1 12. La pendiente de una curva en cualquier punto (x , y) de ella es igual a 4x + 6. Si la curva pasa por el punto (1 , 1), dé una ecuación de ella. dy 4x 6 dx dy (4x 6) dx
INTEGRAL INDEFINIDA I.
INTEGRACIÓN INMEDIATA
dx e x C
1.
e
2.
4x
3.
(6x (
4.
5.
x
y 2x 2 6x C Como la curva pasa por el punto (1 , 1) entonces :
dx x 4 C
3
4
x 2 3) dx 6 x 4 dx x 2 dx 3 dx
2 x ) 2 dx (2 2 2 x x) dx 2x
3x 5 6x 2 x x3 dx
dx 3 x 2 dx 6
cosh 2 x senh 2 x
senh 2 x senh 2 x
ctgh x tgh x C
cosh 2 x dx cosh 2 x
senh 2 x cosh 2 x
x 3) dx
8.
x (x 1) dx
9.
(1 senx) dx x cosx C
10.
11.
(x
3
4 1 2 x 3/2 x 2 C 3 2
dx (csc h 2 x sec h 2 x ) dx
2 dx (2 sen t 3t ) dt
x(t) 2 cos t t 3 C Como la partícula parte del reposo entonces : 0 2 cos 0 (0) C 3
x(0) 0
C2
14. En un movimiento rectilíneo, la función aceleración de un punto es a(t) = –32 en el instante t 0. Si la velocidad del punto es –20 cuando t = 0, y la posición del mismo punto es 10 unidades en la dirección positiva cuando t = 0, encuentre la función velocidad v(t) y la función de posición x(t) del punto. dv a (t ) 32 dt dv 32 dt
1 4 x x2 x C 4 1
13. Una partícula que parte del reposo se mueve a lo largo de una recta de manera que su velocidad en el instante t es 2 sen t + 3t2. Determinar su posición en el instante t = π. dx v( t ) 2 sen t 3t 2 dt
x(π ) π 3 4
2 5/2 2 3/2 x x C 5 3
2x 1) dx
C 7
x ( t ) t 3 2 cos t 2 La posición en el instante t π sera :
2 3/2 x 3x C 3
(
7.
1 x 5 x 3 3x C 5 3
dx 2 x 5/2 dx x 3 6 Ln x x 3/2 C x 3
6.
6
1 2(1) 2 6(1) C y 2x 2 6x 7
v(t) 32 t C1
1
[sen (2x) cos x] dx 2 sen (2x) d(2x) cos x dx 2 cos2x senx C
Como la velocidad del punto es : v(0) 20 20 32 (0) C1 C1 20
2
v( t ) 32 t 20
2 y ' dx 2 dx x 2 y C2 x Como la curva pasa por el punto (1 , 3) :
dx 32 t 20 dt dx (32 t 20) dt v(t)
x ( t ) 16 t 2 20 t C 2 La posición del punto es :
x(0) 10
10 16 (0) 20 (0) C 2
2
C2
2 C2 1 2 y 1 x 3
10
x ( t ) 16 t 2 20 t 10
15. La pendiente de una curva en cualquier punto (x , y) de ella es igual a cosx. Encontrar una ecuación de la curva si ésta pasa por el punto (π/2 , 2). dy cos x dx dy cos x dx
y sen x C
Como la curva pasa por el punto (π /2 , 2) entonces : 2 sen (π /2 ) C C 1
y sen x 1
16. Hallar la ecuación de la curva para la cual y’’ 2x + y = 5 en el punto (1 , 3). 4 y '' x3 4 y ' ' dx 3 dx x 2 y ' C1 x2 Como la curva es tangente a la recta en (1 , 3) :
= 4/x3 y que es tangente a la recta
2x y 5 y 2x 5
y ' (1) m y '
2 x2
m 2 2 (1) 2
C1
2 C1 0
1
C2
17. En cada punto de una curva cuya ecuación es y = f(x), D2x y = 6x – 2; y en el punto (1 , 2) la pendiente de la curva es 8. Halle una ecuación de la curva. y ' ' 6x 2
y ' ' dx (6x 2) dx y ' 3x 2 2x C1 La pendiente de la curva en el punto (1 , 2) es 8 : 8 3(1) 2 2(1) C1
C1
7
y ' 3x 2x 7 2
2 y ' dx (3x 2x 7) dx
y x 3 x 2 7x C 2 Como la curva pasa por el punto (1 , 2) : 2 (1) 3 (1) 2 7(1) C 2
C2
5
y x 3 x 2 7x 5
18. Hallar la ecuación de la curva cuya tangente en el punto (0 , 2) es horizontal y tiene punto de inflexión en (–1 , 10/3) y y’’’ = 4. y ''' 4
y ' ' ' dx 4 dx y ' ' 4x C1 La curva tiene punto de inflexión en (1 , 10/3) : 0 4(1) C1
y ' ' 4x 4
y ' ' dx (4x 4) dx y ' 2 x 2 4x C 2
C1
4
3
La pendiente de la curva es horizontal en (0 , 2) : 0 2(0) 2 4(0) C 2
3.
C2 0
y ' 2x 2 4x
du 2 senh x cosh x dx 1 2 senh x cosh x 1 du senh x cosh x 1 dx dx C 2 (1 senh 2 x) 5 2 u5 (1 senh 2 x) 5 8u 4
4.
INTEGRACIÓN POR SUSTITUCIÓN ALGEBRAICA
3x
2
3
senh x cosh x (1 senh 2 x) 5 arc sen x
2.
7
2
3
x4
4
4
dx
1 5 u C 5
1 3 5 (x 1) C 5
5.
dx
x 1
arc sen x
arc sen x
5
xx xx
e
(1 x) 4
du 5x dx
du x e x dx
7
x 5 1 x4 x 5 1
dx
Hacemos : u e x x e x
dx dx
1
5 7 7 30
5x 4
dx
x 5 1
( x 1) 5
6/7
1
du
5 7
C
u
1
u 1/7 du 5
7
u 6/7 C
30
x e
3x
dx 2 u du u 2 C
dx (arc sen x ) 2 C
x 3x
arc sen x 2 x 1 x
2
4
7
dx 2
2
x5 1
Hacemos : u
x4
1 x
2 x
2
(x 1)
dx
du
(x 1) ( 3x dx ) u du 3x
C
8 (1 senh 2 x) 4
dx
2
4
1
x x2
x3 1
du 3x dx 3
dx
Hacemos : u arc sen x
4
(x 1) dx
Hacemos : u
dx
(1 senh 2 x) 5 2
y ' dx (2x 4x) dx 2 y x 3 2x 2 C 3 3 Como la curva pasa por el punto (0 , 2) : 2 2 (0) 3 2(0) 2 C 3 C 3 2 3 2 y x 3 2x 2 2 3
1.
senh x cosh x
Hacemos : u 1 senh x
2
II.
(1 x)
4
x e 3x (1 x) 4
dx dx
x ex e
4x
x
(1 x) 1
4
dx
x 3
3 (e x e )
C
x ex (e x e ) 1
3e
x
3x
x 4
(1 x)
3
dx C
du u
4
1 C 3 3u
4
6.
x2
I 2 2 2 [ 1 cos (5 x 4) ] . x 1/2 dx
dx
(x 2) Hacemos : u x 2 x u 2 4
du dx u4 dx du (x 2) 4 u4 x2
7.
x2 (x 2)
4
1
dx
1 x
2
du u3
2
du
4
3 (x 2)
3
1
u4
4
2 (x 2)
2u
C
2
4 3u
C
I 2 2 2 cos (
3
3x 2 6 (x 2)
I 2 2 cos (
C 3
I 4 cos 2 (
x
I 2 2 4 cos 2 (
dx
x dx
1 x
2
1 x 8.
x
dx
1 x 1 2
x
2
dx
du
2 u C
u
2 1 x2 1 C
10.
1 x 1 2
x 4 dx
x4 x u-4 du dx
x
x 4 dx
u du (u
3/2
4u
1/2
8 ( x 4) 5/2 ( x 4) 3/2 C 5 3
) du
2 5/2 8 3/2 u u C 5 3
9. I 2 2 2 2 cos (5 x 4) . x 1/2 dx Por identidad trigonométrica: 1 + cos = 2 cos 2 (/2)
cos (
2 x. 3x 1
2 x. 3x 1 5
dx
5x 2 5x 2
2
11.
32
2 x. 3x 1
Hacemos : u
x x 4 dx (u 4)
5 x 4 5 x 4 1/2 ) . x 1/2 dx 2 cos ( ). x dx 8 8
32 32 5 x 4 5 1/2 ). x dx cos u du sen u C 8 16 5 5 5 32 5 x 4 I sen ( )C 8 5 I
x2 1 x
5 x 4 5 x 4 ) . x 1/2 dx 2 [ 1 cos ( ) ]. x 1/2 dx 4 4
5 x 4 8 5 1/2 du x dx 16
Hacemos : u 1 x 2 1
5 x 4 5 x 4 ) . x 1/2 dx 2 4 cos 2 ( ) ) . x 1/2 dx 2 4
Hacemos : u
1 x 1 2
du
5 x 4 ) . x 1/2 dx 2
x2
dx
dx
3
25
2 x. 3x 5x 3
dx
3
6 x dx
( ) 25 5
6 ( )x C 25 ( Ln 6 Ln 5 ) 5
senh x
dx (1 cosh x) 3 Hacemos : u 1 cosh x
du senh x dx
3
6 ( )x C 6 5 25 Ln ( ) 5
5
12.
13.
senh x (1 cosh x) 3 senh x (1 cosh x) 3
dx
du u3
dx
1
2u
x Ln x du (Lnx 1) dx
Hacemos : u
C 2
1
C
2 (1 cosh x)
(Ln x 1) e
x Ln x
dx e du e C
(Ln x 1) e
x Ln x
dx e
u
u
2 x Ln x
Ce
Ln x
x
C x
x
dx
cos 2 (1 4x) Hacemos : u 1 4x du 4 dx 1 dx 4 dx 2 4 cos 2 (1 4x) cos (1 4x) 1 dx tg (1 4x) C 2 4 cos (1 4x)
dx
16.
2
x Ln x Hacemos : u
1
du
4 cos 2 u
1
1
4
4
sec 2 u du tg u C
du
cos (7x 4) dx
7x 4 du 7 dx
Ln x
dx 2
x Ln x dx 2
du
u
x Ln x
2
dx x 1
C u
1
C
Ln x
Hacemos : u
1
cos (7x 4) dx 7 cos (7x 4) cos (7x 4) dx 14.
2x 5 dx e
Hacemos : u
17.
( 7 dx )
1 1 cos u du sen u C 7 7
(Ln x 1) e
du
dx
x Ln x 2x 5
x Ln x
dx
Ln x
Hacemos : u
1 sen (7x 4) C 7
du 2 dx 1 1 1 2x 5 dx e 2x 5 ( 2 dx ) e u du e u C e 2 2 2 1 2x 5 dx e 2x 5 C e 2
15.
dx
x Ln x
dx
du u
x Ln x Ln 18.
4
dx x
Ln u C
Ln x C
x x
e dx
4 e dx (4e) dx x
x
4 e dx x
x
x
x x
4 e
1 Ln 4
C
(4e)
x
Ln (4e)
C
(4e)
x
Ln e Ln 4
C
C
6
19.
dx
2
sen x ctg x 1 Hacemos : u ctg x 1 3
du csc 2 x dx dx
sen 2 x 3 ctg x 1
csc 2 x dx 3
ctg x 1
3
dx
sen 2 x 3 ctg x 1 2 (ctg x 1)
20.
sen x e tg
2
x
2/3
du 3
3
u 2/3 C
u
x
e x . 3e
2
dx
x
2
x
e x . 3e
2
dx
3
e
x
dx
x
2 3 du 2
3
u
u
C
Ln 3
x
C
Ln 3
x
2
C
dx
22.
(1 x 2 ) Ln (x 1 x 2 )
Hacemos : u Ln (x 1 x 2 )
dx
dx
du
cos 3 x
Hacemos : u
e x . 3e
1 x2
tg 2 x
dx
du 2 tg x sec x dx 2
dx
(1 x ) Ln (x 1 x ) 2
1 x
2
2
Ln (x 1 x ) 2
du
2 u C
u
2
sen x e
sen x e
tg x
dx
3
1
e tg
2
x
2
cos x
2
( 2 tg x sec x dx )
1
1
2
2
dx
e u du e u C
2 Ln (x 1 x 2 ) C
(1 x 2 ) Ln (x 1 x 2 )
2
tg x
dx
3
1
e tg
2
x
C
23.
2
cos x
x
2x
(Ln x 1) dx
Hacemos : u
21.
e
x
. 3e
du u
x
dx
x
Hacemos : u e du
x 2x Ln u 2x Ln x 2 (Ln x 1) dx
x
2x
(Ln x 1) dx
1
x
e x
x
2x
(Ln x 1) dx
1
dx
2 x 24.
Ln (Ln x) x Ln x
dx
x 2 2
x
2x
2x
.2 (Ln x 1) dx
C
1
u. 2
1 1 du du u C u 2 2
Hacemos : u
Ln (Ln x)
x Ln x x Ln x
25.
Hacemos :
dx x Ln x
du
Ln (Ln x)
7
Ln (Ln x)
1
2
1
u C
2
2
Ln (Ln x) C
2
e
1 x
2
dx
2
dx
I2
e arc tg x
dx
26.
1 x2 I3
1 x Hacemos : u arc tg x
I
1
2
2
e u du e u C e arc tg x C 1 1
I
dx
1 x2
Hacemos : u Ln (x 1) 2
du
dθ dθ θ C arc tg x C 3
sec 2 θ
1 x
dx e
arctgx
1
2
3
2
( Ln (x 1) ) arc tg x C
4
2
C C1 C 2 C 3
dx
cos x cos 2 x dx 1 sen x
cos x (1 - sen 2 x) 1 sen x
cos x (1 - sen x) (1 sen x)
dx
cos 3 x 1 sen x dx
u du u 2 C
cos 3 x 1 sen x dx
(1 sen x) 2 C (1 2sen x sen 2 x) C
cos 3 x 1 sen x dx
sen x sen 2 x
1 sen x 27.
cos 3 x 1 sen x dx Hacemos : u
cos 3 x
2x dx
1 x2 1 2 1 1 Ln (x 1) 1 2 2 I ( 2x dx ) u du u C ( Ln (x 1) ) C 2 2 2 2 2 2 4 4 1 x dx I 3 1 x2
cos 3 x 1 sen x dx
1 sen x du cos x dx
dx
x Ln (x 2 1)
sec 2 θ
e arc tg x x Ln (x 2 1) 1
cos 3 x
2
1 x
1 tg 2 θ
1 sen x
dx
du
dx
x Ln (x 1) 1 x
sec 2 θ dθ
Donde :
2
I1
1
3
1 x2
I
I
I
2
e arc tg x x Ln (x 2 1) 1
arc tg x
arc tg x
dx sec θ dθ
dx u du dx
x tg θ θ
dx
1 sen x
dx
cos x (1 sen x) dx
1
2
1
1
1
1
2
1 2
2
1 C 1 2
1 2
sen 2 x sen x C
dx
1 cos 10x
Por identidad trigonométrica: 1 + cos = 2 cos 2 (/2)
dx 1 cos 10x
dx 2 cos 2 5x
1
sec 2 5x dx 2
1
Hacemos : u
8
5x
I
du 5 dx 1
2
dx 2 1 cos 10x 10 sec 5x
(5 dx )
1
sec 10
2
u du
1
tg u C
x
x 1 dx
Hacemos : u
10
1
dx 1 cos 10x 10 tg 5x C
I 2
2x 1 x
dx 2x 1 x dx 2x 1 x
2x 1 x ( 2x 1 x ) ( 2x 1 x ) 2x 1
x 1
dx
x x 1
I1
I 1
dx
2x 1 x x 1
2
u
u2 1 u2
du 2
(1 u 2 ) 1 1 u2
u du
du
2
sec 2 θ dθ
2
1 tg 2 θ
2
u 2x 1 u2 1 x 2
2u 2
sec 2 θ dθ sec 2 θ
2u 2 dθ 2u 2θ C
u
2
du 2
(1 u ) 1 2
1 u
2
du 2 du 2
1 u 2
1 tg 2 θ
2u 2
sec 2 θ dθ sec 2 θ
(x 2 - 2x 1)1/5 1 x
dx
(x 2 2x 1)1/5 (x 2 2x 1)1/5 (x 1) 2/5 dx dx dx 1 x x 1 x 1
(x 2 2x 1)1/5 dx (x 1) 3/5 dx 1 x Hacemos : u x 1 du dx
2u 2 dθ 2u 2θ C1
I1 2 2x 1 2 arc tg u C1 2 2x 1 2 arc tg 2x 1 C1
5 (x 2 2x 1)1/5 dx u 3/5 dx u 2/5 C 1 x 2
2
2 [ 2x 1 x arc tg 2x 1 arc tg x ] C
2
sec 2 θ dθ
2x 1 x
du
2
dx
29.
2
1 u2
1 u2 Hacemos : u tg θ θ arc tg u
dx
I2
2
du
2
I 2 x 2 arc tg u C 2 x 2 arc tg x C
2x 1
du 2 du 2
du sec θ dθ
du sec θ dθ
I1 2u 2
( 2u du ) 2
u2 1
I 2u 2
u 1 1 u 1 2 du I1 2u 2 1 u 2 Hacemos : u tg θ θ arc tg u 2
u
dx
u du dx
I1
I 2u 2
2x 1 dx x 1
Hacemos : u
u x x u 2
x
2u du dx
dx
28.
2
5 (x 2 2x 1)1/5 dx (x 1) 2/5 C 1 x 2
2
9
30.
2x 2x
2
4 x4
2x 2x 2
4x
2
4
2 x2 2 x2
2
dx
4 x4 2
I
2 x2 2 x2
4x
4
2x
dx
2
4 x4
dx
2x
dx
2x
dx
2x
2
dx
2x 2x
2
2
2 x
2
2 x2 )
2 cos θ dθ 2 2 sen θ 2
I1
arc sen (
I
2
x 2
2 cos θ dθ 2
1 sen θ 2
2 cos θ dθ 2 cos θ
) C1
dθ θ C1
) arc senh (
x
2
)C
2
x 1 x 1
x 1 x 1 ( x 1 x 1) ( x 1 x 1)
dx
1
1
1
2
2
2
( x 1 x 1) dx x 1 dx x 1 dx I1
x 1 dx
x
)
I
2
2
1
2 dx 2 cosh θ dθ
x
x 1 dx Hacemos : u x 1 du dx
2 x2
x 2 senh θ θ arc senh (
dx arc sen (
Hacemos : u x 1 du dx 2 2 I1 u du u 3/2 C1 (x 1) 3/2 C1 3 3 I
dx
Hacemos :
dx
I1
dx 2 cos θ dθ
dθ θ C 2
x 1 x 1
x 1 x 1
x
2 cosh θ
2
4
dx
I2
x 2 sen θ θ arc sen (
1 senh θ 2
2 cosh θ dθ
dx
2
I1
4x
2
)C
2
dx
dx
Hacemos :
x
2 cosh θ dθ
2
31.
2x
2 2 senh θ
2 x2 2 x2
2
2
dx
I1
I1
dx
2
2 cosh θ dθ
I arc senh (
2
4 x4
2
2x
2
dx
2x
2
u du u 3/2 C (x 1) 3/2 C 2 2 3
3 1 2 1 2 [ (x 1) 3/2 C1 ] [ (x 1) 3/2 C 2 ] 2 3 2 3 x 1 x 1
dx
dx x 1 x 1 dx x 1 x 1
1 3
1 3
(x 1) 3/2 (x 1) 3/2 C
1 3/2 3/2 [ (x 1) (x 1) ] C 3
I2
10
dx 32. 1 sen x 1 sen x 1 sen x 1 sen x dx dx dx 2 (1 sen x) 1 sen x cos 2 x
dx
1 sen x (1 sen x) dx
sen x
dx
1 sen x cos 2 x cos 2 x dx sec
2
x dx
sen x cos 2 x
34.
1 4x 2 x arc tg (2x) 1 4x
x 1 4x
2
dx
2x 3
x 1 4x
2
( 3 Ln 2 ) . 2 x dx 1 3 Ln 2 1 3(2 x )
dx
1
dx
2x 3
dx
arc tg (2x) 1 4x 2
x
1
2 x 3 3 Ln 2 [ Ln (2
)] C
x
35.
Hacemos : u 1 4x 2
dx e x 1
e x 1
u e x 1 e x u 2 1
2u du e x dx
1 8
Ln u C1 Ln (1 4x 2 ) C1
2 dx
1 4x 2 1 2 dx 1 1 1 I 2 arc tg (2x) . u du u 2 C 2 [arc tg (2x)] 2 C 2 2 2 2 4 4 1 4x
1 du 3 Ln 2 u
1 Ln u C 3 Ln 2
1 3 Ln (1 )C 3 Ln 2 2x
1 3) x Ln 2 ] C [ x Ln (2 x 3) ] C 3
dx
I2
1 8
1 2x 3 1 Ln ( )C [ Ln (2 x 3) Ln (2 x ) ] C x 3 Ln 2 3 Ln 2 2
Hacemos : u 2
du 8x dx 1 8x 1 du I1 dx 8 1 4x 2 8 u arc tg (2x) I2 dx 1 4x 2 Hacemos : u arc tg (2x)
2 x dx
2 x 3 3 Ln 2 Ln [1 3 (2
dx
du
2 x dx
dx
I1
I1
dx
du ( 3 Ln 2 ) . 2 x dx
dx dx
2
1 1 Ln (1 4x 2 ) [arc tg (2x)] 2 C 8 4
Hacemos : u 1 3(2 x )
Hacemos : u cos x du - sen x dx dx du 1 1 sen x tg x u 2 tg x u C dx 1 1 sen x tg x cos x C tg x sec x C 33.
dx
2x 3 dx
1 sen x tg x cos 2 x dx
x arc tg (2x)
1 4x
2
2 x 3 2 x (2 x 3) 1 3(2 x )
dx
sen x
dx
x arc tg (2x)
2u du (u 2 1) dx 2u dx du 2 u 1 dx 1 2u du du x u . u 2 1 2 u 2 1 e 1 Hacemos : u tg θ θ arc tg u du sec θ dθ 2
11
dx
e x 1 dx
e 1 x
36.
2
2
sec θ dθ 1 tg 2 θ
2
2
sec θ dθ sec 2 θ
3 2 tg θ θ arc tg ( t) 2 3 3 dt sec 2 θ dθ 2 3 3 sec 2 θ sec 2 θ dx 1 sec 2 θ 2 2 dθ dθ dθ 4 5 cos 2 x 9 9 tg 2 θ 3 6 1 tg 2 θ 9 4( tg θ) 2 2
2 dθ 2θ C
2 arc tg u C 2 arc tg e x 1 C
sen x cos x 2 sen 4 x
dx
Hacemos : u sen 2 x
dx
4 5 cos 2 x
du 2 sen x cos x dx 1 2 sen x cos x 1 sen x cos x du dx dx 2 2 2 sen 4 x 2 (sen 2 x) 2 2 u2 u
Hacemos : u 2 sen θ θ arc sen (
)
2 du 2 cos θ dθ 1 1 1 2 cos θ dθ 2 cos θ dθ 1 sen x cos x dx dθ θ C 4 2 2 cos θ 2 2 2 2 sen x 2 2 sen θ 2
37.
sen x cos x 2 sen 4 x
dx
1 u 1 sen 2 x arc sen ( ) C arc sen ( )C 2 2 2 2
dx
4 5 cos 2 x Hacemos :
tg x t
cos x dx
1 1 t 2 dt 1 t 2 dt
dx
4 5 cos 2 x
1 t 2
t
x 1 dt
2 dt dt 1 t 2 1 t 2 1 5 4(1 t ) 5 9 4t 2 45( )2 4( ) 1 t 2 1 t 2
t
Hacemos :
1 sec 2 θ
6
dx
4 5 cos 2 x 38.
2
dθ
1 1 1 2 dθ θ C arc tg ( t) C 6 6 6 3
sec θ 1 2 arc tg ( tg x) C 6 3
dx
4 5 sen 2 x
Hacemos : ctg x t sen x dx -
1 t 2
1 1 t 2 dt
1
x t
1 t 2 dt dt 2 2 dx dt dt 1 t 1 t 4 5 sen 2 x 2 1 5 4(1 t ) 5 9 4t 2 45( )2 4( ) 1 t 2 1 t 2 3 2 Hacemos : t tg θ θ arc tg ( t) 2 3 3 dt sec 2 θ dθ 2
12
3 3 sec 2 θ sec 2 θ dx 1 sec 2 θ 2 dθ 2 dθ dθ 4 5 sen 2 x 3 6 1 tg 2 θ 9 9 tg 2 θ 9 4( tg θ) 2 2 1 sec 2 θ 1 1 1 2 4 5 sen 2 x 6 sec 2 θ dθ 6 dθ 6 θ C 6 arc tg ( 3 t) C dx 1 2 4 5 sen 2 x 6 arc tg ( 3 ctg x) C dx
39.
Ln (3x)
x Ln (5x)
ex 4 ex 4 dx
1 ex ex 4 4 ex 4 dx
dx
3 Ln (5x) Ln ( ) Ln (3x) dx 3 dx 5 x Ln (5x) dx x Ln (5x) dx x Ln ( 5 ) x Ln (5x) Ln (3x) 3 dx x Ln (5x) dx Ln x Ln ( 5 ) x Ln (5x) Hacemos : u Ln (5x) dx du x Ln (3x) 3 du 3 x Ln (5x) dx Ln x Ln ( 5 ) u Ln x Ln ( 5 ) Ln u C
2
2
dx dx
Ln (x x 2 1) 1 x 2
dx u du
2 3/2 u C 3
2 [ Ln (x x 2 1) ]3/2 C 3
1 sen x dx
1 sen x dx
1 sen x 1 sen x 1 sen x
dx
1 sen 2 x 1 sen x
dx
cos x 1 sen x
dx
Hacemos : u 1 sen x du cos x dx cos x du 1 sen x dx 1 sen x dx u 2 u C 2 1 sen x C
dx
Ln (3x)
1 x
e 1 x e x 4 4 Ln (1 4e ) C
1 x 2
Ln (x x 2 1)
42.
1 1 ex 4 Ln u C Ln ( x ) C 4 4 e
x
x Ln (5x)
1 x
1 du 4 u
dx
Ln (x x 2 1)
ex 4 dx
dx
1 x 2
du
ex 4
du
Ln (x x 2 1)
Hacemos : u Ln (x x 2 1)
dx
Hacemos : u
40.
41.
3 dx Ln x Ln ( ) Ln [ Ln (5x ) ] C 5
43.
1 cos x dx
1 cos x dx
1 cos x 1 cos x 1 cos x
dx
1 cos 2 x 1 cos x
Hacemos : u 1 cos x du sen x dx du 1 cos x dx u 2 u C 2 1 cos x C 44.
dx
e x e x
dx
sen x 1 cos x
dx
13 x
x
x
dx e dx e dx e dx e x e x e x (e x e x ) 1 e 2x 1 (e x ) 2
e x tg θ θ arc tg (e x )
Hacemos :
e x dx sec 2 θ dθ 2
x 1 u x 1 x u 1 dx dx du 2 x 2 (u 1) 2 (u 1) du dx x 1 dx
x 1
46.
2 (u 1) u
du 2 u du 2
4 ( x 1) 3 4 3
arc tg x x 2x x 2
3
arc tg x x 2x 2 x 3
du u
4 3
u 3/2 4 u C
x 1 C
arc tg x x 2x 2 x 3 arc tg x x 2x 2 x 3
x x 1 x x 1 2
x2 x x 1 x 2 x 1
x
48.
dx
dx
1 x 1 x x 1 . x x 2
.
