Solutii Etapa Zonala Ed3 25feb2006

  • October 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Solutii Etapa Zonala Ed3 25feb2006 as PDF for free.

More details

  • Words: 6,678
  • Pages: 8


⇒  ⋅ (D + E + F ) =   ⇒ D + E + F =  



&ODVDD,9D , D E [  ,, D « «   E  ,,, LQHPFRQWF  ÃŒQFRQWLQXDUH  â‹…$OGRLOHD MXF WRU FkúWLJ  vQWRWGHDXQD GDF  UHVSHFW  XUP WRDUHD VWUDWHJLH GDF  SULPXO LD D SLHWULFHOH DWXQFL DO GRLOHD LD E SLHWULFHOH DVWIHO vQFkW D  E   ÃŒQ DFHDVW  FRQGL LH GXS   DVWIHO GH DSDUL LL YLQH UkQGXO SULPXOXL FDUH DUH GRDUSLHWULFHOHvQJU P MRDU úLQXDUHYRLHV OHLD  &ODVD9D , D &DOFXO PSXWHULDOHOXLúLPDLPLFLGHFkW  =     =    =     =    =    =     =    =    =    =    =  'HDLFLUH]XOW [≤úL\≤ ÃŒQWUXFkW VLQJXUDVROX LHHVWH[ úL\   E  5HVWXOvPS U LULLOXLDODSDWUXHVWHDFHODúLFXUHVWXOvPS U LULLOXL ODFDUHHVWH X D  úLX D  1XP UXO1QXSRDWHILS WUDW SHUIHFWGHRDUHFHDUHX 1   ,,D  $ = â‹… (D + E + F )  úL % = â‹… (D + E + F ) ⇒ $ + % =  â‹… (D + E + F )  úL $ − % =  â‹… (D + E + F )  ⇒  â‹… (D + E + F ) =  â‹… (D + E + F )+  ⇒

, D [ \ ]   E $QXODUHOXQLúL LQHPFRQWF  úLUHVWGHFLH[LVW ROXQ  DDQXOXLvQFDUHFHOSX LQWUHLFRSLLDX]LXDGHQDúWHUHVLWXDW vQDFHDOXQ  ,, D [ E  DE  DE  úL 'HFLV   ,,,6HFRQVLGHUDF SHILHFDUHFRORDQ VXPDQXPHUHORUHVWHDFHHDúL    «   $WXQFL FDUHDSDU LQHFHOXLGHDOGRLOHDUkQGSHQWUXF   â‹…FRUHVSXQGH QXP UXOXL ± ,9   PLQXWH

&ODVDD,,,D

62/8 ,,

(GL LDD,,,DHWDSDD,,D ]RQDO IHEUXDULH



(



(

)

3HQWUXPLPSDU ⇒  + P HVWHSDU ⇒ 1 =  â‹… 1 LDUSHQWUXPSDU ⇒ 

E  1 = DD D D D D D  1 =  + 1 =  â‹…  +  P =   + P 

)

 Q =   'DF  Q < N ⇒  Q  +   N −Q =   â‹…  ⇒  ⇒  +   N −Q = 

'DF  Q = N ⇒  ⋅  Q =  ⋅  IDOV

SDU

)

 

,9D  $ = % ∪ & XQGH % = {}úL & = {}VDX % = {} úL & = {}  E $YHP {}FX +  =  +   {}FX +  =  +   «««««««««« {}FX +  =  +   ÃŒQJHQHUDO N −  + N = N −  + N −   N≥  ⇒ % = {}úL & = {}

(

 1 =  â‹…   â‹…  +   â‹… P =    â‹…  + P =  â‹… W  





)

N =  N =  ⇒   ⇒   Q −  ⇒N úLQ  Q −  â‹…   =  = +  = 

(

Q =  ⇒  N − QXDUHVROX LH  = 





=



 â‹…  Q −  N

⇒ 

N

,,,D 'DF  Q > N ⇒   N  â‹…  Q −  N +  =  â‹…  

5 ⇒ $ = â‹…  =  VDX $ = â‹…  =  

&XP 5 < â‹… (D + E + F )⇒ (D + E + F )â‹… U < â‹… (D + E + F ) ⇒ U <   GDU U  HVWH UHVWXOvPS U LULLOXLOD[ ⇒ U =  ⇒ 5 = D + E + F   F  D E F FLIUHQHQXOH ⇒ D + E + F ∈ {}5FXESHUIHFW⇒5 VDX

