Solucion_guia_8[1]

  • Uploaded by: Daniel Felipe Garcia
  • 0
  • 0
  • May 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Solucion_guia_8[1] as PDF for free.

More details

  • Words: 2,424
  • Pages: 9
SOLUCION GUIA 8

1. x5 = 5x4

= x ( 3 ) = ( 3) 2 x 1

3

2. x 3. 1

=

t3

1

2

( ) = − 3t

t 3 ( 0 ) − 1 3t 2

(t )

3 2

2

t6

( )

4.

4 u 4 ( 0 ) − 4 4u 3 − 16u 3 = = 2 u4 u8 u4

5.

1 5u 5 ( 0) − 1 25u 4 − 25u 4 = = 2 5u 5 5u10 5u 5

( )

( ( )

)

( )

7 6 7 6 6. x = 7 7 x − x ( 0 ) = 49 x 2

( 7)

7

1

7. 3

x

2

=

1 x

2

3

=

49

x

2

3

( 0) − 1 2 3 x 

 x 3    2

−1

2

3

 − 2 −13 x = 3 4 x 3

8.

2x - x³ = -x³ + 2x = -3x² + 2

9.

4x³ - 3x² + 7= 12x² - 6x

10. 5 – 2x² + x⁴ = x⁴ - 2x² + 5 = 4x³ - 4x 11. 3x⁴ - 7x³ + 5x² + 8 = 12x³ - 21x² + 10x 12. 4 x 3 + 2 + 1 = 12 x 2 +  x( 0 ) − 1(1)  = 12 x 2 +  1  2 2  

x

( x)



x 



 2  13. 3u 2 + 3 = 6u +  u ( 0) − 3( 2u )  = 6u +  − 6  2 2 4 u

 

(u ) 2

( )

 

u 

( )

6 5 6 6 5 5 5 14. x + 6 = 6 6 x − x ( 0 ) + x ( 0 ) − 6 6 x = 36 x + 36 x 2 2 6 12

6

x

(x )

( 6)

36

6

(

x

)

− 0.4  − 0.4  0.6 15. x1.2 + 1 = 1.2 x 0.2 +  x ( 0) − 1 0.6 x  = 12 x 0.2 +  − 1.6 x   x1.2  0.6 2   x 0.6



(x )







(

16. x 0.4 − x −0.4 = 0.4 x −0.6 − − 0.4 x −1.4

−3 1 1 −1 −1 2 2 = 2 x 2 + 1 = 2 x 4 + 2 x 2  = x 2 +  x 2      x x 2

17. 2 x +

18. x 7 +

(

2 x3

= 2x

3

2

 2 +  3 x 2

 3 1 3 = 2t 2 −  1 t t 3

20. 2 t − 3

22.

3

2

+ 4x

x−3

3

)

(

1 7 + 7 x + + 7 = 7 x 6 + 1x −7 + 7 = 7 x 6 + − 7 x −8 7 x x

3 19. 2 x +

21. 2 x

)

5

4

= 4x

5

4

)

 3 −3 −3 1  = 2 x 2 + 2 x 2 = 3x 2 +  − 3x 2     

−3  −1 1 −1  = 2t 2 − 3t 3 = 2 x 2 −  − 3t 3     

+ 2x

3

2

= 20

4

4

+6

2

2

 1  1  = x 13 − x −13 = 1 x −2 3 −  − x −4 3  = 1 x−   3  1 x 3   x  3 

23. 3x4 + (2x – 1)² = 12x³ + 2(2x – 1) (2) = 12x³ + 4(2x – 1) 24. (y – 2) (2y – 3) = (y – 2) (2) – (2y – 3) (1) = (2y – 4) – (2y – 3) 25. (x – 7) (2x – 9) = (x – 7) (2) – (2x – 9) (1) = (2x – 14) – (2x – 9) 26.  x + 1  = 2 x + 1 1 + x( 0 ) − 1(1)  2   2



x



x 

( x)