(x 2) dx x3
2 sen x1
dx 2 arc sen (
x 2 x 1 )C x
(sen x x cos x Ln x) dx
Hacemos : u x 2 sen x
dx
arc tg x x 1 2x x 2
dx
arc tg x x (x 1) 2
dx
arc tg x x (x 1)
du 2 x 2 sen x1 (sen x x cos x Ln x) dx 1 2 sen x1 (sen x x cos x Ln x) dx 2 x 2 sen x1 (sen x x cos x Ln x) dx x 2 1 1 1 2 sen x1 (sen x x cos x Ln x) dx du u C x 2 sen x C x 2 2 2
dx
Hacemos : u arc tg x du
x2
dx
x 2 x 1 x 2 x 1 θ arc sen ( ) x x x 1 cos θ x x 2 x x 1 x 2 x 1 sen 2 θ dx x2 (x 2) x 1 2 sen θ cos θ dθ dx x3 sen θ cos θ dθ x2 dx 2 2 dθ 2θ C cos θ sen θ x x 1 x 2 x 1
dx
dx
x x 1 x 2 x 1
Hacemos : sen θ
Hacemos :
x2
2
dx sec θ sec θ x e x e x 1 tg 2 θ dθ sec 2 θ dθ dθ θ C arc tg (e ) C
45.
47.
dx 2 x (x 1) dx 2
arc tg x 2 x (x 1)
dx 2 u du u 2 C
dx [ arc tg x ] 2 C
49.
dx e
Ln (2x)
Ln x Ln x ... x dx
e
Ln (2x)
Ln x Ln x ... x
dx 2x Ln x Ln x ... x
14
u Ln x Ln x ...
Hacemos :
sen 8x
9 sen 4 4x
u Ln x Ln x Ln x ... 2
u 2 Ln x u
eu
2
u
e Ln x x e u
dx (2u 1) e u
2
u
2
u
e Ln (2x) Ln x Ln x ... x dx e Ln (2x) Ln x Ln x ... x
2 (2u 1) e u u 2 2 2 u e u u e u u
du
2 (2u 1) e u u 2 (2u 1) e u u
Por identidad trigonométrica: cos α cos β 2 cos (
αβ α β ) cos ( ) 2 2
2 cos 5x cos x 5 (2 cos 3x cosx ) 10 (2 cos 2 x ) dx cos 5x 5 cos 3x 10 cos x
sen 8x
9 sen 4 4x
dx
52.
2 cos 5x cos x 10 cos 3x cosx 20 cos 2 x dx cos 5x 5 cos 3x 10 cos x 2 cos x (cos 5x 5 cos 3x 10 cos x ) I dx 2 cos x dx cos 5x 5 cos 3x 10 cos x I 2 sen x C
51.
1 4 sen 8x 1 3 sec 2 θ 3 sec 2 θ dx dθ dθ 4 9 (sen 2 4x) 2 4 9 (3 tg θ) 2 4 9 9 tg 2 θ
sen 8x
dx
1 sec 2 θ 1 sec 2 θ 1 1 dθ dθ dθ θ C 12 1 tg 2 θ 12 sec 2 θ 12 12
sen 8x
dx
1 sen 2 4x arc tg ( )C 12 3
9 sen 4 4x
(cos 6x cos 4x) 5 cos 4x 15 cos 2x 10 I dx cos 5x 5 cos 3x 10 cos x 2 cos 5x cos x 5 cos 4x 15 cos 2x 10 I dx cos 5x 5 cos 3x 10 cos x 2 cos 5x cos x 5 (cos 4x cos 2 x ) 10 cos 2x 10 I dx cos 5x 5 cos 3x 10 cos x 2 cos 5x cos x 5 (cos 4x cos 2 x ) 10 (cos 2x 1) I dx cos 5x 5 cos 3x 10 cos x
I
sen 2 4x ) 3
dx
9 sen 4 4x
du
du u C Ln x Ln x ... C
cos 6x 6 cos 4x 15 cos 2x 10 50. I dx cos 5x 5 cos 3x 10 cos x
I
dx
sen 8x
9 sen 4 4x
9 (sen 2 4x) 2
4 sen 8x dx 3 sec 2 θ dθ
du
dx
sen 8x
sen 2 4x 3 tg θ θ arc tg (
Hacemos :
u 2 u Ln x
dx
cos 2 x (tg 2 x 1) (sen x cos x) 2
cos 2 x (tg 2 x 1) (sen x cos x)
2
cos 2 x (tg 2 x 1)
dx
dx dx
(sen x cos x) 2 Hacemos : u 1 tg x
cos 2 x sec 2 x (sen x cos x)
2
dx cos 2 x (tg x 1) 2
dx
dx (sen x cos x) 2
sec 2 x dx (1 tg x) 2
du sec 2 x dx
cos 2 x (tg 2 x 1) (sen x cos x)
53.
2
dx
du u
2
1 u
C
1 C 1 tg x
sec x tg x dx sec x tg x
sec x tg x sec x tg x sec x tg x sec x tg x dx dx dx sec x tg x sec x tg x sec x tg x sec 2 x tg 2 x
sec x tg x dx ( sec x tg x ) dx sec x dx tg x dx sec x tg x
15
sec x tg x sec x (sec x tg x) tg x sec x dx dx dx sec x tg x sec x tg x sec x
sec x tg x sec x sec x tg x tg x sec x dx dx dx sec x tg x sec x tg x sec x
1 e
x
dx
2 3 2 t 2t C (1 e x ) 3 2 1 e x C 3 3
sec 2 x sec x tg x sec x tg x dx Hacemos : u sec x tg x
Ln sec x tg x C1
dz Ln z C 2 Ln sec x C 2 z sec x tg x dx Ln sec x tg x Ln sec x C sec x tg x
e x 1 e arc tg x x 2 (e x 1) Ln (1 x 2 ) e x 1
I
e x 1 e arc tg x
(1 x 2 ) e x 1
(1 x 2 ) e x 1 e arc tg x 1 x
e 2x 1 e
x
1 e
x
dx
e
t2
(t 2 1) 2 t
2
.
2t t 1 2
dt
(t 2 1) 2 2t . dt 2 (t 2 1) dt 2 t t 1
x e x 1 Ln (1 x 2 ) (1 x 2 ) e x 1
x Ln (1 x 2 ) 1 x
2
I2
dx
dx
dx
e x 1 (1 x 2 ) e x 1
dx
dx 1 x 2 I3
arc tg x
dx 1 x 2 Hacemos : u e arc tg x
du
e x t 2 1 t 1 e x 2t e x dx 2 t dt dx dt ex 2t dx dt 2 t 1
e 2x
2
dx
dx
I1
dx
Hacemos : 1 e x
dx
1 x 2 (1 x 2 )(e x 1)
e x 1 e arc tg x x e x 1 Ln (1 x 2 ) e x 1
I1
dx
1 x 2 e x x 2 e x x 2 1
I
I
dz tg x sec x dx
I2
55. I I
du (sec 2 x sec x tg x) dx du I1 Ln u C1 u tg x sec x I2 dx sec x Hacemos : z sec x
2 x 2 e x 1 e arc tg x Ln [ (1 x 2 ) x e x ] e x 1
I2
I1
e 2x
2
I1
54.
e arc tg x
I1
dx 1 x 2 arc tg x C1 du u C1 e
I2
x Ln (1 x 2 ) 1 x 2
dx
Hacemos : u Ln (1 x 2 ) 2x du dx 1 x 2 I2
1 2x Ln (1 x 2 ) 1 1 1 dx u du u 2 C 2 [ Ln (1 x 2 ) ] 2 C 2 2 2 2 4 4 1 x
16
I3
dx
I1 Ln
1 x Hacemos : x tg θ θ arc tg x 2
dx sec 2 θ dθ sec 2 θ sec 2 θ I3 dθ dθ dθ θ C 3 arc tg x C 3 1 tg 2 θ sec 2 θ
x
dx
x
dx
(x 1) 5 e 4x
x ex (x 1) e 5
Hacemos : u x e e x
4x
e
x
dx
x ex (x 1) e 5
5x
dx
x ex (x e e ) x
x 5
57.
3 e x 4e x
I1
2e
dx
2 ex 3 e x 4e x
dx
3 e 4 e x 2 ex ex
e x 3 e x 4e x
e x (3 e x 4 e x )
3e
4
dx
du 6 e 2x dx 2x
6e 2 1 du 1 dx Ln u C1 2x 6 3e 4 3 u 3
8
e 2x 3 4 e 2x
dx
dx Ln
3
3e 2x 4 Ln
dx Ln
3
3e 2x 4
x 3 ( Ln x 1) 3
dx
Ln x
dx
8
59.
u C2
8
3 4 e 2x C
3 4 e 2x C
Ln x
( x Ln x x) 3 Hacemos : u x Ln x x
dx
8
3 4 e 2x C 2
x 3 ( Ln x 1) 3
2x
1 8
Ln x
I2
e 2x
dx
du 8 e 2x dx 8 e 2x 1 du 1 dx Ln u C 2 Ln 2x 8 u 8 34e
3 e x 4e x
dx dx 2
3e 2x 4 C1
dx
e x (3 e x 4 e x )
2 e x e x
x
x
3
e x e x
2 e x e x
dx
Hacemos : u 3 e 2x 4
I1
3 e x 4e x
x
I1
I1
I2
58.
3 e x 4e x 2 e x e x
3 e x 4 e x
I 2 Ln
dx
du x e x dx x du 1 1 (x 1) 5 e 4x dx u 5 4u 4 C 4 (x e x e x ) 4 C 2 e x e x
e x
I2
I2
(x 1) 5 e 4x
u C1 Ln
Hacemos : u 3 4 e 2x
1 I e arc tg x [ Ln (1 x 2 ) ] 2 arc tg x C 4 56.
3
dx
du Ln x dx du 1 1 dx 2 C C 3 3 3 x ( Ln x 1) u 2u 2 ( Ln x 1) 2 Ln x
(4 3 Ln x) (4 3 Ln x)
4
4
d(Ln x) d(Ln x)
Hacemos : u 4 3 Ln x
1 (4 3 Ln x) 4 d(4 3 Ln x) 3
du d(4 3 Ln x)
(4 3 Ln x)
4
d(Ln x)
1 4 1 1 u du u 5 C (4 3 Ln x)5 C 3 15 15
17
60.
4 dx
cos x 1 sen 2x 2cos 2 x 4 dx
cos x 1 sen 2x 2cos x Hacemos : tg x t 1 cos x 1 t 2 t sen x 1 t 2 dt dx 1 t 2 2
4 dx
cos x 1 2 sen x cos x 2 cos x 2
1 t 2
t
x 1
4 dt
4 dx cos x 1 sen 2x 2cos 2 x
1 t 2 1
t
1 2(
1 t 2
1 t 2
)(
1 1 t 2
) 2(
1 1 t 2
4 dx cos x 1 sen 2x 2cos x 2
1 t 2 2t 2 1 2 1 t 1 t 2
1 1 t 2
cos x 1 sen 2x 2cos 2 x
4 dx cos x
1 sen 2x 2cos 2 x 4 dx
cos x
1 sen 2x 2cos 2 x
cos x
1 sen 2x 2cos x
cos x 1 sen 2x 2cos 2 x
1
1 t 1 t 4 dt 2
4 dx cos x 1 sen 2x 2cos x 2
1 t
2
t 2t 3 2
2
61.
ex ex 2 ex 6
t 2 2t 3
t 1
2 tg θ θ arc tg (
dt 2 sec 2 θ dθ
t 1 2
t 1
2
2
4 dt (t 1) 2 2
)
(t 1) 2 2
t 1
2
ex ex 2
dx
ex 6
ex ex 2 e 6 x
e
x
e 2 x
e 6 x
Hacemos :
dx
(t 2 2) t
(
2t
t2 26 t2 2
dx 2
(t 2 4) 4 t 4
dx 2t 8
2
dt) 2
t2 t2 4
dt 2 dt 8
dt t 4 2
t t 2 tg θ θ arc tg ( ) 2 dt 2 sec 2 θ dθ
C1
t 2 2t 3 ( t 1) 4 Ln ( 2 ) C1
e x t 2 2 t e x 2 2t e x dx 2 t dt dx dt ex 2t dx dt 2 t 2
1 t 2 Hacemos :
(t 1) 2 2
Hacemos : e x 2 t 2
1 t 2 2t 2
4 dt
2 sec θ
4 Ln (tg x 1) tg 2 x 2 tg x 3 C
2
1 t 2 1
4 Ln
2
4 dt 4 dx
4 Ln
4 dx 1 sen 2x 2cos x 4 dx
2 tg 2 θ 2
2 sec 2 θ dθ
4
4 Ln sec θ tg θ C1
1 sen 2x 2cos 2 x
cos x
2 sec 2 θ dθ
4 sec θ dθ 4 Ln sec θ tg θ C1
4 dx cos x
4
)2
4 dt
4 dx
dt
dt t 4 2
18
e
e 2
x
x
ex 6 e
e 2
x
x
e 6 x
e
ex 2
x
ex 6
dx 2t 8
2
2 sec θ dθ 4 tg 2 θ 4
2t 4
2
sec θ dθ tg 2 θ 1
2t 4
Si x 1
2
sec θ dθ
ex 2 )C 2
x5
x 3 8 dx
62.
5
x
x 3 8 dx (x
2
8x
2
x 8 3
) dx
f 1 (x)
x 1 x
f 2 (x)
x x 1
1 x
dx
dx
arc tg x C1 x 1 x 1 π π f 1 (0) arc tg (0) C1 C1 2 2 π f 1 (x) arc tg x 2 Si x 1 1 x x 1
sec 2 θ
t dx 2t 4 dθ 2t 4θ C 2t 4 arc tg ( ) C 2 dx 2 e x 2 4 arc tg (
1 x 2
x 1 2
dx
2
2x 1 x 1 2
dx
f 2 (x) Ln (x 1) arc tg x C 2
1 3 8 3x x dx 3 3 3 x 8
Como f (x) es comtinua en R
Hacemos : u x 8
63.
Lim [ arc tg x
du 3 x 2 dx x5 1 8 du 1 3 8 1 8 dx x 3 x Ln u C x 3 Ln x 3 8 C 3 3 3 u 3 3 3 3 x 8
x 1
arc tg (1) π π 4 2
1 tg x sen 2x dx
sen x 1 1 tg x cos x sen x cos x sen 2x dx 2 sen x cos x dx 2 sen x cos 2 x dx 1 tg x dx 1 dx dx 1 2 sen 2x dx 2 sen x cos x 2 cos 2 x sen 2x 2 sec x dx 1 tg x 1 1 1 2 sen 2x dx csc 2x dx 2 sec x dx 2 csc 2x (2dx) 2 tg x Hacemos : u 2x
1 tg x
sen 2x
1 tg x
sen 2x
du 2 dx 1 1 1 1 dx csc u du tg x Ln csc u ctg u tg x C 2 2 2 2 1 1 dx Ln csc 2x ctg 2x tg x C 2 2
64. Una función f: R R, es continua en R y satisface: f (0) = –π/2 y
f ' (x)
x 1 x x 2 1
. Hallar f (x).
x 1
dx
dx x 1 2
2
2
3
2x 2
π 2
Lim f 1 (x) Lim f 2 (x)
x 1
x 1
π ] Lim [ Ln (x 2 1) arc tg x C 2 ] 2 x 1
Ln [ (1) 2 1] arc tg (1) C 2 π 4
Ln 2 C 2 C 2 Ln 2
f 2 (x) Ln (x 2 1) arc tg x Ln 2
65.
π , x 1 f 1 (x) arc tg x 2 f (x) f (x) Ln (x 2 1) arc tg x Ln 2 , x 1 2
sen x
cos 2 x dx
Hacemos : u cos x du sen x dx sen x sen x du cos 2 x dx cos 2 x dx u 2 sen x 1 cos 2 x dx cos x C sec x C
1 u
C
19 III. INTEGRACIÓN POR PARTES
1.
Ln
dx
Hacemos :
u Ln x
dv dx
e
dx du v x x Ln dx x Ln x dx x Ln x x C 2.
u x 2 3x 1
ax
v1
cos bx
(1
v
(
4.
a
2
b2 b2
e
ax
e
ax
e ax a ax a2 sen bx e cos bx b b2 b2 a2 b2
ax e cos bx dx
e ax
) e ax cos bx dx
a 2 b2
b2
) e ax cos bx dx
cos bx dx ( cos bx dx
b2
)
a 2 b2 e ax
cos bx dx
v
e ax a ax sen bx e cos bx C1 b b2
e ax b2 e ax b2
(b sen bx a cos bx) C1 (b sen bx a cos bx) C
(b sen bx a cos bx) C
a 2 b2
u ctg x
dv ctg x csc x dx v csc x
csc x dx Ln csc x ctg x csc x ctg x csc 2 csc 3 x dx Ln csc x ctg x csc x ctg x C1
1 b
e ax a sen bx e ax sen bx dx b b
5.
cos bx dx
3
3
sen bx
ax
csc x dx 3 2 2 csc x dx csc x csc x dx (1 ctg x) csc x dx 3 2 csc x dx csc x dx ctg x csc x dx 3 2 csc x dx Ln csc x ctg x ctg x csc x dx Hacemos :
dv cos bx dx
e
(b sen bx a cos bx) C1
du csc x dx u e ax
1 b
e ax a e ax a sen bx ( cos bx e ax cos bx dx ) b b b b
2
du a e ax dx
e
du 1 a e ax dx
cos bx dx
cos bx dx
Hacemos :
ax
ax
dv e 2x dx
1 2x e 2 1 2x 2 1 2 2x 2x (x 3x 1) e dx 2 e (x 3x 1) 2 (2x 3) e dx 1 2x 2 3 2x 2 2x (x 3x 1) e dx 2 e (x 3x 1) (x 2 ) e dx 3 Hacemos : u1 x dv1 e 2x dx 2 1 du 1 dx v1 e 2x 2 1 1 2x 3 1 2x 2 2x 2x 2 (x 3x 1) e dx 2 e (x 3x 1) 2 e (x 2 ) 2 e dx 1 2x 2 1 2x 3 1 2x 2 2x (x 3x 1) e dx 2 e (x 3x 1) 2 e (x 2 ) 4 e C 1 2x 2 2 2x (x 3x 1) e dx 2 e (x 2x 2) C
e
sen bx dx
ax e cos bx dx
du (2x 3) dx
3.
dv1
u1
ax e cos bx dx
2 2x (x 3x 1) e dx
Hacemos :
e ax
Hacemos :
csc
3
x dx
sec
3
x dx
3
1 1 Ln csc x ctg x csc x ctg x C 2 2
x dx
20
sec x 3 sec x 3 sec x 3
dx sec x sec x dx (1 tg x) sec x dx 2
u tg x
dv tg x sec x dx
du sec x dx
v sec x
sec x dx Ln sec x tg x sec x tg x sec 2 sec 3 x dx Ln sec x tg x sec x tg x C1 3
sec
3
x dx
sec
5
x dx
3
x dx
x arc tg x dx
u sec 3 x
dv sec 2 x dx v tg x
sec x dx sec x tg x 3 sec x tg x dx 5 3 3 2 sec x dx sec x tg x 3 sec x (sec x 1) dx 5 3 3 5 sec x dx sec x tg x 3 sec x dx 3 sec x dx 4 sec 5 x dx sec 3 x tg x 3 sec 3 x dx 5
3
3
8.
2
I
I sec 3 x dx 1 1 I Ln sec x tg x sec x tg x C1 (Idem Prob. 5 - Int. por partes) 2 2 1 1 4 sec 5 x dx sec 3 x tg x 3 [ Ln sec x tg x sec x tg x C1 ] 2 2 3 3 4 sec 5 x dx sec 3 x tg x Ln sec x tg x sec x tg x 3C1 2 2 1 3 3 5 3 sec x dx 4 sec x tg x 8 sec x tg x 8 Ln sec x tg x C
x arc tg x dx
x arc tg x dx x arc tg x dx
du 3 sec 3 x tg x dx
7.
x arc tg x dx
1 1 Ln sec x tg x sec x tg x C 2 2
Hacemos :
dx
dv x dx v
1 2 x 2
1 x 1 2 1 x2 x arc tg x dx x arc tg x dx 2 2 1 x 2
dx Ln sec x tg x tg 2 x sec x dx 2
6.
du
dx sec x dx tg 2 x sec x dx
Hacemos :
u arc tg x
Hacemos :
2
2
1 2 1 (1 x 2 ) 1 x arc tg x dx 2 2 1 x 2 1 2 1 1 dx x arc tg x dx 2 2 2 1 x 2 1 2 1 1 x arc tg x x arc tg x C 2 2 2 1 2 1 (x 1) arc tg x x C 2 2
cos x x sen x 1 (sen x x) 2
cos x x sen x 1 (sen x x) 2 cos x x sen x 1
dx
dx dx
cos x x sen x (sen 2 x cos 2 x)
dx (sen x x) 2 cos x (cos x 1) sen x (sen x x )
dx (sen x x) 2 cos x (cos x 1) cos x x sen x 1 sen x (sen x x) 2 dx (sen x x) 2 dx sen x x dx (sen x x) 2
I
I
cos x (cos x 1) (sen x x) 2
Hacemos :
dx
u cos x du sen x dx
I
cos x sen x dx sen x x sen x x
dv
cos x 1
(sen x x) 2 1 v sen x x
dx
21
cos x x sen x 1
cos x sen x sen x dx dx dx sen x x sen x x sen x x
(sen x x) cos x x sen x 1 2
(sen x x)
dx
2
Hacemos :
cos x C sen x x
I
I
2
I e Ln x dx dv e dx x
I e x Ln x
x e arc tg x (1 x )
xe
arc tg x
dx
(1 x 2 ) 3/2
v ex
ex dx x
e x ( 1 x Ln x ) dx e x Ln x C x
10.
x e arc tg x
(1 x 2 ) 3/2
u
x e arc tg x
dx
x
dv
1 x 2 dx (1 x 2 ) 3/2
x e arc tg x 1 x
2
v
e arc tg x 1 x 2
e arc tg x
e arc tg x (1 x )
2 3/2
dx
12.
I
e
(1 x 2 ) 3/2
dx
e arc tg x
x e arc tg x (1 x 2 ) 3/2
dx
e arc tg x C
2
dv
x2
dx
senh 2 x
dx
e sen x (x cos 3 x sen x) cos 2 x
e sen x (x cos 3 x sen x) 2
cos x
dx
cos x dx
x senh x
(x cosh x senh x) 2 1 v x cosh x senh x
senh x dx x (x cosh x senh x) x2
senh x 1 C x (senh x x cosh x) x
dx dx x e sen x cos x dx e sen x I1
I1 x e
dx
e arc tg x C1
2
senh 2 x
sen x
1 x 2
dx
I arc tg x
1 x 2
x cosh x senh x
(x cosh x senh x) 2
dx
e arc tg x
senh x x
(x cosh x senh x) 2
du
(1 x 2 ) 3/2
1 x
2 1 x
du
dx
Hacemos :
x 1 x 1
u
Hacemos :
1 x 2
(x cosh x senh x) 2
e x ( 1 x Ln x ) ex ex dx dx e x Ln x dx x x x
v1
e arc tg x
dx
x e arc tg x
senh 2 x
11.
dx
arc tg x
dx
2 3/2
(1 x )
2 3/2
(1 x 2 ) 3/2
dx
(1 x 2 ) 3/2
x
dx du x
1 x 2
xe
x e arc tg x
e x ( 1 x Ln x ) ex dx dx e x Ln x dx x x
u Ln x
e
arc tg x
dv1
1 x 2 x
du 1
e x ( 1 x Ln x ) 9. dx x
Hacemos :
1
u1
sen x cos 2 x I2
dx
dx
22
ux
Hacemos :
dv e
du dx
I1 x e I2
sen x
e sen x
e
sen x
sen x
u1
v e sen x
e
sen x
13.
2
cos x e
sen x
(x cos x sen x) 3
2
cos x e
sen x
(x cos 3 x sen x) cos 2 x
e
sen x
(x cos x sen x) 3
2
v1
dx
cos 2 x 1 v1 cos x
(7 x 3x
e sen x e sen x dx ) cos x
15.
e e sen x dx cos x
e sen x dx x e sen x C x e sen x e sen x sec x C cos x dx ( x sec x) e sen x C
16.
u Ln x
v
Hacemos :
2
1 3 x 3
u 7 x 3x
du (1 6x) dx
dv e
dx (3x 2 5x 2) e x C
ux du dx
x
dx
v e x
dv sec 2 x dx v tg x
2
x dx x tg x tg x dx x tg x
x sec
2
x dx x tg x Ln cos x C
arc sen (2x)
sen x dx cos x
dx
u arc sen (2x) 2 1 4x 2
dv dx vx
dx
arc sen (2x)
dx x arc sen (2x)
arc sen (2x)
dx x arc sen (2x)
2x
dx 1 4x 2 1 8x dx arc sen (2x) dx x arc sen (2x) 4 1 4x 2
) e x dx 2
dx (3x 2 x 7) e x (6x 1) e x 6 e x C
du
Ln x dx
(7 x 3x
x
x sec
dv x dx
dx x
e x
x dx
2
1 3 1 x Ln x x 2 dx 3 3 1 1 3 1 3 2 3 x Ln x dx 3 x Ln x 9 x C 9 x (3 Ln x 1) C
14.
2
Hacemos :
du 2
x sec
v1
1 ) e x dx (7 x 3x 2 ) e x 6 (x ) e x 6 e x dx 6
Hacemos :
sen x
2 x Ln x dx
x
2 2
dx x e sen x e sen x dx ( dx x e sen x e sen x dx
2
(7 x 3x ) e 2 x (7 x 3x ) e
cos x
Hacemos :
) e x dx (7 x 3x 2 ) e x (6x 1) e x dx
du 1 dx
sen x
e sen x e sen x dx cos x
e sen x (x cos 3 x sen x)
2
1 ) e x dx (7 x 3x 2 ) e x 6 (x ) e x dx 6 1 x Hacemos : u1 x dv1 e dx 6
(7 x 3x
dx
du 1 e sen x cos x dx
I2
(7 x 3x
cos x dx
dx
cos 2 x
Hacemos :
sen x
17.
Ln x x3
dx
1 1 4x 2 C 2
23
u Ln x
Hacemos :
dv
dx x
dx du x
18.
Ln x 3
x Ln x x3
dx
Ln x
v
20.
3
Hacemos : 1
2x Ln x
Ln (x
2x 2
dx
u Ln (x 1 x 2 ) du
dx 1 x 2
sen (Ln x) dx v1 x x sen (Ln x) dx x sen (Ln x) x cos (Ln x) sen (Ln x) dx 2 sen (Ln x) dx x sen (Ln x) x cos (Ln x) C1 1
sen (Ln x) dx 2 x [sen (Ln x) cos (Ln x)] C1
vx
x
dx
1 x 2 1 2x 2 2 dx Ln (x 1 x ) dx x Ln (x 1 x ) 2 1 x 2
Ln (x 19.
1 x 2 ) dx x Ln (x 1 x 2 ) 1 x 2 C
cos (Ln x) dx Hacemos :
u cos (Ln x)
dv dx
sen (Ln x) dx vx x cos (Ln x) dx x cos (Ln x) sen (Ln x) dx
21.
x arc tg
u 1 sen (Ln x)
dv1 dx
cos (Ln x) du 1 dx v1 x x cos (Ln x) dx x cos (Ln x) x sen (Ln x) cos (Ln x) dx
2 cos (Ln x) dx x cos (Ln x) x sen (Ln x) C1 1
cos (Ln x) dx 2 x [cos (Ln x) sen (Ln x)] C
2
Hacemos :
x arc tg
2
x dx u arc tg 2 x 2 arc tg x du dx 1 x 2
x dx
Hacemos :
u 1 arc tg x dx 1 x 2
1 2 x arc 2 1 2 2 x arc tg x dx 2 x arc 1 2 2 x arc tg x dx 2 x arc 1 2 2 x arc tg x dx 2 x arc
x arc tg
2
x dx
dv x dx v
1 2 x 2
x 2 arc tg x 1 2 x arctg 2 x dx 2 1 x 2
du 1
du
Hacemos :
dv1 dx
du 1
dv dx
2 2 Ln (x 1 x ) dx x Ln (x 1 x )
dv dx
u 1 cos (Ln x)
Hacemos :
1 x 2 ) dx
Hacemos :
u sen (Ln x)
cos (Ln x) du dx vx x sen (Ln x) dx x sen (Ln x) cos (Ln x) dx
dx 2 x3 1 1 2 Ln x dx C C 2 2 2x 4x 4x 2 2
sen (Ln x) dx
dv1
x2 1 x 2
dx
v1 x arc tg x
tg 2 x x arc tg x arc tg 2 x
x arc tg x
dx 1 x 2 arc tg x x tg 2 x x arc tg x arc tg 2 x dx dx 2 1 x 1 x 2 arc tg x 1 2x tg 2 x x arc tg x arc tg 2 x dx dx 2 2 1 x 1 x 2 arc tg x 1 tg 2 x x arc tg x arc tg 2 x Ln (1 x 2 ) dx 2 1 x 2 I
24
I
arc tg x 1 x
2
Hacemos :
u2 du 2
arc tg x
dx
1 x arc tg x I arc tg 2 x dx 1 x 2
2
dv 2 v2
dx 1 x
Hacemos :
1 I arc tg 2 x C 2 2 1 2 1 1 2 2 2 2 2 x arc tg x dx 2 x arc tg x x arc tg x arc tg x 2 Ln (1 x ) 2 arc tg x C 1 2 2 2 2 x arc tg x dx 2 [ (x 1) arc tg x 2x arc tg x Ln (1 x ) ] C 2
u Ln (Ln x) du
arc tg x
dv
x dx
u arc sen 2 x dv dx 2 arc sen x du dx vx 1 x 2 x arc sen x 2 2 dx arc sen x dx x arc sen x 2 1 x 2 2x arc sen x 2 2 dx arc sen x dx x arc sen x 1 x 2 2x Hacemos : u 1 arc sen x dv1 dx 1 x 2 dx du 1 v1 2 1 x 2 2 1 x Hacemos :
arc sen
2
x dx x arc sen 2 x 2 1 x 2 arc sen x 2 dx
arc sen
2
x dx x arc sen 2 x 2 1 x 2 arc sen x 2x C
dx x Ln x
dx x
v Ln x
Ln (Ln x) dx dx Ln x Ln (Ln x) x x Ln (Ln x) x dx Ln x Ln (Ln x) Ln x C Ln x [ Ln (Ln x) 1 ] C
2 I arc tg 2 x C1
arc sen
Ln (Ln x) dx x
2
I arc tg 2 x I
22.