⇒5GLYL]LELOOD DEF  ⇒ 5 = (D + E + F )⋅ U ⇒  = [ + U 

 &XP D E F ≠   ⇒GRX GLQQXPHUHOHDEFVXQWHJDOHFXúLXQXOFX ⇒ D ⋅ E ⋅ F =    E 'LQLGHQWLWDWHDvPS U LULLFXUHVW ' = , ⋅ & + 5   ≤ 5 < , ⇒ ⇒ ⋅ (D + E + F ) = ⋅ (D + E + F )⋅ [ + 5 ⇒ 5 = (D + E + F )⋅ ( − ⋅ [ ) ⇒ 





  Q +  â‹… 

∈1⇔      Q +  ⇒Q +  ≥ ⇒Q ≥  ⇒

) )

  D ∈ 1 ⇒ Q =  N −   N ≤   ⇒ D =

N

=  N

−−N

 'DU D S WUDW





 3HQWUX N =  S +  ⇒  S+ −  −  S −  =  â‹…  S −  S −  = (PXOW +  − S − )  ⇒ S = T ⇒ N = T +  ⇒ N ∈ {} GHFL$FRQ LQHFXEXULSHUIHFWH  â‹…  ,, D  &DOFXO P  +  +  +  +  = =   &XP  ±     vQVHDPQ F H[LVW QXPHUHDF URUGLIHUHQ HVWH]HUR  E &XPDEFVXQWQXPHUHSULPHPDLPDULGHFkW⇒DEFLPSDUH⇒ ⇒   E − D úL   F − E 5HOD LD E = D + F ⇔ E − D = F − E = K  'DF  K = PXOW H[HUFL LXOHVWHUH]ROYDW 'DF  K = PXOW ±   GHRDUHFH E = PXOW ±  ⇒ D VDX F HVWH PXOW GHFL QX HVWHSULPGHFLFD]XODOGRLOHDQXHVWHSRVLELO([HPSOXD E F 

S = PXOW ⇒ N ∈ {}  (N ≤ ) 

SHUIHFW ⇒  N − − N  QXP U SDU ⇒ N LPSDU ⇒ N ∈ {}∪ {}  $úDGDU H[LVW S WUDWHSHUIHFWH  D FXESHUIHFW⇒  N − − N PXOWLSOXGH  3HQWUX N =  S  ⇒   S −  −  S =  S −  −  S = PXOW +  −  −  S ⇒





N −

⇒  N ≤  'HRDUHFH  =  úL  = ⇒  N ∈ {} $∩ 4∩1 DUH  −  =  HOHPHQWH

  ⇒Q ≥ ⇒ Q ≥  +  &HO PDL PLF QXP U QDWXUDO FX DFHDVW    SURSULHWDWHHVWHQ  Q  E   D = ∈1⇔ Q +  =  N  N ≤ Q  ⇒ Q =  N −  ≤ ⇒  Q +



( (

6H YHULILF  LPHGLDW F  $ = % ∪ &  úL GLIHUHQ D VXPHORU FHORU GRX  VXEPXO LPLHVWH  &ODVD9,D Q+ Q +  Q + Q +  − −  −  Q +  − Q +  Q +   −   −   , D   =  =    =    − −  −   −     −  −  

)





( )

 =     = 

(

)

$

%

$

=  ⇒ &$ < &' < &% 

2

$

)

$



'

)

&D]XOE   & $ ' %      %' = %& − &' =  −  =  −  =  ( − )FDUH QX H GLYL]LELO SULQ

(

&D]XOD   % & $ '      %' =  +  =  â‹…  +  =  â‹…  = PXOW 'HFLDFHVWFD]DUHVROX LH

X  −   =  ⇒ $' GLYL]LELOSULQ⇒VROX LHEXQ 

(

   &  $' = &' − &$ =  −   

 

'HFLDFHVWFD]QXDUHVROX LH  &RQFOX]LHDYHPVLWXD LLOH % − & − $ − ' VDX ' − $ − & − %  

 

 



  

X   +  =  +  =  ⇒ $' QXHVWHGLYL]LELOOD⇒VRO QXFRQYLQH

$

 

( )

=     = 

       ' & ⇒ $' = $& + &' =   +  

,9

 

⇒   −  =  <  ⇒ % ∈ ,QW(< $2$ ) 