1   − 1    = 2 x + 1 +  2   x   ( x )   

27. (u + 1) (2u + 1) = (u + 1) (2) – (2u + 1) (1) = (2u + 2) – (2u + 1) 2

 1 −1 1  1  1   x+  = 2 x 2 + 1  x 2 + x 2   x x 2   28.  −3 −3  1 1  = 2 x 2 + 1  1 x 2 +  − 1 x 2   2  2  x 2  

 1 1  = 2 x 2 + 1  x 2 

29. (t + 1) (3t – 1)² = (t + 1) 2(3t – 1) (3) – (3t – 1)² (1) = (t + 1) 6 (3t – 1) – (3t – 1)² = (t + 1) (18t – 6) – (3t – 1)² 30. (u – 2)³ = 3 (u – 2)² (1) = 3(u – 2)² 31. (x + 2)³ = 3(x + 2)² (1) = 3(x + 2)² 32. (x + 1) (x – 1)² = (x + 1) 2 (x – 1) (1) – (x + 1)² (1) = (x + 1) 2 (x – 1) – (x + 1)² = (x + 1) (2x – 2) – (x + 1)² 33.

3

 x +1  x +1   = 3   x   x 

2

 x(1) − ( x + 1)(1)    2   ( x )  

 x + 1   x − ( x + 1)  = 3    x2  x    2

34.  2t − 1 3

 2t − 1    = 3   2t   2t 

2

 2t ( 2 ) − 2t − 1( 2 )    ( 2t ) 2  

 2t − 1   4t − ( 4t − 2 )  = 3    4t 2  2t    2

3

 y+2  y−2   +   y y     35.

3

 y+2  = 3  y 

2

 y (1) − ( y + 2)(1)   y − 2    + 3  y2    y 

 y+2  = 3  y 

2

 y − ( y + 2)   y − 2    + 3  y2    y 

2

2

 y (1) − ( y − 2)(1)    y  

 y − ( y − 2)    y  

36. 2 y 2 + 3 y − 7

y =

y ( 4 y )( 3) − ( 2 y + 3 y − 7 )(1) y2

4 y 2 ( 3) − ( 2 y + 3 y − 7 ) = y2

=

12 y 2 − ( 2 y + 3 y − 7 ) y2

( x + 1)

37.

x x( 2( x + 1) ) − ( x + 1) (1) = x2 2

x( 2( x + 1) ) − ( x + 1) = x2 =

38.

2

2 x( x + 1) − ( c + 1) x2

x 2 − 3x + 1 x

=

=

x

1

2

( 2 x − 3) − ( x 2 − 3x + 1) 1 2 x 2 (1)  −1

 x 2    1

2x

1

2

− 3x

1

2

(

2



)

−1 − x 2 − 3 x + 1  1 x 2  2   x



39.

t+3

t

t

=

t+ t

1

3 t 2

3 −1 = t +  t 2   t −3 2  1 + t ( 0 ) − 3(1)  − 1 t  2   = 2 t

−3  −3 =  2  − 1 t 2    t  2

( x + 1) 2 + ( x − 1) 2 x2

40.

=

=

=

(

x 2 ( 2( x + 1)(1) ) + ( 2( x + 1)(1) ) − ( x + 1) + ( x − 1) ( 2 x )

(x )

2 2

2

(

2

) (

2

2

x 2 ( 2( x + 1) ) + ( 2( x + 1) ) − ( 2 x + 2 ) + ( 2 x − 1) x4

((2x

3

)

+ 2 x 2 + ( 2 x + 1) − ( 2 x + 2 ) + ( x − 1) x4

2

)

2

)

)

41.