23.
dx
24.
x 1
x Ln ( x 1) dx Hacemos :
u Ln ( du
x 1
2 x 1 2
x 1 x 1
x Ln ( x 1) dx x 1
x Ln ( x 1) dx x 1
x Ln ( x 1) dx x 1
x Ln ( x 1) dx x 1
x Ln ( x 1) dx x 1
x Ln ( x 1) dx x 1
x Ln ( x 1) dx
dx
dv x dx v
1 2 x 2
(x 2 1) 1 x 1 x2 1 x 1 ) dx x 2 Ln ( ) dx x 1 2 x 1 x 2 1 x 2 1 1 2 x 1 dx x Ln ( ) dx 2 2 x 1 x 1 1 2 x 1 dx x Ln ( )x 2 x 1 (x 1)(x 1) 1 2 x 1 1/2 1/2 x Ln ( ) x [ ] dx 2 x 1 x 1 x 1 1 2 x 1 1 dx 1 dx x Ln ( )x 2 x 1 2 x 1 2 x 1 1 2 x 1 1 1 x Ln ( ) x Ln (x 1) Ln (x 1) C 2 x 1 2 2 1 2 x 1 1 x Ln ( ) x [ Ln (x 1) Ln (x 1) ] C 2 x 1 2 1 2 x 1 1 x 1 x Ln ( ) x Ln ( )C 2 x 1 2 x 1 1 2 x 1 (x 1) Ln ( )xC 2 x 1 1
x Ln ( x 1) dx 2 x x Ln ( x 1) dx
x 1 ) x 1
2
Ln (
25
x
2
(x cos x sen x) 2
25.
dx
27. x sen x
x2
x
(x cos x sen x) 2 dx (x cos x sen x) 2 . sen x dx u
Hacemos :
du x2
(x cos x sen x) 2 x2
(x cos x sen x) 2 x2
(x cos x sen x) 2
26.
(x 2 1) e x (x 1) 2
Hacemos :
x sen x sen x x cos x sen 2 x
(x cos x sen x) 1 v x cos x sen x
dx
dx
x dx sen x (x cos x sen x) sen 2 x
dx
x csc 2 x dx sen x (x cos x sen x)
dx
dv
(x 2 1) e x (x 1) 2 Hacemos :
dx u1
x 1
du 1 dx
(x 2 1) e x (x 1) 2 (x 2 1) e x (x 1)
2
x ex
(1 x) 2 28.
dv1 v1
dx
x arc tg
(1 x) 2 1 v 1 x
x x x x ex e e x dx e ex C C 1 x 1 x 1 x
u arc tg x 2 1 du
dv x dx
dx
v
1 2 x 2
x x 1 1 2 1 x 2 2 x arc tg x 1 dx 2 x arc tg x 1 2 2 dx x 1 1 2 1 2x 2 2 x arc tg x 1 dx 2 x arc tg x 1 4 2 dx x 1
x arc tg 29.
x 2 1 dx
x arc sen x
(1 x 2 ) 3/2 Hacemos :
e x dx e
dx
x 2 1 dx
Hacemos :
2
x 2 1 x e (x 1) e x dx x 1
dv
du (x 1) e x dx
dx
(x 1) 1 v x 1
u x ex
dx
dx
du (x 1) 2 e x dx
2
x ctg x C sen x (x cos x sen x)
u (x 2 1) e x
dx
Hacemos :
x sen x
dv
x ex
(1 x) 2
x arc sen x
u arc sen x
dx
x 2 1 x e (x 1) e x e x dx x 1
(1 x 2 ) 3/2
dx
dx
x 2 1 x x 1 x e (x 1) e x e x C e C x 1 x 1
(1 x 2 ) 3/2
x arc sen x
dx
x arc sen x
dx
(1 x 2 ) 3/2
1 2 1 x arc tg x 2 1 x 2 1 C 2 2
dx
du
x
2
dx
1 x 2 arc sen x
dv v
dx
(1 x 2 ) 3/2 1
1 x 2 arc sen x
dx
dx
x 1 1 x 1/2 1/2 arc sen x 1 dx 1 dx [ ] dx 2 2 x 1 x 1 2 x 1 2 x 1 1 x 1 x arc sen x 1 1 Ln ( x 1) Ln ( x 1) C 2 2 2 1 x 1 x arc sen x 2
1 x
x
2
2
2
26
x arc sen x
(1 x 2 ) 3/2 30.
arc tg x x2
dx
1 x 1 Ln ( )C 2 x 1 1 x 2
3 3 Ln csc x ctg x csc x ctg x 3C1 2 2 1 3 3 5 3 csc x dx 4 csc x ctg x 8 csc x ctg x 8 Ln csc x ctg x C
arc sen x
4 csc 5 x dx csc 3 x ctg x
dx
Hacemos :
u arc tg x du
dx
dv
dx
x2 1 v x
31.
csc
dv csc 2 x dx
du 3 csc 3 x ctg x dx
2
x
3
3
1 x 2 x
v ctg x
csc x dx csc x ctg x 3 csc x ctg x dx 5 3 3 2 csc x dx csc x ctg x 3 csc x (csc x 1) dx 5 3 3 5 csc x dx csc x ctg x 3 csc x dx 3 csc x dx 4 csc 5 x dx csc 3 x ctg x 3 csc 3 x dx 5
1 x 2 x
2
I
I csc 3 x dx 1 1 Ln csc x ctg x csc x ctg x C1 (Idem Prob. 4 - Int. por partes) 2 2 1 1 5 3 4 csc x dx csc x ctg x 3 [ Ln csc x ctg x csc x ctg x C1 ] 2 2
I
u Ln (
x 1 ) x 1
2 1 x 2
dx
dv
x 1 x 2
dx
v 1 x 2
x 1 x 1 dx ) dx 1 x 2 Ln ( )2 x 1 x 1 1 x 1 x 2 x x 1 x 1 dx Ln ( ) dx 1 x 2 Ln ( )2 2 x 1 x 1 1 x 1 x 2 Hacemos : x sen θ θ arc sen x x
u csc 3 x
1 x 2
x 1 ) dx x 1
du
x dx
Hacemos :
Ln (
Hacemos :
1 x 2 arc tg x arc tg x arc tg x dx 1 1/2 (2 x ) x 2 dx x x (1 x 2 ) x [ x 1 x 2 ] dx arc tg x arc tg x dx 1 2x x 2 dx x x 2 1 x 2 dx arc tg x arc tg x 1 2 x 2 dx x Ln x 2 Ln (1 x ) C arc tg x arc tg x arc tg x x 2 )C x 2 dx x Ln x Ln 1 x C x Ln ( 1 x 2 5
x
32.
33.
1 x x
2
1 x x
2
1 x
2
e
2x
Ln (
dx cos θ dθ x 1 x 1 cos θ Ln ( ) dx 1 x 2 Ln ( )2 dθ x 1 x 1 1 sen 2 θ x 1 x 1 cos θ Ln ( ) dx 1 x 2 Ln ( )2 dθ x 1 x 1 cos θ Ln (
x 1 x 1 ) dx 1 x 2 Ln ( ) 2 dθ x 1 x 1
Ln (
x 1 x 1 ) dx 1 x 2 Ln ( ) 2θ C x 1 x 1
Ln (
x 1 x 1 ) dx 1 x 2 Ln ( ) 2 arc sen x C x 1 x 1
cos (e x ) dx
Hacemos :
u ex du e x dx
e
2x
dv e x cos (e x ) dx v sen (e x )
cos (e x ) dx e x sen (e x ) e x sen (e x ) dx e x sen (e x ) e x sen (e x ) dx
27
e
2x
e
34.
cos (e ) dx e sen (e ) cos (e ) C x
ax
x
x
x
u e ax
dv sen bx dx
du a e ax dx
e
ax
sen bx dx
Hacemos :
u1
e
ax
cos bx
b
e
v
ax
du 1 a e ax dx
e
ax
sen bx dx
ax e sen bx dx ax e sen bx dx
(1 (
a2 b2 b2
35.
Ln (
Hacemos :
arc tg
u Ln ( x 1 x ) dx du 2 x 1 x
dv dx v
Ln (
x 1 x ) dx x Ln ( x 1 x )
ax e sen bx dx
e ax b2
b2 a 2 b2 e ax
a 2 b2
)
e
ax
e ax a ax cos bx e sen bx C1 b b2
(a sen bx b cos bx) C1
e ax b2 e ax b2
37.
sen
x 1 dx x arc tg x 1
2
(Ln x) dx
Hacemos :
u sen 2 (Ln x) du
dv dx v
2 (x 2) x 1
dv dx
2 sen (Ln x) cos (Ln x) dx x
v
x
sen (Ln x) dx x sen (Ln x) 2 sen (Ln x) cos (Ln x) dx 2 2 sen (Ln x) dx x sen (Ln x) sen (2 Ln x) dx 2
x x
dx 2 x 1 x 1/2 (2x 1) 1/2
1 1 x 2 x Ln ( x 1 x ) C 2 2 2x 1 1 2 Ln ( x 1 x ) dx ( 2 ) Ln ( x 1 x ) 2 x x C
(a sen bx b cos bx) C
u arc tg x 1 dx du 2 (x 2) x 1
x
x 1 x ) dx x Ln ( x 1 x )
Ln (
(a sen bx b cos bx) C1
(a sen bx b cos bx) C
x
dx 2 x 1 x 1 2x 1 1 dx Ln ( x 1 x ) dx x Ln ( x 1 x ) 4 x 1 x dx 2 2 x 1 x 1 2x 1 1 dx Ln ( x 1 x ) dx x Ln ( x 1 x ) 4 2 dx 2 2 x 1 x x x
sen bx dx
arc tg x 1 dx Hacemos :
x 1 x ) dx
e ax a ax a2 cos bx e sen bx b b2 b2
) e ax sen bx dx
e sen bx dx
36.
x 1 dx ( x 2) arc tg x 1 x 1 C
x 1 x ) dx x Ln ( x 1 x )
b2
ax
v1
1 sen bx b
x 1 dx x arc tg x 1 x 1 2 arc tg x 1 C
Ln (
a2
ax e sen bx dx (
a ax e cos bx dx b
cos bx dx
arc tg arc tg
e ax a e ax a cos bx ( sen bx e ax sen bx dx ) b b b b
) e ax sen bx dx
a 2 b2
1 b
cos bx
dv1
x 1 dx x arc tg x 1
dx 2 (x 2) x 1 1 dx dx arc tg x 1 dx x arc tg x 1 2 x 1 2 2 (x 2) x 1
sen bx dx
Hacemos :
(x 2) 2
arc tg
2
I
dx
I sen (2 Ln x) dx
Hacemos :
I
dv1 dx
2 cos (2 Ln x) du 1 dx x x sen (2 Ln x) 2 cos (2 Ln x) dx
Hacemos :
I
u 1 sen (2 Ln x)
u 2 cos (2 Ln x)
28
(x 2 sen 2 x)
x sen x cos x x cos x sen x
v1 x
Hacemos : dv 2 dx
x sen x cos x x cos x sen x
5I x sen (2 Ln x) 2x cos (2 Ln x) C1
1 2 I x sen (2 Ln x) x cos (2 Ln x) C 2 5 5 1 2 2 2 sen (Ln x) dx x sen (Ln x) 5 x sen (2 Ln x) 5 x cos (2 Ln x) C
(e sen x cos 4 x) 1 cos 3 x
(e sen x cos 4 x) 1 cos 3 x (e sen x cos 4 x) 1 cos 3 x
(x 2 sen 2 x)
dx e
sen x
x sen x cos x x cos x sen x
cos x dx sec x dx 3
sec x dx 3
40. I
I sec x dx
(e sen x cos 4 x) 1 3
cos x
39.
1 1 Ln sec x tg x sec x tg x C1 (Idem Prob. 5 - Int. por partes) 2 2 dx e
sen x
1 1 Ln sec x tg x sec x tg x C 2 2
(x 2 sen 2 x) dx x sen x cos x x cos x sen x
(x 2 sen 2 x) (x sen x) (x sen x) dx dx x sen x cos x x cos x sen x (x sen x) (1 cos x)
dx
(x sen x) (1 cos x) cos x C1 sen x
dx x csc x x ctg x 1 cos x cos x C1
(x 2 sen 2 x) dx x (csc x ctg x ) C x sen x cos x x cos x sen x
(arc cos x Ln x) dx Hacemos :
u arc cos x Ln x
dv dx
x 1 x 2
v x
3
I
(x sen x) (1 cos x) sen 2 x dx sen x sen x
(x 2 sen 2 x) x x cos x sen x sen x cos x dx cos x C1 x sen x cos x x cos x sen x sen x (x 2 sen 2 x)
sen x
dx
(x 2 sen 2 x) (x sen x) (1 cos x) dx sen x dx x sen x cos x x cos x sen x sen x
x sen x cos x x cos x sen x
dx
dx e
(x 2 sen 2 x) (x sen x) (1 cos x) 1 cos 2 x dx dx x sen x cos x x cos x sen x sen x sen x (x 2 sen 2 x)
I x sen (2 Ln x) 2x cos (2 Ln x) 4I
38.
u x sen x du (1 cos x) dx
2 sen (2 Ln x) du 2 dx v2 x x x sen (2 Ln x) 2x cos (2 Ln x) 4 sen (2 Ln x) dx
x sen x dx 1 cos x dx dv 1 cos x 1 cos x v sen x
dx
du
x 1 x 2
dx
(arc cos x Ln x) dx x arc cos x x Ln x
x 1 x 2
(arc cos x Ln x) dx x arc cos x x Ln x
1 x 2 x C
dx 1 x 2 x dx dx (arc cos x Ln x) dx x arc cos x x Ln x 1 x 2 1 2x dx dx (arc cos x Ln x) dx x arc cos x x Ln x 2 1 x 2
29
(arc cos x Ln x) dx x arc cos x x ( Ln x 1 )
1 1 x3 arc sen ( ) dx x 4 arc sen ( ) dx x x x 2 1 x Hacemos : u1 x 2 dv1 dx x 2 1
1 x C 2
4x
41. Si f ’’(x) = – a f (x) y g’’(x) = b g (x) donde a y b son constantes encontrar la integral:
f (x) g ' ' (x) Hacemos :
dx
u f (x)
Hacemos :
v g ' (x)
u 1 f ' (x)
dv1 g ' (x) dx v1 g (x)
4x
dx f (x) g ' (x) f ' (x) g (x) f ' ' (x) g (x) dx
Como : f ' ' (x) a f (x) g ' ' (x) b g (x)
43.
g (x)
1 g ' ' (x) b
1 f (x) g ' ' (x) dx f (x) g ' (x) f ' (x) g (x) [ a f (x) ] [ b g ' ' (x) ] dx a f (x) g ' ' (x) dx f (x) g ' (x) f ' (x) g (x) b f (x) g ' ' (x) dx a f (x) g ' ' (x) dx b f (x) g ' ' (x) dx f (x) g ' (x) f ' (x) g (x) C1 a (1 ) f (x) g ' ' (x) dx f (x) g ' (x) f ' (x) g (x) C1 b ab ( ) f (x) g ' ' (x) dx f (x) g ' (x) f ' (x) g (x) C1 b b f (x) g ' ' (x) dx a b [ f (x) g ' (x) f ' (x) g (x) ] C
Hacemos :
1 u arc sen ( ) x dx du x x 2 1
3
x4
x 2 1 2x x 2 1 dx x 2 1
2 2 (x 1) 3/2 C 3
1 1 x2 2 arc sen ( ) dx x 4 arc sen ( ) ( ) x 2 1 C x x 3
x arc tg x
(1 x 2 ) 4
dx
u arc tg x
Hacemos :
du x arc tg x
(1 x 2 ) 4
dx
x
dv
dx (1 x 2 ) 4 1 v 6 (1 x 2 ) 3
dx 1 x 2 arc tg x
6 (1 x )
2 3
1 dx 6 (1 x 2 ) 4 I
I
I
dx (1 x 2 ) 4
(1 x 2 ) x 2 (1 x 2 ) 4
dx
dx (1 x 2 ) 3
u1 x
dv1
I
dx (1 x )
2 3
x2 (1 x 2 ) 4 x
dx (1 x 2 ) 4 1 v1 6 (1 x 2 ) 3
du 1 dx
dv 4x 3 dx v
x 2 1
3
Hacemos :
1 42. 4x 3 arc sen ( ) dx x
v1
1 1 arc sen ( ) dx x 4 arc sen ( ) x 2 x x 1 1 3 4 2 4x arc sen ( x ) dx x arc sen ( x ) x
4x
dx f (x) g ' (x) f ' (x) g ' (x) dx
du 1 f ' ' (x) dx
f (x) g ' ' (x)
du 1 2x dx
dv g ' ' (x) dx
du f ' (x) dx
f (x) g ' ' (x)
3
x 6 (1 x )
2 3
1 dx 6 (1 x 2 ) 3
dx
30
I I
x 6 (1 x 2 ) 3 x 6 (1 x 2 ) 3
5 dx x 5 (1 x ) x 6 (1 x 2 ) 3 6 (1 x 2 ) 3 6 (1 x 2 ) 3
5 dx 5 x2 dx 6 (1 x 2 ) 2 6 (1 x 2 ) 3
2
u2 x
Hacemos :
I I I
x
x 6 (1 x )
2 3
x 6 (1 x 2 ) 3
5x 24 (1 x )
2 2
5x 24 (1 x 2 ) 2
x
5 (1 x 2 ) x 2 dx 8 (1 x 2 ) 2 5 dx 5 x2 dx 8 1 x 2 8 (1 x 2 ) 2
x
dv 3
du 3 dx
5x
dx
(1 x 2 ) 2 1 v3 2 (1 x 2 )
5 dx 5x 5 dx 2 3 2 2 2 2 8 16 6 (1 x ) 24 (1 x ) 1 x 16 (1 x ) 1 x 2 x 5x 5x 5 dx I 2 3 2 2 2 6 (1 x ) 24 (1 x ) 16 (1 x ) 16 1 x 2 Hacemos : x tg θ θ arc tg x I
I
x 6 (1 x 2 ) 3 x 6 (1 x 2 ) 3
5x 24 (1 x 2 ) 2 5x 24 (1 x 2 ) 2
x 6 (1 x ) x
2 3
6 (1 x ) x
2 3
6 (1 x )
5x 16 (1 x 2 ) 5x 16 (1 x 2 )
5 sec 2 θ dθ 16 1 tg 2 θ
5 sec 2 θ dθ 16 sec 2 θ
5x
24 (1 x ) 5x
2 2
24 (1 x ) 5x
2 2
5x 16 (1 x ) 5x 2
16 (1 x ) 5x 2
5 dθ 16
5 θ C1 16
5 arc tg x C1 16
24 (1 x ) 16 (1 x ) arc tg x 1 x 5x 5x 5 (1 x 2 ) 4 dx 6 (1 x 2 ) 3 6 [ 6 (1 x 2 ) 3 24 (1 x 2 ) 2 16 (1 x 2 ) 16 arc tg x C1 ] x arc tg x arc tg x x 5x 5x 5 (1 x 2 ) 4 dx 6 (1 x 2 ) 3 36 (1 x 2 ) 3 144 (1 x 2 ) 2 96 (1 x 2 ) 96 arc tg x C 2 3
2 2
2
x arc tg x
44.
x 4 x arc tg x (1 x 2 ) 2
x 4 x arc tg x (1 x )
2 2
dx
dx
x4 (1 x )
2 2
dx
I1
I1
x
(1 x 2 ) 2
du 3x 2 dx
I1
(1 x 2 ) 2
dx
I2
dx
u x3
Hacemos :
I1
x arc tg x
4
dx sec 2 θ dθ I
I
u3 x
Hacemos :
I
dx
5 dx 5x 5 dx 2 2 2 2 6 (1 x ) 24 (1 x 2 ) 2 6 (1 x ) 24 (1 x ) x 5x 5 dx 2 3 2 2 8 6 (1 x ) 24 (1 x ) (1 x 2 ) 2 2 3
I
dx
(1 x 2 ) 3 1 v2 4 (1 x 2 ) 2
du 2 dx I
x
dv 2
2
x3 2 (1 x 2 ) x3
dv
x
dx (1 x 2 ) 2 1 v 2 (1 x 2 )
3 x2 x3 3 (1 x 2 ) 1 dx 1 x 2 dx 2 1 x 2 2 (1 x 2 ) 2
3 3 dx x3 3 3 dx dx x 2 2 2 1 x 2 2 2 2 (1 x ) 1 x 2
2 (1 x 2 ) Hacemos : x tg θ θ arc tg x
dx sec 2 θ dθ x3 3 3 sec 2 θ x3 3 3 sec 2 θ I1 x dθ x dθ 2 1 tg 2 θ 2 sec 2 θ 2 (1 x 2 ) 2 2 (1 x 2 ) 2
31
I1 I1 I2
x
3
2 (1 x ) 2
x
3
2 (1 x ) 2
x arc tg x
3
3 3 x 3 3 x dθ x θ C1 2 2 2 2 2 2 (1 x ) 3 3 x arc tg x C1 2 2
dx
(1 x )
2 2
u 1 arc tg x
Hacemos :
du 1
x
dv1
dx (1 x 2 ) 2 1 v1 2 (1 x 2 )
dx 1 x 2
arc tg x 1 dx 1 (1 x ) x I2 2 2 2 2 2 2 (1 x ) (1 x ) 2 (1 x ) 2 (1 x 2 ) 2 2
arc tg x
I2
arc tg x 2 (1 x ) 2
1 dx 1 x dx 2 2 1 x 2 (1 x 2 ) 2
dv 2
arc tg x 2 (1 x ) arc tg x 2
dx
(1 x 2 ) 2 1 v2 2 (1 x 2 )
du 2 dx I2
x
1 dx x 1 dx 2 2 2 1 x 4 (1 x ) 4 1 x 2 x
x tg θ θ arc tg x
dx sec 2 θ dθ
46.
1 sec 2 θ I2 dθ 2 (1 x 2 ) 4 (1 x 2 ) 4 1 tg 2 θ arc tg x
x
I2
arc tg x 2 (1 x ) 2
x
x 4 (1 x ) 2
1 θ C2 4
x x arc tg x 4
(1 x )
x 4 x arc tg x
arc tg x 2 (1 x ) 2
x 4 (1 x ) 2
1 arc tg x C 2 4
arc tg x 3 3 x 1 x arc tg x C1 [ arc tg x C 2 ] 2 2 2 2 2 (1 x ) 2 (1 x ) 4 (1 x ) 4 2
x3
arc tg x 3 3 x 1 x arc tg x C1 arc tg x C 2 2 2 2 (1 x ) 2 2 2 (1 x ) 4 (1 x ) 4 2
dx
(1 x )
2 2
arc sen x
x3
dx
2 2
arc tg x 2 (1 x ) 2
arc tg x 2 (1 x ) 2
2x 3 x
4 (1 x ) 2
x (1 2x 2 )
4 (1 x ) 2
3 7 x arc tg x C 2 4
3 7 x arc tg x C 2 4
dx
x
arc sen x x Hacemos :
arc sen x
arc sen x
x
x
e
x
dx 2
arc sen x
2 x u arc sen z
dz 1 z 2
dx 2 arc sen z dz
dv dz v
dx 2z arc sen z 2
z z 1 z 2
x
2z 1 z 2
dz
dx 2z arc sen z 2 1 z 2 C 2 x arc sen x 2 1 x C
u cos 2 x du 2 cos x sen x dx
e
dz 2z arc sen z
cos 2 x dx
Hacemos :
arc tg x 1 sec 2 θ x 1 I2 dθ dθ 2 2 2 2 2 4 2 (1 x ) 4 (1 x ) sec θ 2 (1 x ) 4 (1 x ) 4 arc tg x
(1 x )
2 2
dx
du
1 dx I2 2 2 2 (1 x ) 4 (1 x ) 4 1 x 2 Hacemos :
x x arc tg x 4
dx
Hacemos : z x dx dz 2 x
2
u2 x
Hacemos :
dx
(1 x )
2 2
45.