=   ⇒  Q + −  <  ⇒Q ⇒

⇒ P(< $2% ) =   −    =  −   = 



'HRDUHFH  =    =   =  ⇒ ⇒ Q +  =  ⇒ Q =    E  P(< $2$ ) =   −  =  

(

  Q + −  < D 



( ) =

,,,D  P(< $2$ )+ P(< $ 2$ )+  + P(< $Q 2$Q + ) =  +   +  +  Q

&ODVD9,,D

Q(Q + ) , D   +  +  +  + (Q − ) = Q  úL   +  +  +  + Q =  $WXQFL             D= ⋅ ⋅  ⇒ D =   ⋅ ⇒D = =  ⇒   ⋅   ⋅   ⋅  ⋅        



(

(

)

)

'HFL  â‹… DD D Q = 0  + DD D Q − −  â‹… DQ &XPúLVXQWSULPH

)





QGDFDP < Q 6L + − 6L = P + Q + P − Q ⇒ 6 L + − 6L =   PGDFDP ≥ Q 'HFL 6L + − 6L  HVWH WRWGHDXQD XQ QXP U SDU &XP VXPD LQL LDO  D WXWXURU QXPHUHORUGHSHWDEO HVWH  +  +  +  +  =  â‹… DGLF QXP USDU

vQWUHHOHUH]XOW    DD DQ ⇔   DD DQ − −  â‹… DQ   E $SOLFkQGFULWHULXOSHQWUXRE LQHP± â‹… 'DU  â‹…⇒HVWHGLYL]RUDOOXL ,,,D )LH(PLMORFXOOXL>%&@úL)PLMORFXOOXL>$&@1RW P {7} $( ∩') )0 )*  ⇒$(⊥')2'⊥$% 2'PHGLDWRDUH  = = ⇒ 0* $%  )' )%  2' ⊥ $% ⇒ 2' ⊥ 0*   E 2RUWRFHQWUXO ∆'*) ⇒ 20 ⊥ '&  ,9/DILHFDUHSDVLvQDLQWHGHúWHUJHUHDDGRX QXPHUHPúLQILH 6 L + VXPD QXPHUHORU GH SH WDEO  úL 6L VXPD QXPHUHORU GH SH WDEO  GXS  úWHUJHUHD QXPHUHORUPúLQ$WXQFL 6L + − (P + Q ) = 6L + (P − Q )DGLF 



= ( â‹…  + )DD DQ − + ( − )DQ

(

 ⋅ DD D Q =  ⋅ DD DQ −  + DQ =  ⋅ DD DQ − +  ⋅ DQ =

 F   =  =  ⇒SULPHOHGRX FLIUH ,,D  2EVHUY PF   â‹… +  =  UH]XOW   â‹…  N =  â‹…  N − = ( + )â‹…  N − SHQWUXRULFHN≥

GLYL]LELOOD⇒ E ∈5?4

FLIUH

⇒  D =   ∈1  E  E =  − ⇒ E =     E GLYL]LELO OD  GDU E QX H



)

(

) ( )

 

'



&

([ + \ )([ + ] ) ≤ ∑ [ + \ + [ + ] = 

([ + \ + ] )  =    6 ,,,&XWHRUHPDFHORUWUHL 4 SHUSHQGLFXODUHRE LQHP 6$ ⊥ $%&  1  ⇒ 6' ⊥ %&  $' ⊥ %&  3 $SOLF PWHRUHPDFDWHWHLSHQWUX FDWHWD6$vQWULXQJKLXULOH6$% $ úL6$&GUHSWXQJKLFHvQ$úLRE LQHP 6$ = 63 ⋅ 6%  0  ⇒ 63 ⋅ 6% = 64 ⋅ 6&     6$ = 64 ⋅ 6&  % $SOLF PWHRUHPDFDWHWHLSHQWUXFDWHWD6' vQWULXQJKLXULOH6'%úL6'&GUHSWXQJKLFHvQ'úLRE LQHP 6'  = 60 ⋅ 6%   ⇒ 60 ⋅ 6% = 61 ⋅ 6&    6'  = 61 ⋅ 6& 

$WXQFL [ + \] + \ + [] + ] + [\ = ∑

=

    +    −    −  +   −    ⋅ −  = â‹… = =− = − ∈4                     E  [Q] = −  = −   = −  {Q}= −   = − − − =           ,, [ + \ + ] =  ⇒ [ + \] = [([ + \ + ] )+ \] = [ + [\ + [] + \] = ([ + \ )([ + ] )

(

DWXQFLVXPDQXPHUHORUGHSHWDEO GXS SULPDRSHUD LHGHúWHUJHUHYDILWRW XQ QXP U SDU 5HSHWkQG SURFHGHXO WRDWH VXPHOH 6 L +  úL 6L  YRU IL QXPHUH SDUH úL FXP XOWLPD VXP  QX HVWH DOWD GHFkW XOWLPXO QXP U U PDV SH WDEO  vQVHDPQ F DFHVWDHVWHSDU  &ODVD9,,,D      +     −     +   −   , D  Q = â‹… − = ⋅ −  =         −     +    

