧﺘﮕﺮال از روش ﺟﺰء ﺑﻪ ﺟﺰء ﺧﻮاﻫﻴﻢ داﺷﺖ‪:‬‬ ‫‪,v = x‬‬

‫‪x‬‬

‫‪∫ 1 + x 2 dx + c‬‬

‫‪1‬‬ ‫‪1+ x2‬‬

‫= ‪u′‬‬

‫‪⇒ y = x tan −1 x −‬‬

‫‪y = tan −1 x − 12 ln(1 + x 2 ) + c‬‬ ‫‪2 = 0 − 12 ln(1) + c ⇒ c = 2‬‬

‫‪y = x tan −1 x − 12 ln(1 + x 2 ) + 2‬‬ ‫____________________‬

‫ﻣﻌﺎدﻻت ﺧﻄﻲ ﻣﺮﺗﺒﻪ اول‬

1) y ′ + y = xe x

p ( x) = 1 ⇒ µ ( x) = e ∫

dx

= ex

e x y ′ + e x y = xe 2 x ⇒ (e x y )′ = xe 2 x



e x y = xe 2 x = 12 xe 2 x − 14 e 2 x + c y = 12 xe x − 14 e x + ce − x ____________________ 2) y ′ + (tan x) y = x sin 2 x

− p ( x ) dx  ∫ p ( x ) dx dx + c y=e ∫  g ( x )e   



− tan( x ) dx  ∫ tan xdx dx + c  = e ∫ y=e ∫  ( x sin 2 x)e   



y = e ln(cos x)

[∫

− sin x  dx cos x 

∫ cos x dx dx + c  sin x



( x sin 2 x)e

     sin 2 x  ( x sin 2 x)e − ln(cos x) dx + c = cos x  x dx + c  = cos x 2 x sin xdx + c cos x  

]

[∫



]

y = −2 x cos 2 x + 2 sin x cos x + c cos x = −2 x cos 2 x + sin 2 x + c cos x

____________________ 6 3) xy′ + x 3 y = 3 x − 2 x − p ( x ) dx  ∫ p ( x ) dx dx + c y=e ∫  g ( x )e   



− x y=e ∫

2

dx 

6 ∫ x 2 dx  ( 3 − )e dx + c   3 x  



x3 − =e 3

x3   3 3 x3 x3    −x  3 x 3 − 6 e 3  (3e 3 − 3 )dx + c = e 3  2 e 3 + c = 2 = ce 3 x  x x       



:‫ﺑﺮاي ﺣﻞ اﻧﺘﮕﺮال ﻓﻮق ﻣﻲﺗﻮاﻧﻴﺪ ﻳﻜﻲ از روش زﻳﺮ را اﺳﺘﻔﺎده ﻧﻤﺎﻳﻴﺪ‬

u = x−2 , v =



x3 (3e 3



x3 ⇒ u′ = −2 x − 3 , v' = x 2 3

x3 6e 3

x3

d (ue v ) )dx = 3(uv' e − u ' e )dx = 3 dx = 3(ue v ) = 3x − 2e dx



v

v

____________________

π

4) 2 y '+8(tan 2 x) y = 2 tan 2 x, y ( ) = 2 8



x3 3

− p ( x ) dx  ∫ p ( x ) dx dx + c y=e ∫  g ( x )e   



y=e

− ∫ 4 tan 2 xdx

y = e 2 ln(cos 2 x )

[∫

[∫

tan 2 xe ∫ 4 tan 2 xdx dx + c

]= e

∫ −4

sin 2 xdx  cos 2 x 



∫4

sin 2 xdx  cos 2 x dx + c 

tan 2 xe     1  tan 2 x  tan 2 xe − 2 ln(cos 2 x ) dx + c = cos 2 2 x  dx + c  = cos 2 2 x( tan 2 2 x + c) 2 2   cos 2 x

]



1 y = sin 2 2 x + c cos 2 2 x 2 .‫ اﺳﺘﻔﺎده ﺷﺪه اﺳﺖ‬u = tan 2 x ‫ﺑﺮاي ﺣﻞ اﻧﺘﮕﺮال ﺑﺎﻻ از ﺗﻐﻴﻴﺮ ﻣﺘﻐﻴﻴﺮ‬ 1 1 c 7 1 1 1 2 = × + ⇒ c = ⇒ y = sin 2 2 x + cos 2 2 x + 3 cos 2 2 x = + 3 cos 2 2 x 2 2 2 2 2 2 2

____________________ 5) ( x ln x) y ' = x ln x − y, y (e) = 1

1 y =1 x ln x − p ( x ) dx  ∫ p ( x ) dx dx + c  y=e ∫  g ( x )e    dx  dx  −∫ 1 ∫ y = e x ln x  e x ln x dx + c  = e − ln(ln( x)) eln(ln( x )) dx + c = ln( x)     x y = x− +c ln x e x 1 = e − + c ⇒ c =1⇒ y = x − +1 1 ln x y '+



[∫



]

[∫ ln xdx + c]= ln1x x ln x − ∫ x × 1x dx + c

____________________ 6) (sin x) y '+(cos x) y = 1, y (2) = 0 :‫از دو روش زﻳﺮ ﻣﻲﺗﻮان ﺟﻮاب ﻋﻤﻮﻣﻲ ﻣﻌﺎدﻟﻪ را ﺑﺪﺳﺖ آورد‬ ((sin x) y )' = 1 ⇒ (sin x) y = x + c ⇒ y =

x c + sin x sin x

:‫روش دوم‬ − p ( x ) dx  ∫ p ( x ) dx dx + c y=e ∫  g ( x )e    cos x  cos x  1 ∫ sin x dx 1 ∫ − dx  1 ln(sin x )  y = e sin x  e dx + c  = e − ln(sin x )  e dx + c  =  sin x   sin x  sin x  







x+c [∫ dx + c]= sin x

:‫و ﺑﺮاي ﺟﻮاب ﺧﺼﻮﺻﻲ‬ 0=

2+c x−2 ⇒ c = −2 ⇒ y = sin 2 sin x

Related Documents

01 Solution
April 2020 13
Solution 01
November 2019 15
Unit 01 Solution
November 2019 18
Solution
November 2019 65