2
x 4 x arc tg x
dv e x dx v ex
cos 2 x dx e x cos 2 x e x ( 2 sen x cos x ) dx e x cos 2 x e x sen 2x dx I
I e sen 2x dx x
32
Hacemos :
u1
sen 2x
du 1 2 cos 2x dx
dv1
e dx
v1
e
x
Hacemos :
du 1 (x 1) e
x
du 2
x
cos 2x
dv 2
e x dx
2 sen 2x dx
v2
ex
u2
I e x sen 2x 2 e x cos 2x 4 e x sen 2x dx
Hacemos :
u2
I e sen 2x 2 e cos 2x 4I x
x
x
x3
dz
dx
1 1/x dx z x 3 dx x e ( x 2 ) z e dz Hacemos : u z dv e z dz
du dz
48.
x3
cos x dx
xe
x
cos x dx
z
z
z
Hacemos :
(tg x x sec 2 x) 2
u xe
dv cos x dx
du (x 1) e dx x
v sen x
x e cos x dx x e sen x (x 1) e sen x dx x x x x x e cos x dx x e sen x x e sen x dx e sen x dx x
x
x
v2
x
cos x dx sen x
x
dx
dx
u
Hacemos :
x sec 2 x tg x (tg x x sec x) 2
x tg x
2
.
x dx tg x
dv
tg x x sec 2 x 2
dx
v
tg x x 2 sec 2 x
(tg x x sec 2 x) 2 x 2 sec 2 x
x
cos x
1 1 1 x e x sen x x e x cos x e x sen x C 2 2 2 1 1 (x 1) e x sen x x e x cos x C 2 2
du
1 x 1 1/x dx z e e dz z e e C e1/x e1/x C ( )e C x x z
dv 2
x 2 sec 2 x
v ez
x x e cos x dx
x
x
(tg x x sec 2 x) 2
e1/x
e1/x
xe
x 2 sec 2 x
2
v1
2 x e x cos x dx x e x sen x x e x cos x e x sen x C1
49.
x
ex x
dx
1 Hacemos : z x
sen x dx
2 x e cos x dx x e sen x x e cos x e x sen x dx e x sen x e x sen x dx
1 x 2 e sen 2x e x cos 2x C 5 5 1 x 2 x x 2 x 2 e cos x dx e cos x 5 e sen 2x 5 e cos 2x C
47.
x
x
I
e1/x
dv1 dx
x
e x dx
du 2
5I e sen 2x 2 e cos 2x C1 x
x
x e cos x dx x e sen x x e cos x (x 1) e cos x dx e sen x dx x x x x x x x e cos x dx x e sen x x e cos x x e cos x dx e cos x dx e sen x dx 2 x e x cos x dx x e x sen x x e x cos x e x sen x dx e x cos x dx
I e x sen 2x 2 e x cos 2x dx Hacemos :
x ex
u1
(tg x x sec 2 x) 2 2
2
x sec x
(tg x x sec 2 x) 2
dx dx dx
x 2 tg x (tg x x sec x) 2
x 2 tg x (tg x x sec x) 2
x 2 tg x (tg x x sec x) 2
x sec 2 x tg x (tg x x sec 2 x) 2
dx
1 2 (tg x x sec 2 x)
1 dx 2 tg 2 x
1 ctg 2 x dx 2
1 (csc 2 x 1) dx 2
33 2
2
x sec x
(tg x x sec 2 x) 2 x 2 sec 2 x
(tg x x sec 2 x) 2
50.
arc sen (1/x) x5
5
x Hacemos :
x 2 tg x (tg x x sec x) 2
x5
dx
1 3
arc sen (1/x) (
dx
dx 2
x
5
1 1 ctg x x C 2 2
x dv z dz 1 v z4 4
) z 3 arc sen z dz
3
1 4 z4 z arc sen z dz 4 1 z 2
arc sen (1/x)
1 z 2 4
1 sen θ cos θ dx z 4 arc sen z dθ 4 1 sen 2 θ
1 4 sen 4 θ cos θ dx z arc sen z cos θ dθ 4 x5 arc sen (1/x) 1 dx z 4 arc sen z sen 4 θ dθ 5 4 x arc sen (1/x) 1 dx z 4 arc sen z (sen 2 θ) 2 dθ 5 4 x arc sen (1/x) 1 1 cos 2θ 2 dx z 4 arc sen z ( ) dθ 5 4 2 x arc sen (1/x)
arc sen (1/x)
1
z
cos θ 1 z 2
1 4 1 z arc sen z ( 1 2 cos 2θ cos 2 2θ ) dθ 4 4 x arc sen (1/x) 1 4 1 1 cos 4θ dx z arc sen z ( 1 2 cos 2θ ) dθ 5 4 4 2 x arc sen (1/x) 1 1 3 1 dx z 4 arc sen z ( 2 cos 2θ cos 4θ ) dθ 5 4 4 2 2 x arc sen (1/x) 1 3 1 1 dx z 4 arc sen z θ sen 2θ sen 4θ C 5 4 8 4 32 x arc sen (1/x) 1 4 3 1 1 dx z arc sen z θ sen θ cos θ sen θ cos θ cos 2θ C 5 4 8 2 8 x arc sen (1/x) 1 3 1 dx z 4 arc sen z θ sen θ cos θ ( 4 cos 2θ ) C 5 4 8 8 x arc sen (1/x) 1 3 1 dx z 4 arc sen z θ sen θ cos θ ( 4 cos 2 θ sen 2 θ ) C 5 4 8 8 x arc sen (1/x) 1 4 3 1 dx z arc sen z arc sen z z 1 z 2 (4 1 z 2 z 2 ) C 5 4 8 8 x arc sen (1/x) 1 3 1 dx z 4 arc sen z arc sen z z 1 z 2 (3 2z 2 ) C 5 4 8 8 x
x2
z sen θ θ arc sen z dz cos θ dθ
arc sen (1/x)
1 1 csc 2 x dx dx 2 2
dx
x u arc sen z dz du 1 z 2
arc sen (1/x)
Hacemos :
2 tg x (tg x x sec 2 x)
1 x
dz arc sen (1/x)
dx
x
dx
Hacemos : z
dx
51.
5
5
1 1 3 1 1 1 1 dx ( ) 4 arc sen (1/x) arc sen (1/x) ( ) 1 ( ) 2 [3 2( ) 2 ] C 4 x 8 8 x x x
x arc sen (1/x) x5
dx
dx
cosh 2 x
arc sen (1/x) 4x 4
(x senh x cosh x) 2 cosh 2 x
(x senh x cosh x) 2 Hacemos :
u du
cosh 2 x
3 3x 2 2 arc sen (1/x) x 2 1 C 8 8x 4
dx
dx
x cosh x (x senh x cosh x)
cosh x x
.
cosh x dx x
dv
x senh x cosh x
(x senh x cosh x) 2
2
x2 dx
dx
x cosh x
( x senh x cosh x) 2 1 v x senh x cosh x
cosh x dx x (x senh x cosh x) x2
dx
34 2
cosh x
(x senh x cosh x) 2 cosh 2 x
dx
cosh x 1 C x (cosh x x senh x) x
cosh 2 x
dx
cosh x cosh x x senh x C x (cosh x x senh x)
cosh 2 x
dx
senh x C cosh x x senh x
(x senh x cosh x) 2 (x senh x cosh x) 2 (x senh x cosh x) 2 52.
arc tg
u arc tg
x 1
du 4x
x z
Hacemos :
2
vx
x 1
x 1 dx x arc tg
arc tg
dv dx
dx
1 x 1 4
dx x 1
z x
dx 2z dz
x 1 dx x arc tg
arc tg
Hacemos :
u1
z
du 1 dz
v1
z 1
2 z 1
x 1 dx x arc tg
x 1 z z 1 z 1 dz
arc tg
x 1 dx x arc tg
arc tg
x 1 dx x arc tg
2 x 1 z z 1 (z 1) 3/2 C 3 2 x 1 x x 1 ( x 1) 3/2 C 3
arc tg
53.
dv1
1 z x 1 dz 2 z 1 dz
Ln ( 2 x ) 3
3
x
z3 x
dx 3z 2 dz Ln ( 2 3 x ) Ln ( 2 z ) dx (3z 2 dz) 3 z Ln ( 2 z ) dz 3 z x Hacemos : u Ln ( 2 z ) dv z dz
x 1 dx
Hacemos :
x z 3
Hacemos :
cosh x 1 C x (x senh x cosh x) x
dx
54.
Ln ( 2 3 x ) 3
dx
3 2 3 4 z Ln ( 2 z ) [ z 2 ] dz 2 2 2z
dx
3 2 3 dz z Ln ( 2 z ) z dz 3 dz 6 2 2 2z
dx
3 2 3 z Ln ( 2 z ) z 2 3z 6 Ln ( 2 z ) C 2 4
dx
33 2 33 2 x Ln ( 2 3 x ) x 3 3 x 6 Ln ( 2 3 x ) C 2 4
dx
3 2/3 3 x Ln ( 2 3 x ) 6 Ln ( 2 3 x ) x 2/3 3 3 x C 2 4
x
Ln ( 2 3 x ) 3
3 2 3 z2 z Ln ( 2 z ) dz 2 2 2z
x
Ln ( 2 3 x ) 3
dx
x
Ln ( 2 3 x ) 3
dz 2z
x
Ln ( 2 3 x ) 3
du
x
Ln ( 2 3 x ) 3
x
senh
1
u senh 1 du
1
senh
1
senh
1
dx
1 2 z 2
x dx 1 x
Hacemos :
senh
v
x 1 x
dx 2 (1 x) x
dv dx v x
x x x dx x senh 1 dx 1 x 1 x 2 (1 x) x (1 x) 1 x x dx x senh 1 dx 1 x 1 x 2 (1 x) x x x 1 dx dx dx x senh 1 1 x 1 x 2 x 2 (1 x) x
35
x x x 1 1 1 senh 1 x dx x senh 1 x x senh 1 x C
senh
55.
1
x x dx ( x 1) senh 1 x C 1 x 1 x
(x sen x cos x) (x 2 cos 2 x) 2
2
dx
2
2
x cos x (x sen x cos x) (x 2 cos 2 x) 2
2
x cos x
dx dx
x 3 sen x x sen x cos 2 x x 2 cos x cos 3 x 2
x sen x cos 2 x
Hacemos :
dx
x cos x x sen x 2
cos x I1
2
dx
I2
ux
dv
sen x
v
cos x 1 cos x
2
(e 2x x 2 ) (x 1) x2 ex
(e 2x x 2 ) (x 1) x2 ex (e 2x x 2 ) (x 1) 2
x e
x
cos x cos x I2 dx x x2 (x sen x cos x) (x cos x) 2
2
x 2 cos 2 x (x sen x cos x) (x cos x) 2
x 2 cos 2 x
2
dx dx
x dx cos x cos x dx cos x ( dx ) dx 2 cos x cos x x cos x x x2 x dx cos x cos x dx cos x dx dx 2 cos x cos x x cos x x x2
dx
dx
x e 2x e 2x x 3 x 2
dx
ex dx x
x2 ex ex x
2
dx
I1
I1
x e
x
dx dx
dx ex
I2
e dx x u
1 x
du
dx
v1 cos x
x2
x cos x C cos x x
x
dv e x dx dx
v ex
x2
ex ex dx x x2 x I2 dx ex I1
u1
dv1 sen x dx dx
dx
x cos x
Hacemos :
1 u1 x du 1
2
Hacemos :
x dx cos x cos x sen x I2 dx x
2
sen x dx cos x dx dx x cos x x 2
Hacemos :
dx
du dx
I1
(x sen x cos x) (x 2 cos 2 x)
56.
x cos x
(x sen x cos x) (x 2 cos 2 x)
I1
x
du 1 dx I2
x e
x
x e x e
x
x
(e 2x x 2 ) (x 1) x2 ex
dx ex
1 ex
ex
(e 2x x 2 ) (x 1) 2
v1
dx
(e 2x x 2 ) (x 1) 2
dv1
dx dx dx
ex ex dx x x2 ex ex dx x x2 ex x C x ex
ex x
2
ex x
2
x
dx (
e dx
x e
x
x
dx e
dx e
x
x
)
dx ex
dx ex
36
cosh 3x cos 2x dx
57.
u cosh 3x
Hacemos :
dv cos 2x dx
1 sen 2x 2 1 3 cosh 3x cos 2x dx 2 cosh 3x sen 2x 2 senh 3x sen 2x dx Hacemos : u 1 senh 3x dv1 sen 2x dx du 3 senh 3x dx
du 1 3 cosh 3x dx
v
v1
1 cos 2x 2
1 3 9 cosh 3x sen 2x senh 3x cos 2x cosh 3x cos 2x dx 2 4 4 13 1 3 cosh 3x cos 2x dx cosh 3x sen 2x senh 3x cos 2x C1 4 2 4 2 3 cosh 3x cos 2x dx 13 cosh 3x sen 2x 13 senh 3x cos 2x C
cosh 3x cos 2x dx
58.
x cos x sen x 1 (x cos x) 2
x cos x sen x 1 (x cos x) 2 x cos x sen x 1 (x cos x) 2
dx
1 sen x
x cos x
dx dx (x cos x) 2 (x cos x) 2 1 1 sen x x cos x dx . dx 2 x cos x (x cos x) 1 sen x x cos x 1 sen x
dv
1 sen x
dx (x cos x) 2 x cos x 1 du dx v 1 sen x x cos x x cos x sen x 1 1 x cos x dx dx 2 x cos x (1 sen x) (x cos x) 1 sen x (x cos x)
x cos x sen x 1 (x cos x)
2
dx
x cos x sen x 1 (x cos x) x cos x sen x 1 2
(x cos x)
2
x cos x sen x 1 (x cos x) x cos x sen x 1 2
(x cos x) x cos x sen x 1 2
(x cos x)
59. I
1 x cos x 1 sen x dx x cos x (1 sen x) (x cos x) (1 sen x) (1 sen x)
dx
1 x cos x 1 sen x dx x cos x (1 sen x) (x cos x) 1 sen 2 x
dx
1 x cos x 1 sen x dx x cos x (1 sen x) (x cos x) cos 2 x
x5 1 x
Hacemos :
2
2
Ln(
dx
1 x cos x sen x sec 2 x dx dx x cos x (1 sen x) (x cos x) cos 2 x
dx
1 x cos x 1 tg x C x cos x (1 sen x) (x cos x) cos x
dx
x cos x sen x 1 tg x sec x C (1 sen x) (x cos x)
1 x ) dx 1 x
x sen θ θ arc sen x dx cos θ dθ cos θ 1 x 2
I
dx
u
Hacemos :
sen 5 θ 1 sen 2 θ
Ln (
1 x
1 x 2
1 sen θ ) cos θ dθ 1 sen θ
sen 5 θ 1 sen θ 1 sen θ Ln ( ) cos θ dθ sen 5 θ Ln ( ) dθ cos θ 1 sen θ 1 sen θ 1 sen θ Hacemos : u Ln ( ) dv sen 5 θ dθ ( 1 cos 2 θ ) 2 sen θ dθ 1 sen θ
I
dv ( 1 2 cos 2 θ cos 4 θ ) sen θ dθ 2 2 1 du dθ v cos θ cos 3 θ cos 5 θ cos θ 3 5 2 1 1 sen θ 4 2 3 5 2 4 I (cos θ cos θ cos θ) Ln ( ) (2 cos θ cos θ) dθ 3 5 1 sen θ 3 5 2 1 1 sen θ 4 2 I (cos θ cos 3 θ cos 5 θ) Ln ( ) 2 dθ cos 2 θ dθ cos 4 θ dθ 3 5 1 sen θ 3 5 2 1 1 sen θ 4 1 cos2θ 2 1 cos2θ 2 I (cos θ cos 3 θ cos 5 θ) Ln ( ) 2θ ( ) dθ ( ) dθ 3 5 1 sen θ 3 2 5 2 2 1 1 sen θ 2 1 2 1 cos2θ 2 I (cos θ cos 3 θ cos 5 θ) Ln ( ) 2θ θ sen2θ ( ) dθ 3 5 1 sen θ 3 3 5 2 2 1 1 sen θ 4 1 1 I (cos θ cos 3 θ cos 5 θ) Ln ( ) θ sen2θ (1 2cos2θ cos 2 2θ ) dθ 3 5 1 sen θ 3 3 10
37 2 1 1 sen θ 4 1 1 3 1 I (cos θ cos 3 θ cos 5 θ) Ln ( ) θ sen2θ ( 2cos2θ cos4θ ) dθ 3 5 1 sen θ 3 3 10 2 2 2 1 1 sen θ 4 1 3 1 1 3 5 I (cos θ cos θ cos θ) Ln ( ) θ sen2θ θ sen2θ cos4θ C 3 5 1 sen θ 3 3 20 10 80 1 1 sen θ 89 1 I cos θ(15 10cos 2 θ 3cos 4 θ) Ln ( ) θ sen θ cos θ(25 6sen 2 θ) C 15 1 sen θ 60 60 1 1 x 89 1 I 1 x 2 (3x 4 4x 2 8) Ln ( ) arc sen x x 1 x 2 (25 6x 2 ) C 15 1 x 60 60
60.
a Ln (x a x 2 2ax ) (x a )
Hacemos :
2
dx x 2ax 2
a Ln (x a x 2 2ax ) (x a ) 2
dv
(x a ) 2 1 v xa
a Ln (x a x 2 2ax ) dx dx a xa (x a ) x 2 2ax
a Ln (x a x 2 2ax )
dx
a Ln (x a x 2 2ax )
dx
a Ln (x a x 2 2ax ) a sec θ tg θ a dθ xa a sec θ a 2 sec θ a 2
dx
a Ln (x a x 2 2ax ) a 2 sec θ tg θ dθ xa a 2 sec θ tg θ
dx
a Ln (x a x 2 2ax ) dθ xa
dx
a Ln (x a x 2 2ax ) θC xa
(x a ) 2 a Ln (x a x 2 2ax ) (x a ) 2 a Ln (x a x 2 2ax ) (x a ) 2 a Ln (x a x 2 2ax ) (x a ) 2
I
x2 1 x
2
x2 1 x 2
dx
a Ln (x a x 2 2ax ) xa arc sec ( )C xa a
[ Ln (1 x) x Ln (1 x ) x ] dx
Ln (
1 x x x3 1 x ) dx Ln ( ) dx 2 1 x 1 x 1 x
x sen θ θ arc sen x dx cos θ dθ cos θ 1 x 2
dx
a Ln (x a x 2 2ax ) dx a 2 x a (x a ) (x a ) (x a ) 2 a 2 xa Hacemos : x a a sec θ θ arc sec ( ) a dx a sec θ tg θ dθ
61. I
(x a ) 2
Hacemos :
dx
u Ln (x a x 2 2ax ) du
a Ln (x a x 2 2ax )
I
sen 3 θ 1 sen 2 θ
Ln (
x
1 1 x 2
1 sen θ ) cos θ dθ 1 sen θ
sen 3 θ 1 sen θ 1 sen θ Ln ( ) cos θ dθ sen 3 θ Ln ( ) dθ cos θ 1 sen θ 1 sen θ 1 sen θ Hacemos : u Ln ( ) dv sen 3 θ dθ ( 1 cos 2 θ ) sen θ dθ 1 sen θ 2 1 du dθ v cos θ cos 3 θ cos θ 3 1 1 sen θ 2 I (cos θ cos 3 θ) Ln ( ) (2 cos 2 θ) dθ 3 1 sen θ 3 1 1 sen θ 2 I (cos θ cos 3 θ) Ln ( ) 2 dθ cos 2 θ dθ 3 1 sen θ 3 1 1 sen θ 2 1 cos 2θ I (cos θ cos 3 θ) Ln ( ) 2θ dθ 3 1 sen θ 3 2 1 1 sen θ 1 1 I (cos θ cos 3 θ) Ln ( ) 2θ θ sen 2θ C 3 1 sen θ 3 6 1 1 sen θ 5 1 I cos θ (3 cos 2 θ) Ln ( ) θ sen θ cos θ C 3 1 sen θ 3 3 1 1 x 5 1 I 1 x 2 (x 2 2) Ln ( ) arc sen x x 1 x 2 C 3 1 x 3 3 I
38 IV. INTEGRACIÓN POR SUSTITUCIÓN TRIGONOMÉTRICA
3. 1.
9 x dx 2
3
x Hacemos : x 3 sen θ θ arc sen ( ) 3 dx 3 cos θ dθ
2.
9 x 2 dx
9 x 2 dx 9 cos 2 θ dθ 9
9 x dx
9 x dx
2 2
x
16 9x
9x
x
16 9x
2
x 2 16 9x 2 dx x
16 9x
x2 9
1 cos 2θ 9 9 dθ θ sen 2θ C 2 2 4
9 x2 )C 3
x3 x2 9 x3 x2 9 x3 x2 9 x3 x2 9
( 3 sec θ ) 3
dx
( 3 sec θ ) 2 9
dx 27
( 3 sec θ tg θ dθ ) 27
sec 3 θ sec θ tg θ sec 2 θ 1
dθ
sec 4 θ tg θ dθ 27 sec 4 θ dθ 27 ( 1 tg 2 θ )sec 2 θ dθ tg θ
dx 27 tg θ 9 tg3 θ C 27 ( dx 9 x 2 9
x2 9 x2 9 3 )9( ) C 3 3
1 2 1 ( x 9) 3/2 C x 2 9 ( x 2 18) C 3 3
2
dx
2
x
x x 3 sec θ θ arc sec ( ) 3 dx 3 sec θ tg θ dθ
3
1 sen 2 θ cos θ dθ
9 9 9 x 9 x θ sen θ cos θ C arc sen ( ) ( ) ( 2 2 2 3 2 3 9 x 1 2 arc sen ( ) x 9 x C 2 3 2
dx
2
dx 2
x2 9
dx 2
x3
Hacemos :
x
9 ( 3 sen θ ) 2 ( 3 cos θ dθ ) 9
4 3x Hacemos : x tg θ θ arc tg ( ) 3 4 4 dx sec 2 θ dθ 3
2
dx x 2 16 9x 2
4 sec 2 θ 3 4 4 ( tg θ ) 2 16 9( tg θ ) 2 3 3
4. 16 9x
3x
2
4
dθ
3 sec 2 θ dθ 16 tg 2 θ 1 tg 2 θ
3 3 3 16 9 x C csc θ C ( )C 16 sen θ 16 16 3x 2
16 9 x 2 C 16x
x3 x 2 2x 5 x3 x 2 2x 5
dx dx
x3 ( x 1) 2 4
dx
x 1
Hacemos :
x 1
θ arc tg ( ) 2 tg θ 2 x 2 tg θ 1
dx 2 sec θ dθ
x3 x 2 2x 5 x3 x 2 2x 5
dx dx
( 2 tg θ 1 ) 3 ( 2 tg θ ) 2 4
x 2 2x 5
x 1
2
3 sec 2 θ 3 sec θ 3 cos θ 2 dθ dθ dθ 2 16 tg θ sec θ 16 tg θ 16 sen 2 θ
2
( 2 sec 2 θ dθ )
( 2 tg θ 1 ) 3 sec 2 θ tg 2 θ 1
( 2 tg θ 1 ) 3 sec 2 θ dθ ( 2 tg θ 1 ) 3 sec θ dθ sec θ
dθ
39
x
3
x 2x 5 2
x
3
x 2x 5 2
dx ( 8 tg3 θ sec θ 12 tg 2 θ sec θ 6 tg θ sec θ sec θ ) dθ dx [ 8 (sec 2 θ 1) tg θ sec θ 12 tg 2 θ sec θ 6 tg θ sec θ sec θ ] dθ
x3 x 2x 5 2
5. I
x3
8 dx sec 3 θ 8 sec θ 6 sec θ Ln sec θ tg θ 12 tg 2 θ sec θ dθ 3 x 2 2x 5
(1 x 4 )
x 2x 5
dx
θ arc tg (x 2 ) x2 tg θ x tg θ
Hacemos :
dx
8 sec 3 θ 2 sec θ Ln sec θ tg θ 12 sec θ dθ 12 sec 3 θ dθ 3
x3
8 dx sec 3θ 2 sec θ Ln sec θ tg θ 12 Ln sec θ tg θ 12 sec 3θ dθ 2 3 x 2x 5
x3
8 dx sec 3 θ 2 sec θ 11 Ln sec θ tg θ 12 sec 3θ dθ 3 x 2 2x 5
x 2 2x 5 (2x 2 5x 5) 5 Ln x 1
sec 2 θ 2 tg θ
dθ 1
I
sec 2 θ
2 tg θ (1 tg 2 θ)
1 x 4
x2
sec 2 θ I
x 2 2x 5 C
1 x 4 x 2
8 dx sec 3 θ 2 sec θ Ln sec θ tg θ 12 (sec 2 θ 1) sec θ dθ 3 x 2 2x 5 2
1 6
dx
x3 x3
dx
dθ
1 tg 2 θ tg θ
1 dθ 2 tg θ sec θ tg θ
1
2
tg θ 1 dθ 2 2 sec θ sec θ tg θ dθ
tg θ sec θ tg 2 θ
cos θ
1
2
sen θ sen 2 θ
dθ
z sen θ dz cos θ dθ 1 dz 1 dz dz I 2 2 2 1 1 zz 1 (2z 1) 2 (z ) 2 4 2 Hacemos : 2z 1 sen β β arc sen (2z 1)
Hacemos : I
I sec 3θ dθ I
1 1 Ln sec θ tg θ sec θ tg θ C1 (Idem Prob. 5 - Int. por partes) 2 2 x3 8 3 dx sec θ 2 sec θ 11 Ln sec θ tg θ 6 Ln sec θ tg θ 6 sec θ tg θ C1 3 x 2 2x 5 x3 x 2x 5 2
x
3
x 2x 5 2
x
3
x 2x 5 2
dx dx dx
8 sec 3 θ 2 sec θ 5 Ln sec θ tg θ 6 sec θ tg θ C1 3 1 sec θ [ 8 sec 2 θ 18 tg θ 6 ] 5 Ln sec θ tg θ C1 3 1 sec θ [ 8 tg 2 θ 18 tg θ 2 ] 5 Ln sec θ tg θ C1 3
1 x 2x 5 x 1 2 x 1 dx ( )[8( ) 18 ( ) 2 ] 5 Ln 3 2 2 2 x 2 2x 5 x
3
2
x 2x 5 x 1 C1 2 2 2
2 dz cos β dβ dz
I
1 cos β 2 1 sen β 2
dβ
1 cos β dβ 2
1 cos β 1 1 1 dβ dβ β C arc sen (2z 1) C 2 cos β 2 2 2
I
1 1 x2 arc sen [ 2 sen θ 1 ] C arc sen [ 2 ( ) 1 ] C 2 2 1 x 4
I
1 2x 2 arc sen ( 1 ) C 2 1 x 4
40
6. I I
e x
12 dx (2x 1) (4x 4x 8) 2
(9 e 2x 1) 3/2
3
e x
12 dx (2x 1) [ (2x 1) 9 ] 2
Hacemos :
(9 e 2x 1) 3/2
3
2x 1 3 sec θ θ arc sec ( 2 dx 3 sec θ tg θ dθ dx
I
2x 1 ) 3 4x 2 4x 8
3 sec θ tg θ dθ 2
3 12 ( sec θ tg θ ) 2 (3 sec θ) [ ( 3 sec θ ) 9 ] 2
3
2x 1 3
dθ
sec θ tg θ 2 dθ 9 sec θ [ sec 2 θ 1 ]3
2 sec θ tg θ 2 dθ 2 2 I dθ ctg 2 θ dθ (csc 2 θ 1) dθ 9 sec θ tg3 θ 9 tg 2 θ 9 9 2 2 2 3 2 2x 1 I ctg θ θ C ( ) arc sec ( )C 9 9 9 4x 2 4 x 8 9 3 2 2x 1 1 2 2x 1 I arc sec ( )C arc sec ( )C 3 3 3 4x 2 4x 8 9 3 x2 x 2 9
8.
e x
(9 e 2x 1) 3/2
dx
1 3 e x dx dx (9 e 2x 1) 3/2 3 [ (3 e x ) 2 1 ]3/2
Hacemos :
z 3 e x
dz 3 e x dx e x 1 dz (9 e 2x 1) 3/2 dx 3 (z 2 1) 3/2 Hacemos : z tg θ θ arc tg z
e x
z
z 2 1
2x
x 1 x 2x
1 3 e x e x dx ( )C C 3 (3 e x ) 2 1 9 e 2x 1
x (1 x)
dx
x
1 x
3 2
2x
dx
x (1 x) x 2 3x 2
dx
x (1 x)
x 1 x 2x x 1 x 2x x 1 x 2x x 1 x 2x x 1 x 2x
1 2
sec θ θ arc sec (2x 3)
dx
1 (sec θ 3) (sec θ 1) ( sec θ tg θ dθ ) 4 sec 2 θ 1
dx
1 (sec θ 3) (sec θ 1) ( sec θ tg θ dθ ) 4 tg θ
dx
1 (sec θ 3) (sec θ 1) sec θ dθ 4
dx
1 (sec 3 θ 4 sec 2 θ 3 sec θ ) dθ 4
dx tg θ
3 1 Ln sec θ tg θ sec 3 θ dθ 4 4 I
I sec θ dθ 3
I
dx
3 1 (x ) 2 2 4
1 4x 2 12x 8 dx sec θ tg θ dθ 2 1 3 1 3 ( sec θ ) (1 sec θ ) x 1 x 2 2 2 2 ( 1 sec θ tg θ dθ ) dx 2 2x 1 1 ( sec θ ) 2 2 4
1 dz sec 2 θ dθ e x 1 sec 2 θ 1 sec 2 θ 1 dθ (9 e 2x 1) 3/2 dx 3 (tg 2 θ 1) 3/2 dθ 3 sec 3θ dθ 3 sec θ
1 1 1 z cos θ dθ sen θ C ( )C 3 3 3 z 2 1
dx
Hacemos :
2
7.
x 1 x
dx
1 1 Ln sec θ tg θ sec θ tg θ C1 (Idem Prob. 5 - Int. por partes) 2 2
2x 3 1
41
9.
x 1 x 2x
dx tg θ
3 1 1 Ln sec θ tg θ Ln sec θ tg θ sec θ tg θ C 4 8 8
1 7 dx tg θ sec θ tg θ Ln sec θ tg θ C 8 8 2x
x 1 x 2x
dx
1 7 tg θ ( 8 sec θ ) Ln sec θ tg θ C 8 8
1 7 dx 4x 2 12 x 8 (8 2 x 3) Ln 2x 3 4x 2 12x 8 C 8 8 2x
x 1 x 2x 2
dx
x 2 4 dx
x 1 x senh t 2 t senh ( 2 ) x 2 senh t x2 4 cosh t 2 dx 2 cosh t dt
x 4 dx (2 senh t)
2
x 2 4 dx 4 senh 2 2t dt 4
x
2
1 x 4 dx senh 4t 2t C 2 senh t cosh t (senh 2 t cosh 2 t) 2t C 2
2
(2 senh t) 4 ( 2 cosh t dt) 2
x 4 dx 16 senh t senh t 1 cosh t dt 16 senh t cosh t dt 2
2
2
2
x2 x 4x 5 2
x2 x 4x 5 2
x2 x 2 4x 5 x2
x 4x 5 2
2
11.
x2 1 x 2
Hacemos :
x 2 4x 5
dx
dx
x
2
( x 2) 2 9
dx
dx dx
(3 cosh t 2) 2 (3 cosh t) 2 9
( 3 senh t dt )
(3 cosh t 2) 2 cosh 2 t 1
x2 1 x 2
senh t dt
(3 cosh t 2) 2 senh t dt (3 cosh t 2) 2 dt senh t
dx (9 cosh 2 t 12 cosh t 4) dt
dx [ 9 ( dx
cosh 2t 1 9 17 ) 12 cosh t 4 ] dt [ cosh 2t 12 cosh t ] dt 2 2 2
9 17 9 17 senh 2t 12 senh t t C senh t cosh t 12 senh t t C 4 2 2 2
dx
3 17 senh t (3 cosh t 8) t C 2 2
dx
3 x 2 4x 5 x2 17 x2 ( )[ 3( ) 8 ] cosh 1 ( )C 2 3 3 2 3
dx
1 17 x2 x 2 4x 5 (x 6) cosh 1 ( )C 2 2 3
2
2
x 2 4x 5 x
x 2 4x 5
cosh 4t 1 dt 2 (cosh 4t 1) dt 2
x x 4 x x 4 x x 2 4 dx 2 ( ) ( )( ) 2 senh 1 ( ) C 2 2 4 4 2 1 2 2 2 1 x x 4 dx x ( x 2) x 4 2 senh ( ) C 4 2 2
x2
2
2
2
x 4x 5 2
x
2
x
x2
x
x
x 2 4x 5
2
2
x2
x
2
x 2 4x 5
1 7 x 2 3x 2 (2x 5) Ln 2x 3 2 x 2 3x 2 C 4 8
2
x
x2
x 1 x
Hacemos :
Hacemos :
x 1 x
x
10.
x2 x2 t cosh 1 ( ) cosh t 3 3 x 2 3 cosh t x 2 4x 5 senh t 3 dx 3 senh t dt
dx
1 x sen θ θ arc sen x dx cos θ dθ dx
( sen θ ) 2 1 ( sen θ ) 2
( cos θ dθ )
x
1 x 2
sen 2 θ cos θ 1 sen 2 θ
dθ
42
x
1 x 2 x2
1 x 2 x2
1 x 2
12.