63 ⋅ 6% 64 ⋅ 6& 63 64 = ⇒ = ⇒ 01 34  60 ⋅ 6% 61 ⋅ 6& 60 61

F 2EVHUY PF  0* =

0$ + 0% + 0&  

&′

$

$′

%′

 $ RE LQHP

&





XUPDUH X  + Y = D  úL X + Y  = E  'DF XY∈1 UH]XOW  X  + Y ≥ (X + ) úL

[ = E  − \  5H]XOW  F  H[LVW  X Y ∈ 1 FX [ = X   úL \ = Y   $YHP SULQ

,, 6  QRW P D = [ + \ ∈ 1 úL E = \ + [ ∈ 1 'HFL

\ = D  − [  úL

E  − DF F  − DE $% + $& = 2  GH XQGH (E + D )(E + F ) (F + D )(F + E )

UH]XOW  E  − DF = F  − DE =  ÌQFRQFOX]LHDYHPD E F

'DF  0

∑

D  − EF 0$ = 2  (D + E)(D + F )

  D D  ∑ + 0$  *′ = * ⇒ 0* = 0*′ ⇒   D +F D +E

D  D  ⇒ ∑  + −  0$ = 2  + + D F D E  

0*′ =

0$′ + 0%′ + 0& ′ 0*′ = &RQIRUPSXQFWXOXLDQWHULRUUH]XOW F  



%

&ODVD,;D

 , D 'LQWHRUHPDELVHFWRDUHLUH]XOW F  DF DE %$′ = úL &$′ =  E+F E+F E F 0% + 0&   E  0$′ = E+F E+F





& ′3 ⊥ %′'′ & ′3 ⊥ %'′ E  ⇒ & ′3 ⊥ (%%′'′)⇒ ⇒ (& ′34 ) ⊥ (%%′' )  ′ ′ & 3 ⊥ %% & ′4 ⊥ %'′

'1 ⊥ $′& ⇒ $′& ⊥ ('01 ) ⇒ ('01 ) ⊥ ($$′& ) '0 ⊥ $′&

'0 ⊥ $& ,9D  ⇒ '0 ⊥ ($$′& )  ⇒ '0 ⊥ $′&  '0 ⊥ $$′

'LQ  úL  RE LQHP

} {( )

S

}

(

S



)



≤  − [  S   

(α





)

 α  + β  +℘

α  + β  +℘

 'HRDUHFH  1XP UXODHVWHLUD LRQDO 

D= + β +℘ 5H]XOW F  D =

)

 

LQkQGFRQWGH LL UH]XOW  I () =     7RW GLQ L  SHQWUX \ = − [  UH]XOW  F  I  = I [ ⋅ I − [  ∀  [ ∈ 5 úL FRQIRUP  DYHP I [ ⋅ I − [ =   ∀ [ ∈5úLGHDLFLUH]XOW F  I ([ ) ≠   ∀ [∈5  ÌQ L OXkQG\ [RE LQHPF  I ( [ ) = I  ([ ) ∀ [∈5

&ODVD;D  , ÌQ L SHQWUX\ UH]XOW F  I [ = I [ ⋅ I   ∀ [∈5  



α + β +℘

(

α  + β  + ℘  =  [  + \  + ]  − [\ − \] − ][ 

,91RW P α= [− \  β = \ − ] ℘ = [ − [ 2EVHUY PF  α + β +℘ =  

( − [ ) S ( + [ ) ≤ ( − [ S ) ( + [ S )

S

)(

S

)

           −   +  ≤  − S   + S  VXQWHFKLYDOHQWH [ [   [   [  

(

≤  − [ S  − [  S     'DF  [ ∈ ( ∞ )DWXQFL ∈ () úLRE LQHPGLQ   [ S

( − [ )S ( − [  )

 'DF  [ ∈ [] DYHP ( − [ )S ≤  − [ S     − [  'LQvQPXO LUHDLQHJDOLW LL  FX  RE LQHP

S

,,,D $YHP ( − [ ) + [ ≤ ( − [ )+ [ =   (∀)[ ∈ []

{( )

X + Y ≥ (X + Y + ) VDX X + Y +  ≤  FRQWUDGLF LH'HFLX VDXY   'DF X DWXQFL[ úL\ QQ∈1  'DF Y DWXQFL\ úL[ PQ∈1 5H]XOW  6 =  Q   Q ∈ 1 ∪ Q    Q ∈ 1 