( 2t + 3) 2 − ( 2t − 3) 2 4t 4( 2( 2t + 3)( 2 ) ) − ( 2( 2t − 3)( 2) ) − ( 2t + 3) − 2( − 3) ( 4t ) 2

=

4( 4( 2t + 3) ) − ( 4( 2t − 3) ) − ( 8t + 3) − ( 2t − 3) 4t 2

=

4( ( 8t + 12 ) − ( 8t − 12 ) ) − ( 8t + 3) − ( 2t − 3) 4t 2

2

(

(

2

2

x1.6 x − 2.3 x 3

(

) ( )( ( )

 x 2.3 1.6 x 0.6 − x1.6 2.3x1.5 = 3 x −  x 2.3  2

(

) (

 1.61.38 − 2.3 x 2.08 = 3 x 2 −  x 4.6  43.

2

( 32t + 48) − ( 8t − 12) − (( 8t + 3) 2 − ( 2t − 3) 2 )

= 42.

(

=

2 y + (3y) = 2y =1 =y

1

2 −1

2

−1

(

+ − 1( 3 y )

−2

( 3) )

( 2 y ) −12 + ( − 3( 3 y ) −2 ) 2

+ ( − 9 y)

−2

)   

)   

)

2

)

2

)( 4 )

44.

(8 y) =2

45.

2

3

+ (8 y)

−2

3

−1 ( 8 y ) 3 ( 8) + − 2 ( 8 y ) 3 ( 8) 3 3 −5

= 116

(8 y) 3

(16t )

4

3

−1

3

− (16t )

+ − 16

−3

(8 y) 3

−5

3

4

) (

(

−7 −1 = 3 (16t ) 4 (16) − − 3 (16t ) 4 (16) 4 4

= 48 (16t ) 4 46.

3

47.

2

3

4

(

−7 − − 48 (16t ) 4 4

3

27t 2

 1 −  2  27t 3

= 2 27t 3

−1

= 2 27t 3

−1

=dy2 27t 3 dy

−1

y = x3 +

)

1

27t 2 −

= 27t

−1

3

3

3

   

−2 − 1 27t 3     

−  − 2 27t  3

−5

3

( 27 ) 

−5 −  − 18 27t 3     

1 x3

( ) 

 x3 ( 0) − 1 3x 2 = y = 3x 2 −  2  x3 

( )

 − 3x 2  = y = 3 x +  6   x  2

 

)

48.

du dy Siu = x 2 − 7 x +

5 x

 x( 0 ) − 5(1)  = u = 2x − 7 +   x2    −5 = u = 2x − 7 +  2  x  49.

dy = du Siy = u 3 − 5u 2 +

7 +6 3u 2

 3u 2 ( 0 ) − 7( 6u )   = y = 3u 2 − 10u +  2 2 3 u  

( )

 − 42u  = y = 3u 2 − 10u +  4   3u 

(

)

dy t 3 − 5t 2 + 7t − 1 = du t2 50.

( (

) ( ( )

(

) (

))

=

dy t 2 3t 2 − 10t + 7 − t 3 − 5t 2 + 7 − 1( 2t ) = 2 du t2

=

dy 3t 4 − 10t 3 +7t 2 − 2t 4 − 10t 3 + 14t 2 − 2t = du t4

=

dy 3t 4 − 10t 3 + 7t 2 − 2t 4 + 10t 3 − 14t 2 + 2t = du t4

=

dy t 4 − 7t 2 + 2t = du t4

)

 dy  x , pruebe que 2 y  = 1  dx 

51. Si Y=

=2 x 1 −1 = 2 x 2  1 x 2  2  

= 1x 0 = 1

52. Si

1  dy  , pruebe que 2 y  +1 = 0 x  dx 

u=

 1  = 2   x

 1 = 2 1 x 2

−3

 12  1 −12    x ( 0 ) − 1 2 x (1)   +1 = 0  2  1    2  x      

 − 1 x −1 2  −1     = 2 x 2  2  +1 = 0   x    −1 = 2 x 2   

More Documents from "Daniel Felipe Garcia"

Acuerdo 049 De 2000
June 2020 5
Taller 8
April 2020 9
Taller 13
April 2020 9
Solucion_guia_8[1]
May 2020 7
Acuerdo 37 De 2002
June 2020 8
Taller 16
May 2020 7