2
dx
sen θ cos θ 1 co s 2θ dθ sen 2 θ dθ dθ cos θ 2 2
dx
1 1 1 1 θ sen 2θ C θ sen θ co s θ C 2 4 2 2
dx
1 1 arc sen x x 1 x 2 C 2 2
4 x 2 dx
x x 2 tg θ θ arc tg ( ) 2
Hacemos :
4x
x
2
dx 2 sec 2 θ dθ
2
4 x 2 dx 4 ( 2 tg θ ) 2 ( sec 2 θ dθ ) 4 1 tg 2 θ sec 2 θ dθ
4 x 2 dx 4 sec θ sec 2 θ dθ 4 sec 3 θ dθ
13.
4 x dx 2 sec θ tg θ 2 Ln sec θ tg θ C 2
4 x 2 dx 2 (
2
4 x2 x C2 2 2
x
2
4 x 2 dx 16 sen 2 θ cos 2 θ dθ 4 sen 2 2θ dθ 4
x
2
4 x 2 dx 2θ
x
2
x
2
1 sen 2 θ cos θ dθ 16 sen 2 θ cos θ cos θ dθ
4 x 2 dx
1 sen 4θ C 2θ 2 sen θ cos θ (co s 2 θ sen 2 θ) C 2
dx x
2
1 x 2
x 2 1 x 2 dx x 2 1 x 2 dx x 2 1 x 2
x tg θ θ arc tg x
1 x 2
x
2 4 x2
1
sec 2 θ ( tg θ ) 2 1 ( tg θ ) 2 sec 2 θ 2
tg θ sec θ
dθ
csc θ C
dθ
sec θ 2
tg θ
sec 2 θ
dθ
tg 2 θ 1 tg 2 θ
dθ
cos θ 2
sen θ
dθ
1 C sen θ
1 x 2 C x
dx ( x 2 1) 1 x 2
Hacemos :
x
1 cos 4θ dθ 2
x x 4 x2 4 x2 x2 4 x 2 dx 2 arc sen ( ) 2 ( ) ( )( )C 2 2 2 4 4 x 1 4 x 2 dx 2 arc sen ( ) x 4 x 2 (x 2 2) C 2 4
dx
15.
1 x 4 x 2 2 Ln x 4 x 2 C 2
x Hacemos : x 2 sen θ θ arc sen ( ) 2 dx 2 cos θ dθ
4 x 2 dx 16 sen 2 θ
2
x
2
1 1 Ln sec θ tg θ sec θ tg θ C1 (Idem Prob. 5 - Int. por partes) 2 2 1 1 4 x 2 dx 4 ( Ln sec θ tg θ sec θ tg θ C1 ) 2 2
4 x 2 dx
x
dx sec 2 θ dθ
I sec θ dθ
4 x 2 dx ( 2 sen θ ) 2 4 ( 2 sen θ ) 2 ( 2 cos θ dθ )
Hacemos :
I
4 x2 x ) ( ) 2 Ln 2 2
2
14.
3
I
x
x sen θ θ arc sen x dx cos θ dθ
dx ( x 1) 1 x 2
1
2
cos θ (sen θ 1) 1 sen θ 2
2
x
1 x 2
dθ
cos θ (sen θ 1) cos θ 2
dθ
43
1
dx ( x 1) 1 x 2
2
dθ sen θ 1 2
cos2 θ dθ sen θ 1
2
sec θ
2
tg θ sec θ 2
2
dθ
2
cos θ
dx ( x 1) 1 x 2
2
2
sec θ tg θ 1 tg θ 2
2
dθ
sec θ 1 2 tg θ 2
dθ
dz 2 sec 2 θ dθ dx
17.
2 sec 2 θ
1
1
dθ 2 1 2 tg 2 θ
dz
2 1 z 2
( x 2 1) 1 x 2 Hacemos : z tg β β arc tg z
dx ( x 1) 1 x dx
2
( x 1) 1 x
2
2
2
dx
1
1
( x 2 1) 1 x 2
16.
sec β
2 1 tg 2 β 2 1
βC
arc tg (
2
dβ
1 2
1 x 2
x
1 2
2
sec β
sec 2 β dβ 1
1 2
x4 x2 3
( x 2 3) 3/2 1 x2 3 3 1 x2 3 x2 3 ( ) ( )C C 27 x 9 x 9x 27 x 3
4x 5
dβ
arc tg ( 2 tg θ ) C
Hacemos :
2
3 cosh t ( 3 senh t) 4 ( 3 senh t) 2 3
dx
2 (2x 2) 9 ( x 2 2x 2) 3/2 2x 2
dx 2
dx
2
3/2
dx 9
dx 2
x 1 tg θ θ arc tg (x 1)
x 2 2x 2
x 1
dx sec 2 θ dθ
1
4x 5
(x 2 2x 2) 3/2 4x 5
x
1
(x 2 2x 2) 3/2 dx
)C
x senh t 3 3 senh t x2 3 cosh t 3
1
csch 4 t dt 9
( x 2x 2) ( x 2x 2) 3/2 4x 5 4 dx 9 (x 2 2x 2) 3/2 dx 2 [( x 1) 2 1]3/2 x 2x 2
t senh 1 (
x
(x 2 2x 2) 3/2
)
4x 5
3
(x 2 2x 2) 3/2 4x 5
(x 2 2x 2) 3/2
dx 3 cosh t dt dx
(x 2 2x 2) 3/2
x2 3
Hacemos :
x4 x2 3
senh t cosh t
1 dt 9 senh 4 t 1
4x 5
dx 4
dx
dt
4
1
4x 5
arc tg z C
2x
x4 x2 3
cosh t
(ctgh 2 t 1)csch 2 t dt ctgh 3 t ctgh t C 9 27 9
(x 2 2x 2) 3/2
dz sec 2 β dβ 2
x4 x2 3 dx
1
9
2
z 2 tg θ
Hacemos :
dx
dt
4x 5
(x 2 2x 2) 3/2
1 cosh t dt 9 senh 4 t senh 2 t 1
18.
2x 3
(x 2 2x 3) 3/2
dx dx
4 x 2 2x 2 4
9
sec 2 θ ( tg 2 θ 1) 3/2 sec 2 θ 3
sec θ
dθ
dθ 4
9
dθ sec θ
x 2 2x 2 4 dx 9 cos θ dθ 9 sen θ C x 2 2x 2 x 2 2x 2 9 (x 1) 4 dx C x 2 2x 2 x 2 2x 2 9x 13 dx C x 2 2x 2 dx
x 2 2x 2 4
9
44
2x 3
(x 2 2x 3) 3/2 2x 3
(x 2 2x 3) 3/2
dx dx
(2x 2) 5 ( x 2x 3) 2x 2 2
3/2
Hacemos :
dx dx 5
2x 3
( x 2 2x 3) 3/2 2x 3
( x 2 2x 3) 3/2 2x 3
( x 2 2x 3) 3/2 2x 3
( x 2 2x 3) 3/2 2x 3
( x 2 2x 3) 3/2 2x 3
( x 2 2x 3) 3/2
19.
x 2 4x x3
x 2 4x x3
dx dx dx dx dx dx
2 x 2 2x 3 2 x 2 2x 3 2 x 2 2x 3 2 x 2x 3 2 2
x 2x 3 5x 3 2
4 x 2 2x 3
5 senh t dt 4 senh 3 t
5 dt 4 senh 2 t
5 csch 2 t dt 4
5 ctgh t C 4
5 (x 1) 4 x 2x 3
C
2
C
dx
dx
dx 2 sec θ tg θ dθ
dx
( x 2 2x 3) 3/2 ( x 2 2x 3) 3/2 2x 3 2 dx 5 (x 2 2x 3) 3/2 dx 2 [( x 1) 2 4]3/2 x 2x 3 x 1 x 1 t cosh 1 ( ) cosh t 2 2 Hacemos : x 1 2 cosh t x 2 2x 3 senh t 2 dx 2 senh t dt 2x 3 2 2 senh t 5 dt ( x 2 2x 3) 3/2 dx 2 [( 2 cosh t ) 2 4]3/2 x 2x 3 2x 3 2 5 senh t dt ( x 2 2x 3) 3/2 dx 2 2 3/2 x 2 x 3 4 (cosh t 1)
( x 2) 2 4 x3
dx
x 2 2 sec θ θ arc sec (
x 2 4x x3 x 2 4x x3
dx dx
( 2 sec θ ) 2 4 ( 2 sec θ 2 ) 3
x2 ) 2
x2 x 2 4x
2
( 2 sec θ tg θ dθ )
sec 2 θ 1 sec θ tg θ 1 1 sec θ tg 2 θ dθ dθ 2 2 ( sec θ 1 ) 3 ( sec θ 1 ) 3
sec θ tg 2 θ tg 2 θ 1 dθ dθ 1 3 2 sec 2 θ ( 1 cos θ ) 3 x3 sec 3 θ ( 1 ) sec θ θ θ [ 2 sen ( ) cos ( ) ] 2 x 2 4x 1 sen 2 θ 1 2 2 dx dθ dθ 3 3 θ 2 2 2 3 x ( 1 cos θ ) [ 2 cos ( ) ] 2 2 θ 2 θ 2 θ sen ( ) cos ( ) sen ( ) x 2 4x 1 2 2 dθ 1 2 dθ dx 3 θ θ 4 4 x cos 6 ( ) cos 4 ( ) 2 2 2 θ 1 cos ( ) x 2 4x 1 2 dθ 1 sec 4 ( θ ) dθ 1 sec 2 ( θ ) dθ dx 3 θ 4 4 2 4 2 x cos 4 ( ) 2 x 2 4x
dx
1 2
x 2 4x
dx
1 θ θ 1 θ [ 1 tg 2 ( ) ] sec 2 ( ) dθ sec 2 ( ) dθ 4 2 2 4 2
dx
1 θ θ 1 θ [ 1 tg 2 ( ) ] sec 2 ( ) dθ sec 2 ( ) dθ 4 2 2 4 2
dx
1 θ θ 1 θ 1 θ tg 2 ( ) sec 2 ( ) dθ sec 2 ( ) dθ sec 2 ( ) dθ 4 2 2 4 2 4 2
dx
1 θ θ 1 θ 1 sen θ 3 tg 2 ( ) sec 2 ( ) dθ tg 3 ( ) C [ ] C 4 2 2 6 2 6 1 cos θ
dx
1 1 x2 2 [ csc θ ctg θ ]3 C [ ]3 C 2 2 6 6 x 4x x 4x
x
3
x 2 4x x
3
x 4x 2
x
3
x 2 4x x
3
x 4x 2
x
3
45
x 4x 2
x3 x 2 4x
x
3
dx
1 x4 3 1 x ( x 4) 3 1 x 4x 3 [ ] C [ ] C [ ] C 6 x 2 4x 6 x x 2 4x 6 x x 2 4x
dx
(x 2 4x) 3/2 1 x 2 4x 3 [ ] C C 6 x 6x 3
x4
(4 x 2 ) 7/2
20.
2
x4
(4 x 2 ) 7/2 x4
(4 x 2 ) 7/2 x4
(4 x 2 ) 7/2
21.
dx
1 sen 4 θ cos θ dθ 4 (1 sen 2 θ) 7/2
dx
1 5 1 x x5 tg θ C ( )5 C C 20 20 4 x 2 20 (4 x 2 ) 5/2
dx
x x 5 sec θ θ arc sec ( ) 5 dx 5 sec θ tg θ dθ
x x 2 25
5
(x 2 25) 3/2 x6 (x 2 25) 3/2 x6 (x 2 25) 3/2 x6
1 sen 4 θ cos θ 1 sen 4 θ 1 dθ dθ tg 4 θ sec 2 θ dθ 7 6 4 4 cos θ 4 cos θ
6
Hacemos :
[4 ( 2 sen θ ) 2 ] 7/2
( 2 cos θ dθ )
4 x2
dx
(x 2 25) 3/2 x
( 2 sen θ ) 4
dx
[ ( 5 sec θ ) 2 25 ]3/2 ( 5 sec θ ) 6
(x 1) 3 x 2 2x
dx (x 1)
x 2x
3
2
x 1
( 5 sec θ tg θ dθ )
dx
1 (sec 2 θ 1) 3/2 sec θ tg θ 1 sec θ tg 4 θ d θ dθ 25 25 sec 6 θ sec 6 θ
dx
1 tg 4 θ 1 1 dθ sen 4 θ cos θ dθ sen 5 θ C 5 25 sec θ 25 125
23.
dx (x 1)
x 2x
3
2
dx (x 1) 3 x 2 2 x dx (x 1) 3 x 2 2 x dx (x 1) 3 x 2 2 x dx (x 1) 3 x 2 2 x
dx (x 1)
x 1
( x 1) 2 1
3
x 2x 2
sec θ θ arc sec (x 1)
dx sec θ tg θ dθ sec θ tg θ
x
(x 2 25) 5/2 1 x 2 25 5 ( ) C C 125 x 125 x 5
dx
Hacemos :
2 x Hacemos : x 2 sen θ θ arc sen ( ) 2 dx 2 cos θ dθ
dx
x6
22.
dx
(x 2 25) 3/2
1 2
( sec θ )
3
sec θ tg θ 3
sec θ tg θ
1
( sec θ ) 1 2
dθ
dθ 2
sec θ
1 4
dθ
sec θ tg θ sec θ sec 2 θ 1 3
cos 2 θ dθ
1 2
dθ
1 cos 2θ dθ 2
1 2
θ sen 2θ C θ sen θ cos θ C 1 2
1 2
arc sec (x 1) ( 1 2
arc sec (x 1)
x 2 2x 1 )( )C x 1 x 1
x 2 2x 2 ( x 1) 2
C
sen x
dx cos x 4 cos x 1 Hacemos : z cos x dz sen x dx sen x sen x dz dx dx 2 2 2 cos x 4 cos x 1 cos x 4 cos x 1 z 4z 1 sen x dz dx 2 cos x 4 cos x 1 (z 2) 2 3 2
Hacemos :
z2
3 sec θ θ arc sec (
dz 3 sec θ tg θ dθ
z2 3
z2 )
z 2 4z 1
3
46
sen x
cos x 4 cos x 1 2
sen x
cos x 4 cos x 1 sen x cos x 4 cos x 1 sen x
e
e
2x
4 2e
2x
(e 2)
4 2e
2x
(e 2)
2 (e 2) e
2x
4
e
x
Ln
z2
z 2 4z 1
3
3
x
e x e 2x 4 2 e 2x (e x 2) 2 (e 2) e
2x
4
e x e 2x 4 2 e 2x (e x 2) 2 (e 2) e
2x
4
4 2e
2x
(e 2)
2 (e 2) e
2x
4
4 2e
2x
(e x 2)
x
e
x
e
2x
x
e
x
e
2x
2 (e x 2) e 2x 4 e x e 2x 4 2 e 2x (e x 2) 2 (e x 2) e 2x 4 e x e 2x 4 2 e 2x (e x 2) 2 (e 2) e x
x
2 (e x 2) e 2x 4
2x 2 4x 4 3 2x x 2
2x 2 4x 4 3 2x x 2
Hacemos :
2x
4
dx
1 Ln (e x 2) 2 tg θ C 2
dx
1 e 2x 4 Ln (e x 2) 2 ( )C 2 2
dx
1 Ln (e x 2) e 2x 4 C 2
dx dx
2x
1 e Ln (e x 2) dx 2 e 2x 4
ex
e 2x 4
( 2 sec θ ) ( 2 sec θ tg θ ) 1 dx Ln (e x 2) dθ 2 ( 2 sec θ ) 2 4
2
sec θ sec θ tg θ 1 dx Ln (e x 2) 2 dθ 2 sec 2 θ 1
2
sec θ tg θ 1 dx Ln (e x 2) 2 dθ 2 tg θ dx
1 Ln (e x 2) 2 sec 2 θ dθ 2
dx
dx
2 (x 1) 2 2 4 ( x 1) 2
dx
2
x 1 2 sen θ θ arc sen ( dx 2 cos θ dθ
1 ex e 2x dx dx 2 ex 2 e 2x 4
e e x 2 sec θ θ arc sec ( ) 2
x
e x e 2x 4 2 e 2x (e x 2)
dx
e x dx 2 sec θ tg θ dθ
25.
x
Hacemos :
C1
x
2 (e x 2) e 2x 4 e
sec θ tg θ dθ sec θ dθ tg θ
e x e 2x 4 2 e 2x (e x 2)
2x
dx Ln cos x 2 cos 2 x 4 cos x 1 C
2 (e x 2) e 2x 4
x
sec θ 1 2
dθ
dx Ln z 2 z 4z 1 C
cos 2 x 4 cos x 1 x
sec θ tg θ
2
cos 2 x 4 cos x 1 sen x
( 3 sec θ ) 3 2
dθ
dx Ln sec θ tg θ C1
2
dx
2
24.
dx
3 sec θ tg θ
26.
2x 2 4x 4 3 2x x 2 2x 2 4x 4 3 2x x 2 2x 2 4x 4 3 2x x 2 2x 2 4x 4 3 2x x 2 2x 2 4x 4 3 2x x 2 2x 2 4x 4 3 2x x 2 dx
dx
2 ( 2 sen θ ) 2 2
dx 2
4 ( 2 sen θ ) 2
x 1 ) 2
( 2 cos θ dθ ) 2
x 1
3 2x x 2
4 sen 2 θ 1 1 sen 2 θ
4 sen 2 θ 1 cos θ dθ 2 (4 sen 2 θ 1) dθ cos θ
dx 8 sen 2 θ dθ 2 dθ 8
1 cos 2θ dθ 2θ 2
dx 4θ 2 sen 2θ 2θ C 6θ 4 sen θ cos θ C dx 6 arc sen (
x 1 x 1 3 2x x 2 )4( )( )C 2 2 2
dx 6 arc sen (
x 1 ) ( x 1) 3 2x x 2 C 2
(x 2 2x 5) 3/2
cos θ dθ
47
dx
dx
Hacemos :
x 1 2 tg θ
x 1 θ arc tg ( ) 2
x 2 2x 5
x 1
(x 2 2x 5) 3/2
I
dx 2 sec 2 θ dθ
dx
2
2 sec 2 θ [ (2 tg θ) 2 4 ]3/2
dθ
I x 2 2x 10 5 Ln
1 sec 2 θ dθ 4 ( tg 2 θ 1 ) 3/2
dx 1 sec θ 1 dθ 1 1 (x 2 2x 5) 3/2 4 sec 3θ dθ 4 sec θ 4 cos θ dθ 4 sen θ C
27. I
I I I
x 1 x 2x 5 2
x 3x
)C
x 1 4 x 2x 5 2
C
dx
x 1 θ arc tg ( ) 3
x 1
I x 2 2x 10 I x 2 2x 10
( 3 tg θ ) ( 3 tg θ ) 9 2
y2 4 y4 y2 4
( 3 sec 2 θ dθ )
( 2 sec θ )
4
2
( 2 sec θ tg θ dθ )
sec θ 1 sec θ tg θ 1 dθ 4 sec 4 θ 2
1 tg θ sec θ tg θ 1 sec θ tg 2 θ 1 tg 2 θ dθ dθ dθ 4 4 4 sec 3 θ sec 4 θ sec 4 θ
dy
y2 4 3 1 1 1 2 3 sen θ cos θ d θ sen θ C ( ) C 4 12 12 y ( y 2 4) 3/2 12y 3
C
dx (x 2 1) x 2 2
Hacemos :
1 ( 15 tg θ 4 ) sec 2 θ dθ 3 tg θ tg 2 θ 1 1 ( 15 tg θ 4 ) sec θ dθ 3 tg θ
( 2 sec θ ) 4 2
y 4 2
dy
dy
y4
29.
4
y4
x 2x 10 2
x 2 2 x 10 3 C x 1
dy
dy
y2 4
3
5 ( 3 tg θ 1) 1
y
x 2 2 x 10 3 C1 x 1 x 1
y
y 4
dx 3 sec 2 θ dθ
I x 2 2x 10
y4
2
(x 1) x 2 2x 10 1 2x 2 5x 1 dx dx 2 2 x 2x 10 (x 1) x 2 2x 10 5x 1 x 2 2x 10 dx (x 1) ( x 1) 2 9 x 1 3 tg θ
y2 4
4 Ln 3
y Hacemos : y 2 sec θ θ arc sec ( ) 2 dy 2 sec θ tg θ dθ
1 (x 1) (2x 2) (5x 1) 2 dx
Hacemos :
28.
2
(x 1) x 2 2x 10
x 2 2 x 10 x 1 4 Ln 3 3 3
I x 2 2x 10 5 Ln x 1 x 2 2x 10
2
dx 1 (x 2 2x 5) 3/2 4 (
4 csc θ dθ 3 4 x 2 2x 10 5 Ln sec θ tg θ Ln csc θ ctg θ C1 3
I x 2 2x 10 5 sec θ dθ
(x 2 2x 5) 3/2 [ (x 1) 2 4 ]3/2
x 2 sec θ θ arc sec (
x
x )
2
x2 2
dx 2 sec θ tg θ dθ
dx (x 2 1) x 2 2
2 sec θ tg θ (2 sec 2 θ 1) 2 sec 2 θ 2
2
dθ
sec θ tg θ (2 sec 2 θ 1) sec 2 θ 1
dθ
48
dx (x 1) x 2 dx 2
2
sec θ tg θ (2 sec θ 1) tg θ 2
cos θ
2 ( 1 sen θ ) (x 1) x 2 Hacemos : z sen θ
2
2
2
dθ
dθ
sec θ 2 sec θ 1 2
cos θ 1 sen θ 2
dθ
cos θ 2 co s θ 2
2x 2 1
9
2x 2 1
7
x
7
9
x
x x2 4
)(
2 x2 4
)C
7x
(x 2 4) 2 dx 16 arc tg ( 2 ) 8 (x 2 4) C
1 z 2
31.
z tg β β arc tg z
Hacemos :
9
(x 2 4) 2 dx 16 arc tg ( 2 ) 16 (
dθ
dz cos θ dθ dx dz (x 2 1) x 2 2
2x 2 1
(x 2 4) 2 dx 16 θ 16 sen θ cos θ C
dθ
dz sec β dβ
dx (2x 1) x 2 1 2
2
30.
dx (x 2 1) x 2 2 dx (x 1) x 2 2
2
2x 2 1
(x 2 4) 2 Hacemos :
2
sec β 1 tg β 2
dβ
2
sec β sec 2 β
dβ dβ β C arc tg z C
arc tg ( sen θ ) C arc tg (
x 2 )C x
x x 2 tg θ θ arc tg ( ) 2
dx
2 2
θ dθ )
2x 1
1 1 cos 2θ 1 1 cos 2θ 2 (x 2 4) 2 dx sen θ dθ 8 cos θ dθ 2 dθ 8 2 dθ 2
dx
1 1 1 1 9 7 θ sen 2θ θ sen 2θ C θ sen 2θ C 2 4 16 32 16 32
(2 tg 2 θ 1) tg 2 θ 1
2
2
sec θ 2
dθ
dθ
sec 2 θ (2 tg 2 θ 1) sec θ
cos θ 2 sen θ cos θ 2
2
dθ
dθ
cos θ sen 2 θ 1
dθ
dz sec 2 β dβ
1 ( 8 tg 2 θ 1 ) sec 2 θ dθ 8 ( tg 2 θ 1 ) 2
1 ( 8 tg 2 θ 1 ) sec 2 θ 1 8 tg 2 θ 1 dx dθ dθ (x 2 4) 2 8 8 sec 2 θ sec 4 θ 2
sec 2 θ
z 2 1 (2x 2 1) x 2 1 Hacemos : z tg β β arc tg z
2x 2 1
(x 2 4) 2
(2x 2 1) x 2 1
dx 2 sec θ dθ
2x 2 1
dx
2 tg θ 1 (2x 1) x 1 Hacemos : z sen θ dz cos θ dθ dx dz
x2 4
x
2
2 ( 2 tg θ ) 2 1
1
2
dx
2x 2 1
x 2 1
x
dx sec 2 θ dθ
(x 2 4) 2 dx [( 2 tg θ ) 2 4] 2 ( 2 sec
x tg θ θ arc tg x
Hacemos :
32.
dx (2x 2 1) x 2 1 dx (2x 1) x 1 2
2
3x arc sen x (1 x 2 ) 5
dx
sec 2 β tg 2 β 1
dβ
sec 2 β sec 2 β
dβ dβ β C arc tg z C
arc tg ( sen θ ) C arc tg (
x x 1 2
)C
49
u arc sen x
Hacemos :
du
3x arc sen x (1 x 2 ) 5 3x arc sen x (1 x )
2 5
dx dx
dv
dx
(1 x 2 ) 3 arc sen x (1 x )
2 3
(1 x 2 ) 5
dx Hacemos :
1
v
1 x 2 arc sen x
3x
(1 x 2 ) 3 dx
(1 x 2 ) 4 dx (1 x 2 ) 2
1 Hacemos :
x sen θ θ arc sen x dx cos θ dθ
3x arc sen x
3x arc sen x
(1 x )
2 5
(1 x )
2 5
dx dx
arc sen x (1 x )
2 3
arc sen x (1 x )
2 3
x
1 x
cos θ ( 1 sen θ ) 2
dθ 3
cos θ
2
arc sen x
dθ
(1 x )
2 3
arc sen x (1 x )
2 3
2
cos θ 4
cos θ
dθ
sec 3 θ dθ I
I sec θ dθ 3
1 1 I Ln sec θ tg θ sec θ tg θ C1 (Idem Prob. 5 - Int. por partes) 2 2 3x arc sen x arc sen x 1 1 dx Ln sec θ tg θ sec θ tg θ C 2 5 2 3 2 2 (1 x ) (1 x )
33.