X + Y  ≥ (Y + )  'HFL Y ≥ X +   úL X ≥ Y +   3ULQ DGXQDUH RE LQHP

[

[

 +  

[



\ 

[

 +  ±   −  =  

(

)

 'LQ \ +

(

)

  −  RE LQHP  \  −  −  \ +  =  FX = \ 



vPS U LUHDFX ] − ]  ] Q − + ] Q −  ] +  + ]

( )

Q−

]+]

Q −

( )

+ Q ] + ] + Q =  ⇔



Q  ⇒ ] Q − ] + Q ]  − ]  + Q ] − ] =   ÌQV  ] ∈ & ? 5 ⇒ ] ≠ ]  ⇒ GXS   

E 'HRDUHFH FRHILFLHQ LL HFXD LHL VXQW UHDOL UH]XOW  F  ] VROX LH D HFXD LHL  ] Q + Q]  + Q] + D =  ⇒ ]  VROX LH D HFXD LHL ⇒  Q  3ULQ VF GHUH   ] + Q ] + Q ] + D = 



∆ =  −   +  −  = −  −  <  FHHDFHDUDW F  \  ∉5



[

 +  −   −   +  −   −   'LQ   = RE LQHP [ = ORJ        

 +  +   −   +  +   −   'LQ   = RE LQHP [ = ORJ        



 ±   

  +    'LQ \ + =  RE LQHP  \  −  +  \ +  =   FX U G FLQLOH \ 

HFXD LDGHYLQH ] +  = ]  −  VDX ]  − ] −  =  FX ]  =

[

    1RW P   = \  úL DYHP \ +  + = \  +   6XEVWLWXLQG \ + = ]  \ \ \ 

[

   ,,D ÌPS U LQGFX[RE LQHP   +  +   =     

GHFL UH]XOW  F  H[LVW  7 =  [ ≠   DVWIHO vQFkW I ([ + 7 ) = I ([ )  ∀  [ ∈ 5 GHFLIHVWHSHULRGLF 

DFHDVWDFRQIRUP L UH]XOW F  I ([ +  [ ) = I ([ ) I ( [ ) = I ([ )  ∀ [ ∈5úL

[ ≠   /XkQG vQ   [ = [   UH]XOW  F  I [ = I  [ = −  =   úL FX

'LQ LL UH]XOW F H[LVW [ ∈5DVWIHOvQFkW I [ = − &RQIRUP  UH]XOW  = ]

Q−N

]+]

+ ]

Q−

Q −



=Q]

Q −

Q −

 Q −

⇒

$QDORJ $ % = $ % ⇔ α  = α  

 



⇔ ( − α )(D − D  ) = ( − α  )(D − D ) ⇔  − α =  − α  ⇔ α = α  

$ % = $ % ⇔ D − αD − ( − α )D = D − α  D  − ( − α  )D ⇔ 

⇔ (α  − α )(D − D ) = (α  − α  )(D − D ) 

+ D ( − α  + α  − )+ D ( −  + α − α  ) =  ⇔

 D + α  D + ( − α  )D ⇔ D ( − α −  + α  )+ D (α  +  − α  − ) 

⇔ D + α  D  + ( − α  )D + D  + α  D + ( − α  )D  = D + αD + ( − α )D  + 

 D + α D + ( − α  )D   D + α  D + ( − α  )D  0     0            0 0  0  0  SDUDOHORJUDP ⇔ P + P = P + P XQGH 0 L (PL ) ⇔

 D + α  D + ( − α  )D   D + αD + ( − α )D  0 L PLMORDFH ⇒ 0      0           

 $QDORJ 0  ≠ 0  ⇒ 0 0  0  0  SDWUXODWHUQHGHJHQHUDW  E  1RW P $L (DL )  DL ∈ & %  % ∈ ($ $ )⇒ % (αD + ( − α )D ) úL % (α  D + ( − α  )D ) %  % ∈ ($ $ )⇒ % (α  D + ( − α  )D ) úL % (α  D + ( − α  )D ) α L ∈ ()

DIO vQVHPLSODQHRSXVHID GH $ $ 

⇒ 0  ≠ 0  $QDORJ 0  ≠ 0   0  ≠ 0   0  ≠ 0   0  ≠ 0  GHRDUHFHVH

,,, D  'DF  0  = 0  ⇒ $ $ % %  SDUDOHORJUDP $ $ $ $  IDOV

⇒  5H ] +  ≤ ]