3x arc sen x
1 dx Ln 2 5 2 3 2 (1 x ) (1 x )
3x arc sen x (1 x 2 ) 5
x 3
arc sen x
dx
2
x x 4 4
dx
arc sen x (1 x 2 ) 3
1 Ln 2
1
1 1 x ( )( )C 2 2 2 2 1 x 1 x 1 x 1 x 2 x 1 1 x 2
x
x 2 (1 x 2 )
x2 3 x x4 4 x2 3 x x 4 4
x2 3 x x 4 4
x2 3 x x4 4 x2 3 x x4 4 x2 3 x x4 4
34. I
I
x2 θ arc sec ( ) x 2 sec θ 2 x 2 sec θ sec θ tg θ dx dθ 2 sec θ 2
dx
2 sec θ 3
I
dθ
1 ( 2 sec θ 3 ) sec θ tg θ 1 ( 2 sec θ 3 ) sec θ tg θ dθ dθ 4 sec θ sec 2 θ 1 4 sec θ tg θ
dx
1 1 3 ( 2 sec θ 3 ) dθ sec θ dθ dθ 4 2 4
dx
1 3 Ln sec θ tg θ θ C1 2 4
dx
1 x2 x4 4 3 x2 Ln arc sec ( ) C 2 2 2 4 2
dx
1 3 x2 Ln x 2 x 4 4 arc sec ( ) C 2 4 2 x
(x 2) x 4 4x 2 5
x (x 2 2) (x 2 2) 2 1
dx
dx
x2 2 tg θ x dx
C
2 sec θ
dx
2
Hacemos :
2
sec θ tg θ
2 sec θ ( 2 sec θ ) 2 4
x2
x4 4
1 sec 2 θ 2 tg θ tg 2 θ 1
1 sec 2 θ dθ 2
dθ
x 4 4x 2 5
x2 2
1
1 sec 2 θ 1 sec θ 1 dθ dθ csc θ dθ 2 tg θ sec θ 2 tg θ 2
50
I
1 1 Ln csc θ ctg θ C Ln 2 2
I
1 Ln 2
35.
x 4 4x 2 5 1 x2 2
4x 2 12x 5 4x 2 12x 5
2
x 2 2
1 x 2 2
C
dx
dx
x2 4 (2x 3) 2
1 ( 2 sen θ 3 ) 2 cos θ 1 dx dθ ( 2 sen θ 3 ) 2 dθ 2 8 cos θ 8 4x 12x 5 x2 x2 4x 2 12x 5
dx
x2 4x 12x 5 2
x2 4x 2 12x 5 x2 4x 12x 5 2
dx
11 1 3 θ sen θ cos θ cos θ C 8 4 2
dx
11 2x 3 1 2x 3 4x 2 12x 5 3 4x 2 12x 5 arc sen ( ) ( )( ) ( )C 8 2 4 2 2 2 2
dx
11 2x 3 1 3 arc sen ( ) (2x 3) 4x 2 12x 5 4x 2 12x 5 C 8 2 16 4
x2 4x 12x 5 2
dx
11 2x 3 1 arc sen ( ) 4x 2 12x 5 (2x 9) C 8 2 16
dx
2 2x 3 2x 3 θ arc sen ( 2 ) Hacemos : 2x 3 2 sen θ x 2 sen θ 3 2 4x 12x 5 2 dx cos θ dθ 2 sen θ 3 2 ( ) cos θ x2 1 ( 2 sen θ 3 ) 2 cos θ 2 dx dθ dθ 8 4x 2 12x 5 4 ( 2 sen θ ) 2 1 sen 2 θ
C
x2 x2
x 4x 5 4
1 ( 4 sen 2 θ 12 sen θ 9 ) dθ 8
x2
36.
x2
(x 2 4) 3 dx Hacemos :
x x 2 tg θ θ arc tg ( ) 2
x2 4
x
dx 2 sec 2 θ dθ
2
( 2 tg θ ) 2
x2
(x 2 4) 3 dx [ ( 2 tg θ ) 2 4 ]3 ( 2 sec x2
(x 2 4) 3
dx
2
θ dθ )
1 tg 2 θ sec 2 θ dθ 8 ( tg 2 θ 1 ) 3
1 tg 2 θ sec 2 θ 1 tg 2 θ 1 dθ dθ sen 2 θ cos 2 θ dθ 6 4 8 8 sec θ 8 sec θ
x2
1
1 cos 2θ 1 cos 2θ 1 )( ) dθ ( 1 cos 2 2θ ) dθ 2 2 32
x2
1
1 cos 4θ 1 1 ) dθ dθ cos 4θ dθ 2 64 64
x2
1
x2
1
(x 2 4) 3 dx 8 (
1 3 9 dx sen 2 θ dθ sen θ dθ dθ 2 2 2 8 4x 12x 5
(x 2 4) 3 dx 32 ( 1
x2
1 1 cos 2θ 3 9 dx dθ sen θ dθ dθ 2 2 2 8 4x 2 12x 5
(x 2 4) 3 dx 64 θ 256 sen 4θ C 64 θ 64 sen θ cos θ ( cos
x2
(x 2 4) 3 dx 64 arc tg ( 2 ) 64 (
1 1 3 9 dx θ sen 2θ cos θ θ C 4 8 2 8 4x 2 12x 5 x2
11 1 3 dx θ sen 2θ cos θ C 2 8 8 2 4x 12x 5
x2
(x 2 4) 3
dx
1
1
x
1
x x2 4
1
)(
2 x2 4
)(
4 x2 4
2
θ sen 2 θ ) C x2 x2 4
)C
x (4 x 2 ) x (x 2 4) 1 x 1 x arc tg ( ) C arc tg ( ) C 64 2 32 (x 2 4) 2 64 2 32 (x 2 4) 2
51
37.
(9 x 2 ) 3 3
x Hacemos : x 3 sen θ θ arc sen ( ) 3 dx 3 cos θ dθ
dx 1 dθ 1 5 (9 x 2 ) 3 243 cos 5 θ 243 sec θ
9 x2
dθ
I
I sec θ dθ 5
I 4 6x x 2 8 35 csc θ dθ 24 dθ 72 csc θ dθ
1 3 3 sec 3θ tg θ sec θ tg θ Ln sec θ tg θ C1 (Idem Prob. 6 - Int. por partes) 4 8 8 dx 1 1 3 3 3 (9 x 2 ) 3 243 ( 4 sec θ tg θ 8 sec θ tg θ 8 Ln sec θ tg θ C1 ) dx 1 1 1 3 (9 x 2 ) 3 972 sec θ tg θ 648 sec θ tg θ 648 Ln sec θ tg θ C
I
dx
1 972
(
3 9x
3
) ( 2
x 9x
1
) 2
(
648
3 9x
)( 2
x 9x
dx x x 1 (9 x 2 ) 3 36 (9 x 2 ) 2 216 (9 x 2 ) 648 Ln 38. I
I
4x 2 1 (x 3) 6x x 2 8
) 2
1 648
x 3 9 x2
3
Ln
9x
2
x 9x
2 (x 3) (6 2x) (35 24x)
I 4 6x x 2 8 37 csc θ dθ 24 dθ I 4 6x x 2 8 37 Ln csc θ ctg θ 24θ C
C
I 4 6x x 2 8 37 Ln
1 6x x 2 8 24 arc sen (x 3) C x 3 x 3
I 4 6x x 2 8 37 Ln
1 6x x 2 8 24 arc sen (x 3) C x 3
2
C
39.
dx
dx
(x 3) 6x x 2 8 6 2x dx x I 2 dx 35 24 dx 2 2 6x x 8 (x 3) 6x x 8 (x 3) 6x x 2 8 dx x I 4 6x x 2 8 35 24 dx (x 3) 1 ( x 3) 2 (x 3) 1 ( x 3) 2
1
x 3
6x x 2 8 6x x 2 8 ctg θ x 3 ( sen θ 3 ) cos θ cos θ I 4 6x x 2 8 35 dθ 24 dθ sen θ 1 sen 2 θ sen θ 1 sen 2 θ ( sen θ 3 ) cos θ cos θ I 4 6x x 2 8 35 dθ 24 dθ sen θ cos θ sen θ cos θ dθ sen θ 3 I 4 6x x 2 8 35 24 dθ sen θ sen θ
x
dx 3 cos θ 1 cos θ 1 cos θ (9 x 2 ) 3 [ 9 ( 3 sen θ ) 2 ]3 dθ 243 ( 1 sen 2 θ ) 3 dθ 243 cos 6 θ dθ
(9 x 2 ) 3
x 3 sen θ θ arc sen (x 3) dx cos θ dθ 1 csc θ x 3
Hacemos :
dx
e 2x (e 2x 2e x 5) 3
e 2x (e 2x 2e x 5) 3
dx
dx
e 2x
e x 1 2 tg θ θ arc tg (
Hacemos :
dx
[ (e x 1) 2 4 ]3/2
e x 1 ) 2
e x dx 2 sec 2 θ dθ
e
2x
(e 2x 2e x 5) 3
dx
e 2x 2e x 5
e x 1
2
( 2 tg θ 1 ) ( 2 sec θ ) 2
[ ( 2 tg θ ) 2 4 ]3/2
dθ
1 ( 2 tg θ 1 ) sec 2 θ dθ 4 ( tg 2 θ 1 ) 3/2
52
e
2x
(e 2x 2e x 5) 3 e 2x (e 2x 2e x 5) 3
dx
1 ( 2 tg θ 1 ) sec θ 1 2 tg θ 1 dθ dθ 3 4 4 sec θ sec θ
dx
1 1 1 ( 2 sen θ cos θ ) dθ sen θ dθ cos θ dθ 4 2 4
2
e 2x (e 2x 2e x 5) 3 e (e
2x
2x
2e 5) x
3
dx
2
16 cos x sen x (20 8 sen x cos x 19 sen x) 2
e 5
dx 4 e
2x
2e 5 x
senh 2x (2 cosh x 3 senh 2 x 2 cosh x) 3/2 2
2
I (
cos 4 x 20 8 sen x cos x 19 sen 2 x cos 2 x
dx )
5/2
16 tg 2 x sec 2 x
I
[ 20 (tg 2 x 1) 8 tg x 19 tg 2 x ]5/2 Hacemos : z tg x
dx
3/2
dx
dx
cos 5 x dx (20 8 sen x cos x 19 sen 2 x) 5/2
16 sen 2 x
C
2 senh x cosh x 2
5/2
cos 5 x
2 senh x cosh x
[ 2 cosh x 3 (cosh x 1) 2 cosh x ] [ cosh 2 x 2 cosh x 3 ]3/2 2 senh x cosh x I dx [ 4 (cosh x 1) 2 ]3/2 Hacemos : cosh x 1 2 sen θ 2 cosh x 1 cosh x 1 θ arc sen ( ) 2 2 2cosh x 3senh 2 x 2coshx senh x dx 2 cos θ dθ 2 ( 2 sen θ 1 ) ( 2 cos θ ) 1 ( 2 sen θ 1 ) cos θ 1 2 sen θ 1 I dθ dθ dθ 2 3/2 2 3/2 2 2 [ 4 ( 2 sen θ ) ] ( 1 sen θ ) cos 2 θ
I
I
1 2 1 e x 1 ( ) ( )C 2 e 2x 2e x 5 4 e 2x 2e x 5 x
dx
(20 4 sen 2x 19 sen 2 x) 5/2
1 1 dx cos θ sen θ C 2 4 (e 2x 2e x 5) 3
I
I
8 sen 2x sen x
16 cos x sen 2 x
e 2x
40. I
I
41. I
1 ( 2 sen θ 1 ) cos θ sen θ 1 1 1 dθ dθ sec 2 θ dθ tg θ C 3 2 2 2 cos θ 2 cos θ cos θ 2 cosh x 1 C 2 2 2 2 cosh x 3 senh x 2 cosh x 2 2 cosh x 3 senh 2 x 2 cosh x 3 cosh x C 2 2 2 cosh x 3 senh 2 x 2 cosh x
dx
16 tg 2 x sec 2 x (20 sec 2 x 8 tg x 19 tg 2 x) 5/2
dx
16 tg 2 x sec 2 x ( tg 2 x 8 tg x 20 ) 5/2
dx
dx
dz sec 2 x dx z2 z2 I 16 dz 16 dz (z 2 8z 20) 5/2 [ (z 4) 2 4 ]5/2 z4
Hacemos :
z4
θ arc tg ( ) 2 tg θ 2 z 2 tg θ 4
z 2 8z 20
z4
dz 2 sec 2 θ dθ ( 2 tg θ 4 ) 2 ( 2 sec 2 θ ) ( tg θ 2 ) 2 sec 2 θ I 16 dθ 4 dθ [ ( 2 tg θ ) 2 4 ]5/2 ( tg 2 θ 1 ) 5/2
I4
( tg θ 2 ) 2 sec 2 θ sec 5 θ
dθ 4
( tg θ 2 ) 2 sec 3 θ
dθ 4
tg 2 θ 4 tg θ 4
I 4 sen 2 θ cos θ dθ 16 cos 2 θ sen θ dθ 16 cos 3 θ dθ 4 16 sen 3 θ cos 3 θ 16 cos 3 θ dθ 3 3 4 16 3 I sen θ cos 3 θ 16 ( 1 sen 2 θ ) cos θ dθ 3 3 4 16 16 I sen 3 θ cos 3 θ 16 sen θ sen 3 θ C 3 3 3 I
2
sec 3 θ
dθ
53
16 16 I 4 sen θ cos 3 θ 16 sen θ C 4 sen θ (sen 2 θ 4) cos 3 θ C 3 3 3
I 4 ( I I
42.
z4 z 8z 20 2
)[
(z 4)
2
z 8z 20 2
4]
16 2 ( )3 C 2 3 z 8z 20
(z 4) 2
4z 16
dx 1 (x 1) (x 2 2x 5) 2 32 Ln
[ 4] C 2 3 (z 2 8z 20) 3/2 z 2 8z 20 z 8z 20 4 tg x 16
(tg x 4) 2
[ 4] C 2 3 (tg 2 x 8 tg x 20) 3/2 tg 2 x 8 tg x 20 tg x 8 tg x 20
(x 1) (x 2 2x 5) 2 (x 1) [ (x 1) 2 4 ] 2 x 1 2 tg θ
Hacemos :
(x 1) (x 2 2x 5) 2 dx
(x 1) (x 2 2x 5) 2
x 2 2x 5
x 1
(x 1) 2 1 1 Ln C 2 2 32 x 2 x 5 8 (x 2 x 5)
Hacemos :
( 2 tg θ ) [ ( 2 tg θ ) 2 4 ] 2
dθ
1 sec 2 θ dθ 16 tg θ ( tg 2 θ 1 ) 2
x2
1 sec 2 θ 1 dθ 1 cos 3 θ d θ dθ 16 tg θ sec 4 θ 16 tg θ sec 2 θ 16 sen θ
a2 x2 x2
dx 1 ( 1 sen θ ) cos θ dθ (x 1) (x 2 2x 5) 2 16 sen θ 2
a2 x2 x2
dx 1 cos θ 1 (x 1) (x 2 2x 5) 2 16 sen θ dθ 16 sen θ cos θ dθ
a2 x2 x2
1 1 2 (x 1) (x 2 2x 5) 2 16 Ln sen θ 32 sen θ C1
a2 x2
dx
x 1 x 2x 5 2
1 x 1 ( ) 2 C1 32 x 2 2 x 5
(x 1) 2 (x 1) 2 1 1 (x 1) (x 2 2x 5) 2 32 Ln x 2 2x 5 32 [ x 2 2x 5 ] C1 dx
dx
dx a
x x a sen θ θ arc sen ( ) a dx a cos θ dθ
x
a x2 2
2
2 sec 2 θ
dx 1 (x 1) (x 2 2x 5) 2 16 Ln
(x 1) 2 1 1 1 Ln C1 2 2 32 x 2 x 5 8 (x 2 x 5) 32
dx 2 sec 2 θ dθ
dx
a2 x2
dx
x 1 θ arc tg ( ) 2
dx
x2
43.
dx
(x 1) 2 1 1 (x 2 2x 5) 4 Ln [ ] C1 32 x 2 2 x 5 32 x 2 2x 5
(x 1) (x 2 2x 5) 2
dx
(x 1) (x 2 2x 5) 2
1 (x 1) 2 4 4 [ ] C1 32 x 2 2 x 5
(x 1) (x 2 2x 5) 2
128
x 2 2x 5
dx
(x 1) (x 2 2x 5) 2
128
(x 1) 2
x2
44.
a2 x2
dx
dx a 2
x
a 2 a 2 sen 2 θ
dθ a 2
sen 2 θ cos θ 1 sen 2 θ
dθ
sen 2 θ cos θ 1 cos 2θ dθ a 2 sen 2 θ dθ a 2 dθ cos θ 2
dx
a2 1 a2 ( θ sen 2θ ) C ( θ sen θ cos θ ) C 2 2 2
dx
a2 x x a2 x2 [ arc sen ( ) ( ) ( ) ] C 2 a a a
dx
a2 x x arc sen ( ) a2 x2 C 2 a 2
dx 2
( a sen θ ) 2 ( a cos θ )
x2 9
54
x
x Hacemos : x 3 sec θ θ arc sec ( ) 3 dx 3 sec θ tg θ dθ
x2 9
dx x 4x 2
3
dx x2 x2 9 dx
3 sec θ tg θ ( 3 sec θ ) 2 ( 3 sec θ ) 2 9
1
x2 x2 9 dx x2 x2 9
dθ
9 1 9
(
sec θ tg θ
dθ
2
sec θ tg θ
1 dθ 9 sec θ
x2 9 )C x
sec θ tg θ 1 dθ 9 sec 2 θ sec 2 θ 1
1
1
cos θ dθ sen θ C 9 9
dx x 4x 2
3 sec θ tg θ sec θ tg θ 1 2 dθ dθ 3 sec θ sec 2 θ 1 3 3 9 sec θ 4 ( sec θ ) 2 9 2 2 1 sec θ tg θ 1 1 1 2x dθ dθ θ C arc sec ( ) C 3 sec θ tg θ 3 3 3 3 9
dx
x 2 2x 5
47.
dx
dx
x 2 2x 5 (x 1) 2 4
x2 9 C 9x
x 1 2 tg θ
Hacemos :
45.
dx
x 5 tg θ θ arc tg (
x
)
5
x2 5
x
46.
x2 x2 5 dx x2 x2 5 dx x2 x2 5
5 2
5 sec θ ( 5 tg θ ) 2 ( 5 tg θ ) 2 5
1
5 1 5
sec 2 θ tg 2 θ sec θ
dx 5 sec 2 θ dθ
dx
x 1 ) 2
dx 2 sec 2 θ dθ
x2 x2 5
Hacemos :
θ arc tg (
dθ 1 5
dθ
2
1 sec θ dθ 5 tg 2 θ tg 2 θ 1
1 sec θ 1 cos θ 1 dθ dθ C 5 tg 2 θ 5 sen 2 θ 5 sen θ
csc θ C (
x2 5 x2 5 )C C x 5x
1 sec 2 θ 1 sec 2 θ 1 dθ dθ dθ 2 2 2 2 2 tg θ 1 2 sec θ 2 x 2x 5 ( 2 tg θ ) 4 dx 1 1 x 1 θ C arc tg ( )C 2 2 2 x 2x 5 2 dx
48.
x2 6x x 2 x2 6x x 2
Hacemos :
dx x 4x 2 9
3 2x Hacemos : x sec θ θ arc sec ( ) 2 3 3 dx sec θ tg θ dθ 2
x2 6x x 2 x2 6x x 2
2 sec 2 θ
dθ
dx x2
dx
9 ( x 3) 2
dx
x 3 ) θ arc sen ( x 3 3 sen θ 3 x 3 sen θ 3 dx 3 cos θ dθ
dx
( 3 sen θ 3 ) 2 ( 3 cos θ )
dx 9
9 ( 3 sen θ ) 2
dθ 9
3
x 3
6x x 2
( sen θ 1 ) 2 cos θ 1 sen 2 θ
( sen θ 1 ) 2 cos θ dθ 9 ( sen θ 1 ) 2 dθ cos θ
dθ
55
x
6x x 2 x2
6x x
2
x2
6x x 2 x2
6x x 2 x2
49.
2
6x x
2
dx 1 x 2
50.
51.
9 9 θ sen 2θ 18 cos θ 9θ C 2 4
dx
27 9 θ sen θ cos θ 18 cos θ C 2 2
dx
27 x 3 9 x 3 6x x 2 6x x 2 arc sen ( ) ( )( ) 18 ( )C 2 3 2 3 3 3
dx
27 x 3 1 arc sen ( ) ( x 3) 6x x 2 6 6x x 2 C 2 3 2
52.
dx 9 x2 dx 9 x2
dx
x x 2 1 Hacemos : x sec θ θ arc sec x
dx sec θ tg θ dθ
dx x x 2 1
sec θ sec 2 θ 1
dθ
dx
x x 5 tg θ θ arc tg ( ) 5
dx
25 x 2 dx
25 x 2
54.
5 sec 2 θ
dθ
25 25 tg 2 θ 1 x arc tg ( ) C 5 5
1 sec 2 θ 1 sec 2 θ 1 1 dθ dθ dθ θ C 2 2 5 1 tg θ 5 sec θ 5 5
dx x x 2 16
x x 4 sec θ θ arc sec ( ) 4 dx 4 sec θ tg θ dθ 4 sec θ tg θ sec θ tg θ dx 1 dθ dθ 4 sec θ sec 2 θ 1 x x 2 16 4 sec θ 16 sec 2 θ 16 dx 1 sec θ tg θ 1 1 1 x dθ dθ θ C arc sec ( ) C 4 4 4 4 x x 2 16 4 sec θ tg θ
Hacemos :
dx
1 x 2 Hacemos :
55. Comprobar que si a 0 entonces : x tg θ θ arc tg x dx sec 2 θ dθ
sec θ tg θ dθ dθ θ C arc sec x C sec θ tg θ
dx 5 sec 2 θ dθ
x sen θ θ arc sen x dx cos θ dθ cos θ cos θ dθ dθ dθ θ C arc sen x C 2 cos θ 1 sen θ
x x 3 sen θ θ arc sen ( ) 3 dx 3 cos θ dθ 3 cos θ cos θ cos θ dθ dθ dθ dθ θ C 2 2 cos θ 9 9 sen θ 1 sen θ x arc sen ( ) C 3
sec θ tg θ
25 x 2
53.
Hacemos :
9 x2
2
dx sec θ sec θ 1 x 2 1 tg 2 θ dθ sec 2 θ dθ dθ θ C arc tg x C
dx
Hacemos :
dx
2
1 cos 2θ 2 sen θ 1 ) dθ 2
dx
1 x 2 Hacemos :
dx 9 ( sen 2 θ 2 sen θ 1 ) dθ 9 (
dx a2 x2
x a
arc sen ( ) C
56
dx a2 x2
Hacemos :
dx a2 x2 dx a2 x2
58. x x a sen θ θ arc sen ( ) a dx a cos θ dθ a cos θ cos θ cos θ dθ dθ dθ dθ cos θ a 2 a 2 sen 2 θ 1 sen 2 θ x θ C arc sen ( ) C a
56. Comprobar que si a 0 entonces :
dx
x x a tg θ θ arc tg ( ) a
a2 x2 dx
a2 x2
1 tg θ θ arc tg 2x 2 1 dx sec 2 θ dθ 2 1 sec 2 θ dx 1 sec 2 θ 1 1 1 2 dθ dθ dθ θ C arc tg 2x C 1 4x 2 1 tg 2 θ 2 2 sec θ 2 2 2
1 sec 2 θ 1 sec 2 θ 1 d θ dθ dθ 2 2 2 2 2 a 1 tg θ a sec θ a a a tg θ 1 1 x θ C arc tg ( ) C a a a
a sec 2 θ
dθ
57. Comprobar que si a 0 entonces :
dx
Hacemos :
dx a sec 2 θ dθ
dx
dx x x2 a2
1 a
x a
arc sec ( ) C
dx
60.
x x2 a2 x x a sec θ θ arc sec ( ) a dx a sec θ tg θ dθ a sec θ tg θ sec θ tg θ dx 1 dθ dθ 2 2 2 2 2 a x x a a sec θ a sec θ a sec θ sec 2 θ 1 dx 1 sec θ tg θ 1 1 1 x dθ dθ θ C arc sec ( ) C 2 2 a sec θ tg θ a a a a x x a
x
dx 16 9x 2 4 3x sen θ θ arc sen ( ) 3 4 4 dx cos θ dθ 3 4 cos θ dx 1 cos θ 1 cos θ 1 3 dθ dθ dθ dθ 3 1 sen 2 θ 3 cos θ 3 16 9x 2 16 16 sen 2 θ dx 1 1 3x θ C arc sen ( ) C 3 3 4 16 9x 2
Hacemos :
Hacemos :
1 x sec θ θ arc sec 3x 3 1 dx sec θ tg θ dθ 3 1 sec θ tg θ sec θ tg θ sec θ tg θ dx 3 dθ dθ dθ 1 sec θ tg θ x 9x 2 1 sec θ sec 2 θ 1 sec θ sec 2 θ 1 3 dx dθ θ C arc sec 3x C x 9x 2 1
1 4x 2
59.
Hacemos :
x 9x 2 1
Hacemos :
dx 1 x a 2 x 2 a arc tg ( a ) C
a2 x2
dx
x
57
61.
dx
x
x 2 2 tg θ
Hacemos :
θ arc tg (
x2 ) 2
Hacemos :
dx 2 sec 2 θ dθ 2
62.
dz
z
2
dx 2 sec θ 1 sec θ 1 sec θ 1 4 (x 2) 2 4 4 tg 2 θ dθ 2 1 tg 2 θ dθ 2 sec 2 θ dθ 2 dθ
6 (3 2x 2 ) 2 dx 4 6 6 tg 2 θ dθ 4
dx 1 1 x2 4 (x 2) 2 2 θ C 2 arc tg ( 2 ) C
6 (3 2x 2 ) 2 dx 4
x
x
1
2x
64.
z x2
Hacemos :
Hacemos :
z
x
5 tg θ θ arc tg (
z
)
5 x 4 dx 2
5
dθ 2
1 5
θC
1 2 5
x
1
z 3 2x 2 dz 4x dx
4 6
6
3 2x 2
1
arc tg (
4 6
z
)C
6
)C
6
arc tg (
tg x dz sec 2 x dx z
sec 2 x
1
z 5
sec 2 θ
sec 2 θ
)C
1 2 5
Hacemos :
dθ
arc tg (
x2 5
)C
z
4x
dz
3 tg θ θ arc tg (
z
)
3
dz 3 sec 2 θ dθ sec 2 x
3 sec 2 θ
1
6 2 tg 2 x dx 2 3 3 tg 2 θ dθ 2 6 2 tg 2 x dx 2
6 (3 2x 2 ) 2 dx 4 6 (3 2x 2 ) 2 dx Hacemos :
arc tg (
θC
sec 2 θ
dθ 6 sec 2 θ
sec 2 x
1
sec 2 x
6 (3 2x 2 ) 2 dx x
1
1
1
6 2 tg 2 x dx 2 3 z 2
5
1 5 sec 2 θ 1 sec 2 θ 1 d θ dθ 2 2 2 5 5 tg θ 2 5 1 tg θ 2 5 1
dθ 4 6
sec 2 θ
dθ 6 1 tg 2 θ 4
6 2 tg 2 x dx
Hacemos :
dz 5 sec θ dθ
5 x4
1
1
sec 2 x
sec 2 x
2
dx
)
6
6 2 tg 2 x dx 2 3 tg 2 x dx
dz 2x dx x 1 dz 5 x 4 dx 2 5 z 2
x
dx
6 (3 2x 2 ) 2
5 x 4 dx
6 sec 2 θ
1
x
x
x
z
6 tg θ θ arc tg (
dz 6 sec 2 θ dθ 2
5 x 4 dx 2 5 (x 2 ) 2 dx
63.
1
6 (3 2x 2 ) 2 dx 4 6 z 2
4 (x 2) 2
sec 2 x
6 2 tg 2 x dx 2
1
dθ 2 3
1
arc tg ( 3
1 3
tg x 3
1
θC )C
sec 2 θ
dθ 3 1 tg 2 θ 2 1 2 3
arc tg (
z 3
1
sec 2 θ
dθ 3 sec 2 θ
)C
58
65.
x
9 x4 x 1 2x dx dx 2 9 x4 9 (x 2 ) 2
Hacemos :
x 9 x4
Hacemos :
V.
Hacemos :
dx
x 9 x4 x 9 x4
z x
dz 2x dx 1 dz dx 2 9 z2
3.
z θ arc sen ( ) 3
dz 3 cos θ dθ 1 3 cos θ 1 cos θ 1 cos θ dx dθ dθ dθ 2 2 2 2 2 cos θ 9 9 sen θ 1 sen θ dx
dx
3
dx (2x 1) (2x 3)
3 [
4x 2 4x 3 2.
3 8
Ln
2
2x 1 C 2x 3
x 2 6x 18
1/4 1/4 ] dx 2x 1 2x 3
4.
x 2 6x 18 2 dx x 2 6x 18 2 dx x 6x 18 2
dx
dx ( x 3) 2 9 x 3 θ arc tg ( ) 3
dx
2
3 sec 2 θ 9 tg 2 θ 9
x 2 6x 18
x 3
3
dθ 2
sec 2 θ tg 2 θ 1
2 Ln sec θ tg θ C1 2 Ln
dθ 2
sec 2 θ dθ 2 sec θ dθ sec θ
x 2 6x 18 x 3 C1 3 3
2 Ln x 3 x 2 6x 18 C
5 dx x 2 8x 12 5 dx x 2 8x 12
Hacemos :
x 2 2x 10 (x 1) 2 9
2
x 3 3 tg θ
2 dx
dx
x 2 2x 10
dθ
dx 3 sec θ dθ
3
3 sec 2 θ
2
(2x 1) 4 3 dx 3 2 dx 3 2 dx 3 3 4x 2 4x 3 8 2x 1 8 2x 3 8 Ln 2x 1 8 Ln 2x 3 C 3 dx
x 2 6x 18 2 dx
1 1 1 z 1 x dθ θ C arc sen ( ) C arc sen ( ) C 2 2 2 3 2 3
4x 2 4x 3 4x 2 4x 3
2 dx
Hacemos :
3 dx
3 dx
x 1 ) 3
1 sec 2 θ 1 sec 2 θ 1 dθ dθ dθ 2 2 2 2 3 tg θ 1 3 sec θ 3 x 2x 10 9 tg θ 9 dx 1 1 x 1 θ C arc tg ( )C 2 3 3 x 2x 10 3 dx
2
INTEGRALES QUE CONTIENEN UN TRINOMIO CUADRADO
1.
θ arc tg (
dx 3 sec 2 θ dθ
2
z 3 sen θ
x 1 3 tg θ
5
dx 4 ( x 4) 2
x 4 2 sen θ θ arc sen (
x4 ) 2
dx 2 cos θ dθ 2 cos θ cos θ cos θ 5 dθ 5 dθ 5 dθ 2 2 2 cos θ x 8x 12 4 4 sen θ 1 sen θ
5 dx
59
5.
x4 5 dθ 5θ C 5 arc sen ( )C 2 x 2 8x 12 5 dx
Hacemos :
dx
3x 5
x 2 6x 18 dx
3 (2x 6) 14 3 2x 6 dx dx 2 dx dx 14 2 2 2 2 2 x 6x 18 x 6x 18 x 6x 18 x 6x 18 3x 5 3 dx 2 dx Ln ( x 6x 18 ) 14 2 x 2 6x 18 ( x 3) 2 9 3x 5
Hacemos :
x 3 3 tg θ
θ arc tg (
x 3 ) 3
dx 3 sec 2 θ dθ
3x 5
x 2 6x 18
dx
3x 5
3 3 sec 2 θ Ln ( x 2 6x 18 ) 14 dθ 2 9 tg 2 θ 9 3
x 2 6x 18 dx 2 Ln ( x 6.
3x 5
2
6x 18 )
2
14 sec θ dθ 3 tg 2 θ 1
9x 6x 3 2
7.
dx
2 7 (18x 6) 3 dx dx 9 2 2 9x 6x 3 9x 6x 3 1 4x 2 18x 6 7 dx dx dx 9 3 9x 2 6x 3 9x 2 6x 3 9x 2 6x 3 1 4x 4 7 dx dx 9x 2 6x 3 9 3 9x 2 6x 3 (3x 1) 2 4 1 4x
2
3 14 sec θ dx Ln ( x 2 6x 18 ) dθ 2 2 3 sec 2 θ x 6 x 18 3x 5 3 14 3 14 dx Ln ( x 2 6x 18 ) dθ Ln ( x 2 6x 18 ) θ C 2 2 3 2 3 x 6 x 18 3x 5 3 14 x3 dx Ln ( x 2 6x 18 ) arc tg ( )C 2 2 3 3 x 6 x 18
1 4x
2 sec θ θ arc sec (
3x 1
3x 1 ) 2
2 sec θ tg θ dθ 3
3x 1
9x 2 6x 3
2 sec θ tg θ 3 dθ 4 sec 2 θ 4 sec θ tg θ dθ sec 2 θ 1 1 4x 4 7 sec θ tg θ dx 9x 2 6x 3 dθ 2 9 9 tg θ 9x 6x 3 1 4x 4 7 dx 9x 2 6x 3 sec θ dθ 2 9 9 9x 6x 3
2
1 4x
4 7 dx 9x 2 6x 3 9 3 9x 2 6x 3 1 4x 4 7 dx 9x 2 6x 3 2 9 9 9x 6x 3
1 4x 9x 6x 3 2
1 4x 9x 2 6x 3 1 4x 9x 6x 3 2
dx
4 7 9x 2 6x 3 Ln sec θ tg θ C1 9 9
dx
4 7 3x 1 9x 2 6x 3 9x 2 6x 3 Ln C1 9 9 2 2
dx
4 7 9x 2 6x 3 Ln 3x 1 9x 2 6x 3 C 9 9
2x x 2 10x 21 2x x 2 10x 21 2x
dx
dx
1 (2x 10) 7 2 dx
x 2 10x 21 1 2x 10 dx dx dx 7 2 2 2 2 x 10x 21 x 10x 21 x 10x 21 2x dx dx x 2 10x 21 7 2 x 10x 21 ( x 5) 2 4
Hacemos :
x 5 2 sec θ θ arc sec ( dx 2 sec θ tg θ dθ
x 5 ) 2
x 5
x 2 10x 21
2
60
8.
x 10x 21 2x
2 sec θ tg θ
dx x 2 10x 21 7
dθ
4 sec θ 4 sec θ tg θ dx x 2 10x 21 7 dθ x 2 10x 21 sec 2 θ 1 sec θ tg θ 2x dx x 2 10x 21 7 dθ tg θ x 2 10x 21 2x dx x 2 10x 21 7 sec θ dθ 2 x 10x 21 2x dx x 2 10x 21 7 Ln sec θ tg θ C1 2 x 10x 21 2
2x
2
x5 x 2 10 x 21 dx x 10x 21 7 Ln C1 2 2 x 2 10x 21 2
2x
dx x 10x 21 7 Ln x 5 x 10x 21 C 2
x 2 10x 21
2
4 5x
4 5x 4/3 11/3 4 dx 11 dx dx [ ] dx x (x 3) x x 3 3 x 3 x3 4 5x 4 11 dx Ln x Ln x 3 C x (x 3) 3 3
3 e 2x 4 e x 4 e x e 2x 3 3 e 2x 4 e x 4 e x e 2x 3
Hacemos :
dx
( 3ex 4 ) ex 4 e x e 2x 3
3e
4e
4 e x e 2x 3
4e e x
dx
4e e x
4z z 2 3
dz
2x
3
3 e 2x 4 e x 4e e x
3e
2x
4e e 3e
2x
4e e 3e
10. I
I
2x
4e
4e e x
2x
4e
x
2x
2x
4e
x
dx
3 4 2z dz dz 2 2 4z z 2 3 4z z 2 3
dx 3 4z z 2 3 2
dz 1 (z 2) 2
z 2 sen θ θ arc sen (z 2) dz cos θ dθ
3 e 2x 4 e x
2x
3 x
3 x
3 x
3
dx 3 4z z 2 3 2 dx 3 4z z 2 3 2
cos θ 1 sen 2 θ
dθ
cos θ dθ 3 4z z 2 3 2 dθ cos θ
dx 3 4z z 2 3 2θ C dx 3 4z z 2 3 2 arc sen (z 2) C dx 3 4 e x e 2x 3 2 arc sen (e x 2) C
senh x 3 cosh x cosh x ( 6 senh 2 x senh 2x 5 )
dx
senh x 3 cosh x cosh x ( 6 senh 2 x 2 senh x cosh x 5 ) senh x 3 cosh x
dx
cosh 3 x dx cosh x ( 6 senh 2 x 2 senh x cosh x 5 ) cosh 3 x
I 3z 4
3
2x
Hacemos :
3
2x
3 e 2x 4 e x
dx
z ex
x
4e e x
I
dz e dx
3 e 2x 4 e x
dx
x
2x
x (x 3) dx
9.
2x
3 (4 2z) 2 2 dz 4z z 2 3
I
( tgh x 3 ) sech 2 x 6 tgh 2 x 2 tgh x 5 sech 2 x ( tgh x 3 ) sech 2 x tgh 2 x 2 tgh x 5
dx
dx
( tgh x 3 ) sech 2 x 6 tgh 2 x 2 tgh x 5 ( 1 tgh 2 x )
dx
Hacemos :
61
z tgh x
dz sech x dx 1 (2z 2) 2 z3 1 2z 2 dz I dz 2 dz dz 2 2 2 2 2 2 z 2z 5 z 2z 5 z 2z 5 z 2z 5 1 dz I Ln ( z 2 2z 5 ) 2 2 (z 1) 2 4 Hacemos :
z 1 2 tg θ
θ arc tg (
z 1 ) 2
dz 2 sec θ dθ
1 2 sec 2 θ 1 sec 2 θ Ln ( z 2 2z 5 ) 2 dθ Ln ( z 2 2z 5 ) dθ 2 2 4 tg 2 θ 4 tg 2 θ 1
1 sec 2 θ 1 Ln ( z 2 2z 5 ) dθ Ln ( z 2 2z 5 ) dθ 2 2 2 sec θ 1 1 z 1 I Ln ( z 2 2z 5 ) θ C Ln ( z 2 2z 5 ) arc tg ( )C 2 2 2 tgh x 1 1 I Ln ( tgh 2 x 2 tgh x 5 ) arc tg ( )C 2 2
x 2 2x 8 dx
1 9 (x 1) x 2 2x 8 Ln x 1 x 2 2x 8 C 2 2
x 2 2x 8 dx (x 1) 2 9 dx
x 1
x 2x 8 2
3
x 2 2x 8 dx 9 sec 2 θ 9 ( 3 sec θ tg θ dθ ) 9 sec 2 θ 1 ( sec θ tg θ dθ )
x 2 2x 8 dx 9 tg 2 θ sec θ dθ 9 ( sec 2 θ 1 ) sec θ dθ
x 2 2x 8 dx 9 sec 3 θ dθ 9 sec θ dθ 9 sec 3 θ dθ 9 Ln sec θ tg θ I
I sec 3θ dθ
1 1 Ln sec θ tg θ sec θ tg θ C1 (Idem Prob. 5 - Int. por partes) 2 2
dx 9x 12x 13 9 dx dx 9 2 9x 12x 13 (3x 2) 2 9
3x 2
3 tg θ
13.
9 9x 2 12x 13 9 9x 2 12x 13 9 9x 2 12x 13 9 9x 12x 13 2
dx 9
3
sec 2 θ 9 tg 2 θ 9
dθ 3
sec 2 θ tg 2 θ 1
dθ 3
dx 3 sec θ dθ 3 Ln sec θ tg θ C1 dx 3 Ln
9 x 2 12 x 13 3x 2 C1 3 3
dx 3 Ln 3x 2 9x 2 12x 13 C
3
4x 2 16x 17 dx 3
9x 2 12x 13
3x 2
dx sec 2 θ dθ
x 1 x 1 3 sec θ θ arc sec ( ) 3 dx 3 sec θ tg θ dθ
9
2
Hacemos :
I
9 x 1 x 2 2x 8 9 x 1 x 2 2x 8 ( )( ) Ln C2 2 3 3 2 3 3
x 2 2x 8 dx
Hacemos :
x 2 2x 8 dx
12.
I
11.
2
I
1 1 x 2 2x 8 dx 9 ( Ln sec θ tg θ sec θ tg θ C1 ) 9 Ln sec θ tg θ 2 2 9 9 2 x 2x 8 dx Ln sec θ tg θ sec θ tg θ 9C1 9 Ln sec θ tg θ 2 2 9 9 x 2 2x 8 dx sec θ tg θ Ln sec θ tg θ C 2 2 2
2
dx
4x 2 16x 17 dx 3 (2x 4) 2 1
sec 2 θ dθ sec θ
Hacemos :
62
2x 4 tg θ θ arc tg (2x 4)
1 dx sec 2 θ dθ 2 1 sec 2 θ 3 3 sec 2 θ 3 sec 2 θ 3 2 dx 3 dθ dθ dθ dθ 4x 2 16x 17 tg 2 θ 1 2 2 2 tg θ 1 2 sec θ 2 3 3 3 4x 2 16x 17 dx 2 θ C 2 arc tg (2x 4) C
14.
4 7x x 2 2x 8 4 7x x 2 2x 8 4 7x
x 2 2x 8 4 7x
x 2x 8 2
x 1 x 2 2x 8 C1 3 3
dx 7 x 2 2x 8 11 Ln x 1 x 2 2x 8 C
3 5x
9x 2 12x 13 dx 5 19 (18x 12) 18 3 9x 2 12x 13 dx 9x 2 12x 13 dx 3 5x 5 18x 12 19 dx 9x 2 12x 13 dx 18 9x 2 12x 13 dx 3 9x 2 12x 13 3 5x 5 19 dx 2 9x 2 12x 13 dx 18 Ln ( 9x 12x 13 ) 3 (3x 2) 2 9
7 (2x 2) 11 2 dx
x 1 3 sec θ θ arc sec (
4 7x
4 7x
dx 7 x 2 2x 8 11 Ln
3 5x
dx 3 sec θ tg θ dθ
15.
x 2 2x 8 7 2x 2 dx dx dx 11 2 2 2 2 x 2x 8 x 2x 8 x 2x 8 4 7x dx dx 7 x 2 2x 8 11 2 x 2x 8 ( x 1) 2 9
Hacemos :
x 2 2x 8
dx
dx
4 7x
x 1 ) 3
Hacemos :
dx 7 x 2 x 8 11
3 sec θ tg θ
3 5x
9x 2 12x 13
x 1
x 2 2x 8
dx
3 5x
5 19 sec 2 θ Ln ( 9x 2 12x 13 ) dθ 18 3 9 tg 2 θ 9 5
9x 2 12x 13 dx 18 Ln ( 9x
2
12x 13 )
5 Ln ( 9x 2 9x 2 12x 13 18 3 5x 5 2 9x 2 12x 13 dx 18 Ln ( 9x 3 5x 5 2 9x 2 12x 13 dx 18 Ln ( 9x 3 5x 5 2 9x 2 12x 13 dx 18 Ln ( 9x
12x 13 )
3 5x
dθ
9 sec 2 θ 9 sec θ tg θ dx 7 x 2 2 x 8 11 dθ 2 x 2x 8 sec 2 θ 1 sec θ tg θ 4 7x dx 7 x 2 2 x 8 11 dθ 2 tg θ x 2x 8 4 7x dx 7 x 2 2 x 8 11 sec θ dθ 2 x 2x 8 4 7x dx 7 x 2 2 x 8 11 Ln sec θ tg θ C1 2 x 2x 8
3x 2 ) 3
dx sec 2 θ dθ
3 2
3x 2 3 tg θ θ arc tg (
16.
dx
2x x 10x 21 2
dx
19 sec 2 θ dθ 27 tg 2 θ 1
19 sec 2 θ dθ 27 sec 2 θ 19 12x 13 ) dθ 27 19 12x 13 ) θC 27 19 3x 2 12x 13 ) arc tg ( )C 27 3
63
1 (2x 10) 7 2x dx 2 dx x 2 10x 21 x 2 10x 21 2x 1 2x 10 dx dx dx 7 2 x 2 10x 21 x 2 10x 21 x 2 10x 21 2x dx dx x 2 10x 21 7 x 2 10x 21 4 ( x 5) 2
Hacemos :
2x
x 5 2 sen θ θ arc sen ( dx 2 cos θ dθ
x 2 10 x 21 2x x 10 x 21 2x 2
x 2 10 x 21 2x x 2 10 x 21 2x x 10 x 21 2x 2
x 10 x 21
17. I
I
2
x 5 ) 2
dx x 2 10x 21 7 dx x 2 dx x 2
2 cos θ
Hacemos :
4 4 sen 2 θ cos θ 10x 21 7 dθ 1 sen 2 θ cos θ 10x 21 7 dθ cos θ
dx x 10x 21 7 dθ
z2 ) 2
z 2 4z 8
z2
dz 2 sec θ dθ 2
2
2 sec θ
I 2 z 2 4z 8
4 tg 2 θ 4
2
dθ 2 z 2 4z 8
2
sec θ tg 2 θ 1
dθ
sec 2 θ dθ 2 z 2 4z 8 sec θ dθ sec θ
I 2 z 2 4z 8 Ln sec θ tg θ C1 I 2 z 2 4z 8 Ln
z 2 4z 8 z 2 C1 2 2
I 2 z 2 4z 8 Ln z 2 z 2 4z 8 C I 2 sen 2 x 4 sen x 8 Ln sen x 2 sen 2 x 4 sen x 8 C
2
18. I
dx x 2 10x 21 7θ C dx x 2 10x 21 7 arc sen (
sen 2x 3 cos x
x 5 )C 2
I
dx
9 sen x cos 2 x 2 sen x cos x 3 cos x
9 4 sen x (1 sen 2 x)
I
dx
( 2 sen x 3 ) cos x sen 2 x 4 sen x 8
5 senh x 4 cosh x cosh x ( 9 senh 2 x 6 senh 2x 5 )
dx
5 senh x 4 cosh x cosh x ( 9 senh 2 x 12 senh x cosh x 5 ) 5 senh x 4 cosh x
dx
cosh 3 x dx cosh x ( 9 senh x 12 senh x cosh x 5 ) 2
cosh 3 x
dx
z sen x dz cos x dx (2z 4) 1 2z 3 2z 4 dz dz dz dz z 2 4z 8 z 2 4z 8 z 2 4z 8 z 2 4z 8
I
Hacemos : I
(z 2) 2 4
z 2 2 tg θ θ arc tg (
I 2 z 2 4z 8
dθ
dz
I 2 z 2 4z 8
I
( 5 tgh x 4 ) sech 2 x 9 tgh 2 x 12 tgh x 5 sech 2 x ( 5 tgh x 4 ) sech 2 x
4 tgh 2 x 12 tgh x 5 Hacemos : z tgh x
dx
dz sech 2 x dx
dx
( 5 tgh x 4 ) sech 2 x 9 tgh 2 x 12 tgh x 5 ( 1 tgh 2 x )
dx
64
5 7 (8z 12) 5z 4 2 dz I dz 8 4z 2 12z 5 4z 2 12z 5 5 8z 12 7 dz 5 7 dz I dz Ln 4z 2 12z 5 2 2 8 4z 12z 5 2 4z 12z 5 8 2 (2z 3) 2 4
Hacemos :
2z 3 2z 3 2 sec θ θ arc sec ( ) 2 dz sec θ tg θ dθ
dx
I I I I
19.
5 7 sec θ tg θ 5 7 sec θ tg θ Ln 4z 2 12z 5 dθ Ln 4z 2 12z 5 dθ 8 2 4 sec 2 θ 4 8 8 sec 2 θ 1 5 7 sec θ tg θ 5 7 sec θ Ln 4z 2 12z 5 dθ Ln 4z 2 12z 5 dθ 2 8 8 8 8 tg θ tg θ
2z 3 4z 12z 5 2
2z 1
1 sec 2 θ 1 sec 2 θ 1 dθ dθ dθ 2 2 2 2 2 tg θ 1 2 sec θ 2 x 4x 8 4 tg θ 4 dx 1 1 x2 θ C arc tg ( )C 2 2 2 x 4x 8 2 dx
dx
x 1
3 tg θ θ arc tg (
x 1
)
3
dx 3 sec 2 θ dθ
2 4z 12z 5 2
dx
C
x 2 2x 4
I
(2z 1) 2 5 7 Ln 4z 2 12z 5 Ln C 8 16 (2z 1) (2z 5)
I
5 7 2z 1 Ln 4z 2 12z 5 Ln C 8 16 2z 5
Hacemos :
I
2 tgh x 1 5 7 Ln 4 tgh 2 x 12 tgh x 5 Ln C 8 16 2 tgh x 5
C
1/2
C
21.
3 sec 2 θ
1
dθ
sec 2 θ
3 tg 2 θ 1
dθ
1
3 tg θ 3 dx 1 1 x 1 θ C arc tg ( )C 2 3 3 3 x 2x 4
I
x 2 4x 8
dx
Hacemos :
(2z 1) 2 5 7 Ln 4z 2 12z 5 Ln 8 8 4z 2 12z 5
dx
dθ
x 2 2x 4 (x 1) 2 3
5 7 Ln 4z 2 12z 5 Ln 8 8
4z 12z 5
2 sec 2 θ
dx
I
2
x 2 2x 4
20.
5 7 Ln 4z 2 12z 5 csc θ dθ 8 8 5 7 Ln 4z 2 12z 5 Ln csc θ ctg θ C 8 8 5 7 Ln 4z 2 12z 5 Ln 8 8
x2 ) 2
dx 2 sec 2 θ dθ
2
I
x 2 2 tg θ θ arc tg (
Hacemos :
2z 3
4z 2 12z 5
dx
x 2 4x 8 (x 2) 2 4
2
sec 2 θ
dθ 3 sec 2 θ
1 3
dx 5 4x x 2 dx
5 4x x 2
dx 9 ( x 2) 2
x 2 3 sen θ θ arc sen ( dx 3 cos θ dθ 3 cos θ
dx 5 4x x dx
2
5 4x x
2
9 9 sen θ 2
dθ
θ C arc sen (
x2 ) 3
cos θ 1 sen θ
x2 )C 3
2
dθ
cos θ dθ dθ cos θ
dθ
65
22.
dx 26 16x 2x dx
26 16x 2x x 4
Hacemos :
2
Hacemos :
2
1
2
dx 13 8x x
2
1
2
3 sen θ θ arc sen (
x4
dx 3 ( x 4)
dx
2
dx 26 16x 2x dx
26 16x 2x 2
23.
2
1
2
3 cos θ
dθ
3
1
2
cos θ 2
dθ
1
cos θ
dθ 2 cos θ
(x 1) (x 1) 2 9
5 12x 3x
2
1
3
dx
5 12x 3x 2 dx
5x 2 20x 23 1 dx 20x 23 5 x 2 4x 23 5 dx 1 dx 20x 23 5 (x 2) 2 3 5
1 5
5 12x 3x
23 5 26.
2
dx
dx (x 2) 2 4
7
x 2 7
3
dx 5 4x x 2 3
1
3
dx 7 ( x 2) 2 3
3 (x 2)
sen θ θ arc sen [
5 12x 3x 2
]
7
cos θ dθ
3 7
dx
5x 2
5 12x 3x 2 dx
dx
1 sec θ tg θ 1 1 1 x 1 dθ dθ θ C arc sec ( )C 2 3 sec θ tg θ 3 3 3 3 (x 1) x 2x 8
5x 2
dx
Hacemos :
dx
dx
sec 2 θ dθ
5
dx
x 1 Hacemos : x 1 3 sec θ θ arc sec ( ) 3 dx 3 sec θ tg θ dθ 3 sec θ tg θ sec θ tg θ dx 1 dθ dθ 3 sec θ sec 2 θ 1 (x 1) x 2 2x 8 3 sec θ 9 sec 2 θ 9
24.
25.
(x 1) x 2 2x 8
(x 1) x 2 2x 8
]
3
sec 2 θ 1 1 sec 2 θ 1 sec 2 θ 5 5x 2 20x 23 5 3 2 3 dθ 15 tg 2 θ 1 dθ 15 sec 2 θ dθ tg θ 5 5 5 ( x 2) dx 1 1 1 ] C 5x 2 20x 23 15 dθ 15 θ C 15 arc tg [ 3
dx
dx
5 (x 2)
tg θ θ arc tg [
dx
3 3 sen θ 1 sen θ 1 1 1 x4 dθ θC arc sen ( )C 2 2 2 3 2
3
5
3
)
dx 3 cos θ dθ
3
x 2
1
1
1
3
3
3
(5x 1) 100x 2 40x 5
1
cos θ
3
dθ 7 7 5 3 2 2 4x x sen θ 3 3 3 cos θ 1 cos θ 1 dθ dθ dθ 2 cos θ 3 3 1 sen θ
θC
dx
dx
1 3
arc sen [
3 ( x 2) 7
] C
66
dx (5x 1) 100x 2 40x 5 dx (5x 1) 100x 2 40x 5
Hacemos :
5x 1
1 2 1 2
dx (5x 1) 25x 2 10x
5 4
dx 1 6x 12 4x 2 4
dx (5x 1) (5x 1) 2
9 4
27.
dx (5x 1) 100x 2 dx (5x 1) 100x 2 dx (5x 1) 100x 2
3 10x 2 sec θ θ arc sec ( ) 2 3
3 sec θ tg θ 1 10 dθ 40x 5 2 3 secθ 9 sec 2 θ 9 2 4 4 sec θ tg θ 1 1 sec θ tg θ dθ dθ 15 secθ tg θ 40x 5 15 secθ sec 2 θ 1 1 1 1 10x 2 dθ θ C arc sec ( )C 15 15 15 3 40x 5
2x 2 x 1 dx
1 dx 1 dx 2x 2 x 1 2 2 1 1 2 1 2 7 x x (x ) 2 2 4 16
29.
dx
dx
2x 2 x 1 dx
2x 2 x 1
x2 21 4x x 2 x2 21 4x x 2
Hacemos :
1 7 4x 1 tg θ θ arc tg ( ) 4 4 7
7 sec 2 θ dθ 4 7 sec 2 θ 1 2 sec 2 θ 2 4 dθ dθ 2 7 2 7 2 7 tg θ 1 7 tg θ 16 16 2 2 2 4x 1 dθ θC arc tg ( )C 7 7 7 7
39 4x 3 tg θ θ arc tg ( ) 4 39
3 4
39 sec 2 θ dθ 4 39 sec 2 θ dx 1 1 sec 2 θ 1 sec 2 θ 4 dθ dθ dθ 6x 12 4x 2 39 4 39 2 39 tg 2 θ 1 39 sec 2 θ tg θ 16 16 dx 1 1 1 4x 3 6x 12 4x 2 39 dθ 39 θ C 39 arc tg ( 39 ) C
x
dx 1 dx 3 3 2 39 4 x x 3 (x ) 2 4 16 2
dx
dx
Hacemos :
x
Hacemos :
3 dx sec θ tg θ dθ 10
dx
6x 12 4x 2
28.
sec 2 θ
sec 2 θ dθ
dx x2
dx
25 ( x 2) 2
dx
x2 ) θ arc sen ( x 2 5 sen θ 5 x 5 sen θ 2 dx 5 cos θ dθ
x2 21 4 x x 2 x2 21 4 x x 2 x2 21 4 x x 21 4 x x
21 4x x 2
dx
( 5 sen θ 2 ) 2 ( 5 cos θ )
dx
( 5 sen θ 2 ) 2 cos θ dθ ( 5 sen θ 2 ) 2 dθ cos θ
25 25 sen 2 θ
dθ
2
dx ( 25 sen 2 θ 20 sen θ 4 ) dθ
2
dx [
x2
5 x2
( 5 sen θ 2 ) 2 cos θ
25 ( 1 cos 2θ ) 20 sen θ 4 ] dθ 2
1 sen 2 θ
dθ
67
x
x2 x2 x2 21 4 x x x
2
x 2 1
33 25 θ sen 2θ 20 cos θ C 2 4
33 25 θ sen θ cos θ 20 cos θ C 2 2
33 5 θ 5 cos θ ( sen θ 4 ) C 2 2
33 x2 21 4 x x 5 x2 arc sen ( )5( )[ ( ) 4 ] C 2 5 5 2 5
3 2x x 2 x 2 1 3 2x x 2 x 2 1 3 2x x 2 x 2 1 3 2x x
2
dx ( 4 2 cos 2θ 4 sen θ ) dθ 4θ sen 2θ 4 cos θ C dx 4θ 2 sen θ cos θ 4 cos θ C 4θ 2 cos θ ( sen θ 2 ) C dx 4 arc sen (
x 1 3 2x x 2 x 1 )2( )( 2)C 2 2 2
dx 4 arc sen (
x 1 1 ) (x 3) 3 2x x 2 C 2 2
2
33 x2 1 dx arc sen ( ) (x 6) 21 4x x 2 C 2 2 5 2 21 4 x x
31.
dx
x 2x 2 3x 2 1 Hacemos : x z dx
x 2 1 3 2x x x 2 1 3 2x x 2
Hacemos :
dx
33 25 cos 2θ 20 sen θ ) dθ 2 2
x2
dx
2
21 4 x x 2
dx
21 4 x x 2
dx
21 4 x x 2
dx (
21 4 x x 2
30.