â‹…] + ]

Q −

â‹…]+ ]

ÌQV  ] + ] =  5H ] ⇒ Q  5H ] +  ≤ Q ⋅ ]

Q−

Q −

] +  + ]

'HFL Q ] + ] +  ≤ Q ]

≤ ]

Q −

( )

Q−

úLDWXQFLDSOLFkQGPRGXOXOvQ

( )

= − Q ] + ] − Q  

Q −

Q −

⋅ ] N − = ]

Q−

Q ] + ] +  = − Q ] + ] − Q = ] Q − + ] Q −  ⋅ ] +  + ]

ÌQV  ] Q − N ⋅ ]

N −

⇔ ] Q − + ] Q −  ] +  + ]



D − D α  − α  = ∈ 5 ∗ ⇒ $ $ $ $ ⇒IDOVGLQLSRWH]  D  − D  α  − α

(∑ [ − OJ ) ∑ [  −  ≥  ∑ [ −  ∑ [  ∑ [  −  =  (∑ [ ) ∑ [  −  ≥        



=

N =

OQ Q

≤

(

Q

)



Q Q − ÌQV  OQ Q OQ Q 67 &(6$52 OQ (Q + ) OQ(Q + ) OLP OLP = OLP = Q Q→∞ Q OQ Q Q→∞ (Q + )OQ (Q + )− Q OQ Q Q→∞   OQ +  + OQ (Q + )  Q

XQGHUH]XOW F 

OQ Q ≤ Q OQ Q

∑Q N − Q

Q

&ODVD;,D , D 5H]XOW GLQLQHJDOLWDWHDOXL%HUQRXOOLE 5H]XOW WUHFkQGODOLPLW FkQG Q → ∞LQHJDOLWDWHDGHODSXQFWXOSUHFHGHQWF 6HúWLHF  H [ ≥ [ +  [ ∈5  OQ N OQ N Q 3HQWUX [ = OQ N  N ∈ Q VHRE LQH Q N ≥ + 'HFL  + ≤ N ≤ Q Q  Q Q Q OQ Q Q Q N ∈ Q   ÌQVXP P GXS  N ∈ Q  úL VH RE LQH Q + ≤ ∑ N ≤ Q Q Q  GH Q N =

 ≥ −  =     

=

∑ OJ D ≤ − OJ  6 QRW P [ = − OJ D  \ = − OJ E  ] = − OJ F  'HFL ∑ [ ≥  OJ  FHHDFHLPSOLF  OJ  + OJ E + OJ F \ + ] − OJ  [ + \ + ] − OJ  =∑ =∑ −=  ∑ ORJ D EF = ∑ OJ D [ [

,9 'LQ LQHJDOLWDWHD PHGLLORU RE LQHP  ≥  DEF  VDX HFKLYDOHQW

'HFL α  = α ⇒ α  = α  THG

⇒

 D ⇒ E  $YHP α = α   úL α  = α   ⇒  $GHY UDW ⇒ 0 0  0  0   SDUDOHORJUDP  E ⇒ D 'HFL $GHY UDW'DF  α  ≠ α ⇒ α  ≠ α  ⇒ 

)



OQ Q

( ) = 2 3HQWUXD

F 

6H



±DYHP

 Q −

( =

Q −

LQGXF LH

 

Q

( )

ELQRPXOOXL1HZWRQDYHP $

( Q = Q − ( 

úL

DWXQFL

= (D − )Q ((D + ),  − ( )Q = 

= (  úL ( Q = Q − (  IRORVLQG

−   D +  −  =  −  D + 

−

$ 3HQWUX D ∉ {− }DYHP

SULQ

 D − − D − D   D +     $ =   − D D −   − D  = (D − ) −     −  − D  − D D  −     ( D + ),  − ( )  &XP ,  ⋅ ( = ( ⋅ ,  = (D − )( 

($ ) = 

Q

GHPRQVWUHD] 

         −        

$ =   −    GHXQGH $ =      = ( XQGH ( =               −       



3HQWUXD RE LQHP $ = 2 úLLPHGLDW $

Q

D     F $YHP $ =   D   FX GHW ($) = D  − D +  = (D − ) (D +  )   D  

( )

'DF  GHW $ ≠  DWXQFL GHW $ = (GHW $) ≥  úL GHW $ = (GHW $) ≥  







 E DEF  ⇒ GHW $ =  − D − E − F =  DEF − D − E − F ≤  GLQLQHJDOLWDWHD PHGLLORU  'DF  GHW $ =  DWXQFL $ = 2 úL GHW $ =  

(

Q Q Q − H Q − H [Q −  LDU OLP = OLP = OLP =  GHRDUHFH OQ Q Q →∞ Q →∞ Q →∞ OQ Q [Q Q  OQ Q   Q Q OLP [Q = OLP =  ÌQFRQFOX]LH OLP ∑ N − Q  =   Q →∞ Q →∞ Q Q→∞ OQ Q   N =   EF −   − F  − E    ,,D $YHP GHW $ = DEF +  − D − E − F  $ =   − F DF −   − D     − E  − D DE −   

+

RE LQHP $

(

)

Q

Q



(

)

1RW P [Q + − [Q = X Q $WXQFL



(Q + )X Q + + X Q + + X Q = ⇔ (Q + )X Q+ + X Q = ⇒X Q + = −



 X Q   Q+     $FHDVW UHOD LHVHGHVI úRDU  X = − X  X = − X = X    ⋅     X = − X  = − X « X Q − = − X Q −  = − Q − X    ⋅ ⋅  Q Q     XQ = − X Q − = − Q X  X Q + = − X Q = − Q + X  (Q + ) (Q + )  Q + Q+



⇔ (Q + )([Q +  − [Q + )+ ([ Q +  − [Q + )+ ([Q + − [Q ) =  

FRQWUDGLF LHÌQFRQFOX]LH $ = , Q  ,9D 5HOD LDGHUHFXUHQ VHPDLSRDWHVFULH (Q + )([Q +  − [Q+ )+ ([Q +  − [Q = ) ⇔

3ULQvQPXO LUHDUHOD LHL FX % N −  UH]XOW  & S % N − = 2Q FHHDFHFRQVWLWXLHR

& S % + & S %  +  + & NS − % N − = 2Q  

, Q = $ S = (, Q + % )S = , Q + & S % + & S %  +  + & NS − % N − VDX

SURSULHWDWHD % N ≠ 2Q úL % N − ≠ 2Q 'LQFRQGL LD UH]XOW 

WRDWHYDORULOHSURSULLDOHPDWULFHL % = $ − , 1 VXQWQXOHUH]XOW  % Q = 2Q  'DF  % = 2Q UH]XOW  $ = , Q 'DF  % ≠ 2Q V FRQVLGHU P N ∈ { Q}FX

WU $ = λ + λ  +  + λ Q = Q  FHHD FH LPSOLF  λ = λ  =  = λ Q =   'HRDUHFH

  GHGXFHP λSM =   (∀) M ∈ { Q} 'HFL λ M =   (∀) M ∈ { Q} úL

( ) = (D − )  (D + ) ,

Q

 (D − )Q −  (     ,,,6 QRW PFX λ  λ   λ Q ∈&YDORULOHSURSULLDOHPDWULFHL$'LQFRQGL LL

N =

∑

 Q N  &Q (D + )Q−N (− )N N = (D +  − )Q −    N = 

&XP ∑ &QN (D + )Q−N (− )N N − =

Q

Q    (D − )Q  (D + )Q ,  + ∑ & QN (D + )Q − N (− )N N − (     N =  



  Q     Q +    [ + =  $Q XQGH   Q +    [Q +     

Q    Q   Q [Q + ⋅  =  ⋅ [Q + + + ≥     [Q +  [Q +    [Q +



Q

 

∫

∫

∫

( )

,, D  3HQWUX D =    DYHP ,   = ∫



 



G[

∫

=

(

(

)

)

  'DF  D ∈     [    D  DUFWJ D − DUFWJ   'DF  D ∈    ∞  DYHP , (D ) =      −D  −D −D   D − D  −   D + D  −          OQ  DYHP , (D ) =       D −   D + D −   D − D −      D DUFWJ [ − DUFWJD D G[ G[ + (DUFWJD )   $YHP ,  (D ) =      [ + D[ +  [ + D[ +  [−D DUFWJ D DUFWJ [ − DUFWJD D  + D[ G[  &X VXEVWLWX LD 'HFL ,  (D ) = G[ =     [ + D[ +  [ + D[ + 

[  = H(∀) [ ∈ * 

D  H DEVXUG 5H]XOW  D  H úL SULQ XUPDUH [  = [  (∀) [ ∈ * ? {H} 'HFL

&ODVD;,,D , 'DF D ≠HDWXQFLUH]XOW F  D  ∈ * ? {D}'HFL D = D  VDXHFKLYDOHQW

Q→∞

'HRDUHFH OLP $Q = +∞ UH]XOW  OLP [Q = +∞ 

$Q =

 Q + >    

 (− )Q     'LQ [Q + − [Q = X Q GHGXFHP X =  úL [Q + = X  − + −  +    (Q + )    'HDLFL OLP [Q =  −  Q →∞ H       Q +    Q       Q +      [Q + +  + > =  E  [Q + =     [Q +  +    [Q +        [Q  [Q +       



DUFWJ \

D

DUFWJ [

∫−D \  − D\ + G\ = −∫ [  + D[ + G[ 'HFL



G[ = − ∫

D



D  = D ⇒D HIDOVGDF  D  = D − 



[\ ∈ + D  GHFL D  ∈ + D  DGLF  D  ∈ +  VDX D  = D  VDX D  = D −  'DF 

 1RW P XN ([ ) = 3( I ([ + ND ))  [ ∈ 5 'HRDUHFH X N ([ )  DGPLWH SULPLWLYH UH]XOW F IDGPLWHSULPLWLYH'DUIHVWHDGLWLY úLFRQIRUPFXSFWD UH]XOW I FRQWLQX  ,9&XP + D  HVWH VXEJUXS DO OXL * UH]XOW  F  ∀  [ \ ∈ +D RE LQHP

+ (− )Q − & QQ−− 3( I ([ )) = QD I Q − (D )⋅ I ([ )+ β  ∀ [∈5

FRQWLQX  'DF  I HVWH QHQXO  DWXQFL H[LVW  D ∈ 5 DVWIHO vQFkW I (D ) ≠   ,GHQWLWDWHD GH PDL VXV GHYLQH   & Q − 3( I ([ + (Q − )D ))− & Q − 3( I ([ + (Q −  )D ))+ 

+ (− )Q − & QQ−− 3([ ) = QD E Q − [ + β  ∀ [ ∈5'DF IHVWHQXO DWXQFLIHVWH

∈5 ∆3HVWHXQSROLQRPGHJUDGFHOPXOWQ±$QDORJ ∆ 3 = ∆(∆3 ) YDIL XQSROLQRPGHJUDGFHOPXOWQ±úDPG$SOLFkQGRSHUD LD ∆GHQ±RUL SHQWUXE∈5DYHP & Q− 3([ + (Q − )E )− & Q − 3([ + (Q − )E )+ «

úL D ≠  &RQVWDW PF GDF GHILQLPRSHUD LD ∆3 = 3([ + D )− 3 ([ )  ∀ [∈

) ([ + \ )− ) ([ )− [I (\ ) = ) (\ )− ) ( )  ∀ [\∈5 ) ([ + \ )− ) ([ )− ) (\ )+ ) ( ) I (\ ) =  ∀  [ ∈ 5  ∀  \ ∈ 5 FDUH HVWH [ FRQWLQX vQ\  E &RQVLGHU PSROLQRPXO 3([ ) = D [ Q + D [ Q − +  + DQ  ∀ [∈5Q≥

1RW P X′\ ([ ) = ϕ(\ ) ∀ [∈5$YHP X \ ([ ) = X \ () 'HFL

[ ∈ 5 X′\ ([ ) = I ([ + \ )− I ([ )− I (\ ) =  ∀  [ ∈ 5 ⇒ X \ ([ ) = FRQVWDQW 

∫

D

DUFWJ [ G[ úLSULQXUPDUH  [  + D[ +  [ + D[ +  D D DUFWJ [ G[  ∫ [  + D[ + G[ =  (DUFWJD )∫ [  + D[ +   ,,,D )LH)RSULPLWLY DOXLI'HILQLP X \ ([ ) = ) ([ + \ )− ) ([ )− [I (\ ) ∀ 

[−D RE LQHP ,  (D ) =  + D[

DUFWJ [ − DUFWJD

\=

 

}

úL FRQVLGHU XQ [ ≠ H  [ ∈ +  [ ⋅ D ∉ + ⇒  [ ⋅ D = D  VDX [ ⋅ D = D −   [ = H ⇒ IDOV5 PkQHF  D  = D − ⇒ D  = H   [ = D −  = H

{

 &RQVLGHU P[∈+úLRE LQHP [ ⋅ D ∉ + DGLF  [ ⋅ D = D VDX [ ⋅ D = D − ÌQ SULPXOFD]RE LQHP[ HvQDOGRLOHD [ = D − = D IDOV  5 PkQH D  ∈ +  D  = D  ⋅ D ∉ + ⇔ D  ∈ D D −  'DF  D  = D ⇒ D  = H 

Related Documents