2
2
dx
dx
x 2 1 4 ( x 1) 2
dx
x 1 ) θ arc sen ( x 1 2 sen θ 2 x 2 sen θ 1 dx 2 cos θ dθ
x 2 1 3 2x x 2 x 2 1 3 2x x 2 x 2 1 3 2x x 2 x 2 1 3 2x x 2
dx
( 2 sen θ 1 ) 2 1
dx
( 2 sen θ 1 ) 2 1
4 4 sen 2 θ 1 sen 2 θ
2 x 1
3 2x x 2
( 2 sen θ 1 ) 2 1 ( cos θ dθ ) cos θ
dx [ ( 2 sen θ 1 ) 2 1 ] dθ ( 4 sen 2 θ 4 sen θ 2 ) dθ dx [ 2 ( 1 cos 2θ ) 4 sen θ 2 ] dθ
z2
dx x 2x 3x 2 2
dx x 2x 2 3x 2
dz z
1 z
2 z2
dz
2
3 2 z
1
2
dz 1
3 z z2 2
z2 1 z
2
2 3z 2z 2 1
2
dz 2 3z 2z 2
dz 25 3 (z ) 2 16 4
3 5 4z 3 sen θ θ arc sen ( ) 4 4 5 5 dz cos θ dθ 4 5 cos θ dx 1 1 cos θ 4 dθ dθ 2 2 25 25 2 2 x 2x 2 3x 2 1 sen θ sen θ 16 16 dx 1 cos θ 1 1 dθ dθ θC 2 cos θ 2 2 x 2x 2 3x 2
Hacemos :
( 2 cos θ dθ ) ( cos θ dθ )
dz
z
68
32.
4z 3 1 4/x 3 arc sen ( )C arc sen ( )C 5 5 2 2 x 2x 2 3x 2 dx 1 4 3x arc sen ( )C 5x 2 x 2x 2 3x 2 dx
1
sen x
Hacemos :
x 5x 8x 1 2
dx x 5x 8x 1 2
Hacemos :
sen x
cos 2 x 2 cos x 3 dx
dz
sen x
cos 2 x 2 cos x 3 dx
z2
dx
dz z
1 z
2
5
8 1 2 z z dz
dz
z2 1 z2
5 8z z
2
dz 5 8z z
2
z4
)
21
33.
dx x 5x 2 8x 1 dx
21 cos θ 21 21 sen 2 θ
dθ
cos θ
1 sen 2 θ z4 1/x 4 dθ θ C arc sen ( ) C arc sen ( )C 21 21 x 5x 2 8x 1 dx 1 4x arc sen ( )C 21 x x 5x 2 8x 1
sen x
cos 2 x 2 cos x 3 dx
z cos x dz sen x dx sen x sen x dz cos 2 x 2 cos x 3 dx cos 2 x 2 cos x 3 dx z 2 2z 3
Hacemos :
35.
1
arc tg (
1
θC
2 cos x 1
2
1
arc tg (
dθ 2 sec 2 θ
z 1
2
)C
2
)C
2
5 (2x 4) 7 5 2x 4 dx dx 2 dx dx 7 2 2 2 2 2 x 4x 4 x 4x 4 x 4x 4 x 4x 4 5x 3 5 dx 5 dx 2 dx Ln x 4x 4 7 Ln x 2 2 7 2 2 2 2 x 4x 4 (x 2) (x 2) 2
x 2 4x 4 dx 5 Ln
cos θ dθ cos θ
dθ 2
sec 2 θ
1
dθ 2 tg 2 θ 1
5x 3
5x 3
dθ
1
sec 2 θ
1
5x 3
21 (z 4) 2
z 4 21 sen θ θ arc sen (
)
2
x 2 4x 4 dx
34.
dz 21 cos θ dθ
z 1
2 sec 2 θ
sen x
2
dx
2 tg θ θ arc tg (
cos 2 x 2 cos x 3 dx 2 tg 2 θ 2 dθ
x 5x 8x 1 1 Hacemos : x z
z 1
dz 2 sec 2 θ dθ
dx
dz
cos 2 x 2 cos x 3 dx (z 1) 2 2
x2
7 C x2
x 2 1
(x 2) 2 dx x 2 1
x 2 1
4x 3
4x 3
(x 2) 2 dx x 2 4x 4 dx (1 x 2 4x 4 ) dx dx x 2 4x 4 dx x 2 1
(x 2) 2 dx x
2 (2x 4) 5 x 4x 4 2
x 2 1
(x 2) 2 dx x 2 Ln x 2 1
(x 2) 2 dx x 4 Ln
dx x 2
x 2 4x 4 x2
2x 4 x 4x 4 2
dx 5
5 C x 2 Ln x 2 x2
5 C x2
dx (x 2) 2 2
5 C x2
69
x 3x 8 2
x 2 2x 1 dx
36.
x 2 3x 8
x9
x 9
x 2 2x 1 dx (1 x 2 2x 1) dx dx x 2 2x 1 dx 37.
1 (2x 2) 10 x 2 3x 8 1 2x 2 dx dx x 2 dx x dx 10 2 2 2 2 x 2x 1 x 2x 1 x 2x 1 (x 1) 2 x 2 3x 8
1 10 1 dx x Ln x 2 2x 1 C x Ln x 1 2 2 x 1 2 x 2x 1
2
3x 5
x 2 8x 42 3x 5
4x 5
3x 5
x 2 2x 2
4x 5
x 2 2x 2 dx 2 Ln ( x Hacemos :
2
dx 2
2x 2 )
2x 2 x 2 2x 2 dx
dx
x 2 8x 42
dx
x 2 2x 2 4x 5
x 2 2x 2 dx 2 Ln ( x 4x 5
x 2 2x 2 dx 2 Ln ( x 4x 5
x 2 2x 2 dx 2 Ln ( x 38.
3x 5
x 2 8x 42 dx
2
2
2
2x 2 )
sec 2 θ tg 2 θ 1 sec 2 θ 2
3x 5
x 2 8x 42 dx 3x 5
x 2 8x 42 dx
sec θ
dθ
dθ 2 Ln ( x 2 2x 2 ) dθ
2x 2 ) θ C 2 x 2 ) arc tg (x 1) C
dx
3x 5
(x 1) 2 1 x 1 tg θ θ arc tg (x 1)
dx 2 Ln ( x 2 2 x 2 )
x4
)
26
3 26 sec 2 θ Ln ( x 2 8x 42 ) 7 dθ 2 26 tg 2 θ 26 3
x 2 8x 42 dx
x 2 2x 2
dx sec 2 θ dθ 4x 5
dx
2
8x 42 )
7
3 Ln ( x 2 2 3 Ln ( x 2 2 3 Ln ( x 2 2 3 Ln ( x 2 2
8x 42 )
7
x 2 8x 42 dx 2 Ln ( x
x 2 2x 2 dx x 2 2x 2 dx
26 tg θ θ arc tg (
dx 26 sec 2 θ dθ
10 C x 1
10 dx x Ln x 1 C 2 x 1 x 2x 1
2 (2x 2) 1
x 4
Hacemos :
x 2 3x 8
4x 5
3 (2x 8) 7 3 2x 8 dx dx 2 dx dx 7 2 2 2 2 2 x 8x 42 x 8x 42 x 8x 42 x 8x 42 3x 5 3 dx dx Ln ( x 2 8x 42 ) 7 2 2 x 8x 42 (x 4) 2 26 3x 5
39.
8x 42 ) 8x 42 ) 8x 42 )
sec 2 θ
dθ 26 tg 2 θ 1
26 7 26 7 26 7
sec 2 θ
sec 2 θ dθ dθ θC arc tg (
26
x4
)C
26
2x 3
2x 2 4x 3 dx 5x 6
2x 3
1
2x 2 4x 3 dx (x 2 2x 2 4x 3 ) dx 2 x
2
2x
5x 6 2x 4 x 3 2
5 (4x 4) 1 1 2 4 dx x 2x 2x 2 4x 3 2x 2 4x 3 dx 2 2x 3 2x 3
1
2
2x
5 4x 4 dx dx 2 2 4 2x 4x 3 2x 4 x 3
2x 3
1
2
2x
5 1 Ln ( 2x 2 4x 3 ) 4 2
2x 2 4x 3 dx 2 x 2x 2 4x 3 dx 2 x
dx (x 1) 2
1 2
dx
70
Hacemos :
1
x 1
dx
1
2
senh x 5 senh x 5
tg θ θ arc tg [ 2 (x 1) ] 2
sec θ dθ
1 sec 2 θ 1 2 5 1 2 2 2x 2 4x 3 dx 2 x 2x 4 Ln ( 2x 4x 3 ) 2 1 2 1 dθ tg θ 2 2 2x 3
2x 3
1 2 5 1 2 2x 2 4x 3 dx 2 x 2x 4 Ln ( 2x 4x 3 ) 2 2x 3
senh
2
1 2 5 1 2x Ln ( 2x 2 4x 3 ) 4 2
2x 2 4x 3 dx 2 x
sec 2 θ
tg 2 θ 1 sec 2 θ sec 2 θ
3.
2x 3
1 2 5 1 2x Ln ( 2x 2 4x 3 ) θC 4 2
2x 3
1 2 5 1 2x Ln ( 2x 2 4x 3 ) arc tg [ 2 (x 1) ] C 4 2
2x 2 4x 3 dx 2 x 2x 2 4x 3 dx 2 x 2x 2 4x 3 dx 2 x
VI. INTEGRALES DE LA FORMA
sen
m
n
x cos x dx
y
senh
m
n
x cosh x dx
CASO I: Uno de los exponentes m ó n es un entero impar positivo
1.
sen x cos x dx 3 4 2 4 2 4 sen x cos x dx sen x cos x sen x dx (1 cos x) cos x sen x dx 3 4 4 6 4 6 sen x cos x dx (cos x cos x) sen x dx cos x sen x dx cos x sen x dx 3
sen 2.
3
4
1 1 x cos 4 x dx cos 5 x cos 7 x C 5 7
senh x 5 senh x 5 senh x 5
cosh x dx cosh x dx senh 4 x cosh 1/2 x senh x dx cosh x dx (cosh 2 x 1) 2 cosh 1/2 x senh x dx
x cosh x dx
2 4 2 cosh 11/2 x cosh 7/2 x cosh 3/2 x C 11 7 3
senh
4
3x dx
cosh 6x 1 2 1 ) dx (cosh 2 6x 2 cosh 6x 1) dx 2 4 1 cosh 12x 1 4 2 cosh 6x 1) dx senh 3x dx 4 ( 2 1 1 3 4 senh 3x dx 4 ( 2 cosh 12x 2 cosh 6x 2 ) dx 1 1 3 4 senh 3x dx ( 8 cosh 12x 2 cosh 6x 8 ) dx 1 1 3 4 senh 3x dx 96 senh 12x 12 senh 6x 8 x C
dθ
1 2 5 1 2x Ln ( 2x 2 4x 3 ) dθ 4 2
cosh x dx (cosh 9/2 x 2 cosh 5/2 x cosh 1/2 x ) senh x dx
CASO II: Ambos exponentes m y n son enteros pares y mayores o iguales que cero
dθ
2x 3
5
cosh x dx (cosh 4 x 2 cosh 2 x 1) cosh 1/2 x senh x dx
4.
3x dx (
senh
4
sen
2
x cos 4 x dx
sen
2
x cos 4 x dx (
1 cos 2x 1 cos 2x 2 )( ) dx 2 2
1 (1 cos 2x) (1 2 cos 2x cos 2 2x) dx 8 1 2 4 2 2 3 sen x cos x dx 8 (1 2 cos 2x cos 2x cos 2x 2 cos 2x cos 2x) dx 1 2 4 2 3 sen x cos x dx 8 (1 cos 2x cos 2x cos 2x) dx 1 1 cos 4x 2 4 2 sen x cos x dx 8 [1 cos 2x 2 (1 sen 2x) cos 2x] dx 1 1 1 2 4 2 sen x cos x dx 8 (1 cos 2x 2 2 cos 4x cos 2x sen 2x cos 2x) dx 1 1 1 2 4 2 sen x cos x dx 8 ( 2 2 cos 4x sen 2x cos 2x) dx 1 1 1 2 4 3 sen x cos x dx 16 x 64 sen 4x 48 sen 2x C
sen
2
x cos 4 x dx
71
5.
sen
2
sen 3 x
x dx
1 cos 2x 1 cos 2x x sen 2x 2 sen x dx 2 dx ( 2 2 ) dx 2 4 C
12. 6.
cos
2
x dx
1 cos 2x 1 cos 2x x sen 2x 2 cos x dx 2 dx ( 2 2 ) dx 2 4 C
13. 7.
8.
cosh
2
cosh
2
sen
4
5x dx 5x dx
9.
cosh 10x 1 cosh 10x 1 1 1 dx ( ) dx senh 10x x C 2 2 2 20 2
x dx
11.
x dx (
cos
x dx sen x
2 1 sen 3 x sen 5 x C 3 5
14. 7
3
x sen x dx
cos
7
x sen x dx cos x (1 cos x) sen x dx (cos x cos x) sen x dx
cos
7
1 1 x sen 3 x dx cos 8 x cos 10 x C 8 10
3
7
2
7
cos 4 x dx
cos 4 x dx
(1 cos 2 x) sen x cos 4 x
dx (cos
4
x cos
2
15. x ) sen x dx
3
x sec x C
x dx
3
x dx (cosh 2 x 1) senh x dx
sen
2
3x cos 4 3x dx
2
3
3x cos 4 3x dx (
1 cosh 3 x cosh x C 3
1 cos 6x 1 cos 6x 2 )( ) dx 2 2
2
3x cos 4 3x dx
senh
8
x cosh 5 x dx
senh x cosh x dx senh x (1 senh x) cosh x dx 8 5 8 2 4 senh x cosh x dx senh x (1 2 senh x senh x) cosh x dx 8 5 8 10 12 senh x cosh x dx (senh x 2 senh x senh x) cosh x dx
9
sen 3 x
sen 3 x
1
1 (1 cos 6x) (1 2 cos 6x cos 2 6x) dx 8 1 2 4 2 2 3 sen 3x cos 3x dx 8 (1 2 cos 6x cos 6x cos 6x 2 cos 6x cos 6x) dx 1 2 4 2 3 sen 3x cos 3x dx 8 (1 cos 6x cos 6x cos 6x) dx 1 1 cos 12x 2 4 (1 sen 2 6x) cos 6x] dx sen 3x cos 3x dx 8 [1 cos 6x 2 1 1 1 2 4 2 sen 3x cos 3x dx 8 (1 cos 6x 2 2 cos 12x cos 6x sen 6x cos 6x) dx 1 1 1 2 4 2 sen 3x cos 3x dx 8 ( 2 2 cos 12x sen 6x cos 6x) dx 1 1 1 2 4 3 sen 3x cos 3x dx 16 x 192 sen 12x 144 sen 6x C
5
5
1
senh
sen
cos x dx 5 2 2 2 4 cos x dx (1 sen x) cos x dx (1 2 sen x sen x) cos x dx
cos 10.
4
senh
sen
1 cos 2x 2 1 ) dx (1 2 cos 2x cos 2 2x) dx 2 4 1 1 cos 4x 1 3 1 4 sen x dx 4 (1 2 cos 2x 2 ) dx 4 ( 2 2 cos 2x 2 cos 4x) dx 3 1 1 4 sen x dx 8 x 4 sen 2x 32 sen 4x C
sen
1
cos 4 x dx 3 cos 3 x cos x C 3 sec
8
5
senh
8
x cosh 5 x dx
sen
5
2x cos 3 2x dx
sen
5
8
2
2
1 2 1 senh 9 x senh 11 x senh 13 x C 9 11 13
2x cos 3 2x dx sen 5 2x (1 sen 2 2x) cos 2x dx
72
16.
sen
5
sen
5
sen
2x cos 2x dx (sen 2x sen 2x) cos 2x dx 3
5
2x cos 3 2x dx 3
17.
1 1 sen 6 2x sen 8 2x C 12 16
cos 3 x
sen 4 x dx
x cos 3 x dx
(1 cos 4x)
3/2
3/2
(1 sen 2 x) cos x 4
sen x
3
cos x
sen 3 x
3
20.
cos 4 x
sen 3 x
dx
dx (2 cos 2x) 2
3/2
3
dx 2 2 cos 2x dx 3
3/2 2 (1 cos 4x) dx 2 2 (1 sen 2x) cos 2x dx 2 sen 2x
4
cos x 3
sen x
3
2 sen 3 2x C 3
x x 18. sen ( ) cos 2 ( ) dx 2 2 x x 1 cos x 2 1 cos x 4 2 sen ( 2 ) cos ( 2 ) dx ( 2 ) ( 2 ) dx 1 4 x 2 x 2 sen ( 2 ) cos ( 2 ) dx 8 (1 2 cos x cos x) (1 cos x) dx 1 4 x 2 x 2 2 3 sen ( 2 ) cos ( 2 ) dx 8 (1 2 cos x cos x cos x 2 cos x cos x) dx 1 4 x 2 x 2 3 sen ( 2 ) cos ( 2 ) dx 8 (1 cos x cos x cos x) dx 1 1 cos 2x 4 x 2 x 2 sen ( 2 ) cos ( 2 ) dx 8 [1 cos x 2 (1 sen x) cos x] dx 1 1 1 4 x 2 x 2 sen ( 2 ) cos ( 2 ) dx 8 (1 cos x 2 2 cos 2x cos x sen x cos x) dx 1 1 1 4 x 2 x 2 sen ( 2 ) cos ( 2 ) dx 8 ( 2 2 cos 2x sen x cos x) dx 1 1 1 4 x 2 x 3 sen ( 2 ) cos ( 2 ) dx 16 x 32 sen 2x 24 sen x C
1
dx (sen 4 x sen 2 x) cos x dx
1
1
sen 4 x dx 3 sen 3 x sen x C 3 csc
3
(1 cos 4x)
sen 4 x dx
19.
1 1 3 3 sen x cos x dx 8 (2 sen x cos x) dx 8 sen 2x dx 1 1 1 3 3 2 3 sen x cos x dx 8 (1 cos 2x) sen 2x dx 16 cos 2x 48 cos 2x C 3
cos 3 x
7
cos 4 x
3
x csc x C
dx
dx
(1 cos 2 x) sen x cos 3
dx
cos
1/3
4/3
x
dx (cos 4/3 x cos 2/3 x) sen x dx
3 1 3 cos 5/3 x C ( cos 2 x 3) C 1/3 x 5 cos x 5
sen 3 x
3
4
21.
22.
3 dx 3 sec x ( cos 2 x 3) C 5 cos 4 x ctg x cos 9 x dx
cos x cos 10 x cos 5 x cos 9 x dx dx dx sen x sen x sen 1/2 x
ctg x cos 9 x dx
ctg x cos 9 x dx
ctg x cos 9 x dx (sen 1/2 x 2 sen 3/2 x sen 7/2 x) cos x dx
ctg x cos 9 x dx 2 sen x
cos
4
(1 sen 2 x) 2 cos x sen 1/2 x
dx
(1 2 sen 2 x sen 4 x) cos x sen 1/2 x
dx
4 2 sen 5/2 x sen 9/2 x C 5 9
x dx
1 cos 2x 2 1 ) dx (1 2 cos 2x cos 2 2x) dx 2 4 1 1 cos 4x 1 3 1 4 cos x dx 4 (1 2 cos 2x 2 ) dx 4 ( 2 2 cos 2x 2 cos 4x) dx 3 1 1 4 cos x dx 8 x 4 sen 2x 32 sen 4x C
cos
4
x dx (
73
23.
sen sen
24.
25.
sen
sen
x dx
1 x dx (1 cos 2 x) sen x dx cos x cos 3 x C 3 5
5
x dx (1 cos 2 x) 2 sen x dx (1 2 cos 2 x cos 4 x) sen x dx
sen
5
x dx cos x
cos 3
cos
3
2 1 cos 3 x cos 5 x C 3 5
27.
6
6
cos
x dx 1/5
5 1 3 1 x sen 2x sen 4x sen 3 2x C 16 4 64 48
x sen 3 x dx
cos
1/5
x sen 3 x dx cos 1/5 x (1 cos 2 x) sen x dx (cos 1/5 x cos 11/5 x) sen x dx
cos
1/5
5 5 x sen 3 x dx cos 6/5 x cos 16/5 x C 6 16
x cos 3
3
(x 2 ) dx
(x 2 ) dx
Hacemos :
1 2x cos 3 (x 2 ) dx 2
z x2
dz 2x dx 1 1 3 2 3 2 x cos (x ) dx 2 cos z dz 2 (1 sen z) cos z dz 1 1 1 1 3 2 3 2 3 2 x cos (x ) dx 2 sen z 6 sen z C 2 sen (x ) 6 sen (x ) C
x dx
x dx (
1 cos 2x 3 1 2 3 sen x dx ( 2 ) dx 8 (1 3 cos 2x 3 cos 2x cos 2x) dx 1 1 cos 4x 6 2 sen x dx 8 [ 1 3 cos 2x 3 ( 2 ) (1 sen 2x) cos 2x ] dx 1 3 3 6 2 sen x dx 8 ( 1 3 cos 2x 2 2 cos 4x cos 2x sen 2x cos 2x ) dx 1 5 3 6 2 sen x dx 8 ( 2 4 cos 2x 2 cos 4x sen 2x cos 2x ) dx
6
x cos
1 x dx (1 sen 2 x) cos x dx sen x sen 3 x C 3
6 sen x dx 6
29.
x dx
1 cos 2x 3 1 ) dx (1 3 cos 2x 3 cos 2 2x cos 3 2x) dx 2 8 1 1 cos 4x 6 2 cos x dx 8 [ 1 3 cos 2x 3 ( 2 ) (1 sen 2x) cos 2x ] dx 1 3 3 6 2 cos x dx 8 ( 1 3 cos 2x 2 2 cos 4x cos 2x sen 2x cos 2x ) dx 1 5 3 6 2 cos x dx 8 ( 2 4 cos 2x 2 cos 4x sen 2x cos 2x ) dx 5 1 3 1 6 3 cos x dx 16 x 4 sen 2x 64 sen 4x 48 sen 2x C
cos
28.
x dx
sen
cos 26.
3
3
30.
sen x
cos 4 x dx
z cos x dz sen x dx sen x sen x dz 1 1 1 3 cos 4 x dx cos 4 x dx z 4 3z 3 C 3 cos 3 x C 3 sec x C
Hacemos :
31.
(sen
2
x cos x) 2 dx
(sen
2
x cos x) 2 dx (sen 4 x 2 sen 2 x cos x cos 2 x) dx
(sen
2
x cos x) 2 dx [ (
(sen
2
x cos x) 2
(sen
2
x cos x) 2
(sen
2
x cos x) 2
1 cos 2x 2 1 cos 2x ) 2 sen 2 x cos x ] dx 2 2 1 1 1 1 cos 2x dx [ cos 2x cos 2 2x 2 sen 2 x cos x ] dx 4 2 4 2 3 1 1 cos 4x dx [ ( ) 2 sen 2 x cos x ] dx 4 4 2 7 1 dx ( cos 4x 2 sen 2 x cos x ) dx 8 8
74
(sen
cos
32.
3
x sen 4 x dx
x sen 4 x dx (1 sen 2 x) sen 4 x cos x dx (sen 4 x sen 6 x) cos x dx
cos
3
x sen 4 x dx
sen sen
3
sen
3
3
1 1 sen 5 x sen 7 x C 5 7
x sec 2 x dx
x sec 2 x dx x sec 2 x dx
sen 2x cos x ctg 2 x
sen 2x cos x ctg 2 x sen 2x cos x ctg 2 x
sen
2
2
dx
( 1 cos 2 x ) sen x 2
dx
cos x cos x 1 cos x C sec x cos x C cos x
dx
sen x cos 2 x
dx sen x dx
2 sen x cos 2 x
3
x cos x dx
sen
2
x cos 2 x dx
38.
5
x cos 2 x dx
39.
5
2
2
2
2
1 2 1 x cos 2 x dx cos 3 x cos 5 x cos 7 x C 3 5 7
sen x cos x dx
sen x cos x dx sen 1/2 x cos x dx
1 1 (2 sen x cos x) 2 dx sen 2 2x dx 4 4 1 1 cos 4x 1 1 dx x sen 4x C 4 2 8 32
x cos 2 x dx 2
sen
2
1 cos 2x 2 1 cos 2x sen x cos x dx ( 2 ) ( 2 ) dx 1 4 2 2 sen x cos x dx 8 (1 2 cos 2x cos 2x) (1 cos 2x) dx 1 4 2 2 2 3 sen x cos x dx 8 (1 2 cos 2x cos 2x cos 2x 2 cos 2x cos 2x) dx 4
sen
37.
x cos 2 x dx
5
x cos 2 x dx
sen
4
sen x cos x dx (1 cos x) cos x sen x dx 5 2 2 4 2 sen x cos x dx (1 2 cos x cos x) cos x sen x dx 5 2 2 4 6 sen x cos x dx (cos x 2 cos x cos x) sen x dx
dx 2 sen x dx 2 (1 cos x) sen x dx ctg 2 x 2 dx 2 cos x cos 3 x C 3
2
4
sen 3 x
dx
2
sen
1 (1 cos 2x cos 2 2x cos 3 2x) dx 8 1 1 cos 4x 4 2 2 sen x cos x dx 8 [1 cos 2x 2 (1 sen 2x) cos 2x] dx 1 1 1 4 2 2 sen x cos x dx 8 (1 cos 2x 2 2 cos 4x cos 2x sen 2x cos 2x) dx 1 1 1 4 2 2 sen x cos x dx 8 ( 2 2 cos 4x sen 2x cos 2x) dx 1 1 1 4 2 3 sen x cos x dx 16 x 64 sen 4x 48 sen 2x C
sen
3
34.
36.
x cos x) 2 dx
cos
33.
35.
2
7 1 2 x sen 4x sen 3 x C 8 32 3
cos (sen x) cos x dx
2 2 sen 3/2 x C sen 3 x C 3 3
z sen x dz cos x dx cos (sen x ) cos x dx cos z dz sen z C sen (sen x) C
Hacemos :
40.
sen 3 x 3
x2
Hacemos :
dx
z 3 x dx dz 3 2 3 x
75
3
sen x 3
41.
x2
dx 3
3
sen x 3
3 x2
dx 3 sen z dz 3 cos z C 3 cos 3 x C
cos x sen 3 x dx
3
45.
2 2 cos 3/2 x cos 7/2 x C 3 7
43.
sen
3
3x tg 3x dx
1 1 1 Ln sec 3x tg 3x sen 3x sen 3 3x C 3 3 9
3
5
3
cos x sen 5 x dx
sen 3 x
1/3
cos 2 x 3 cos x
sen
3
( 1 cos 2 x ) sen x
sen
3
dx ( cos 7/3 x cos 1/3 x ) sen x dx
cos
7/3
7/3
x cos 1/3 x ) sen x dx
3 4 cos 4 /3 x
x
3 3 3 cos 2 /3 x C sec 4 /3 x cos 2 /3 x C 2 4 2
3x tg 3x dx
(1 cos 2 3x) 2 sen 4 3x dx dx cos 3x cos 3x 1 2 cos 2 3x cos 4 3x dx (sec 3x 2 cos 3x cos 3 3x) dx cos 3x
sen 3x tg 3x dx [ sec 3x 2 cos 3x ( 1 sen 3x ) cos 3x ] dx 3 2 sen 3x tg 3x dx ( sec 3x 2 cos 3x cos 3x sen 3x cos 3x ) dx 3
sen 2 x cos 2 x
2
dx
1
sen 4 x cos 4 x
1 2 sen 2 x cos 2 x
sen 4 x cos 4 x
1 1 cos 2 2x 1 dx ( sec 2x cos 2x ) dx cos 2x 2
sen 4 x cos 4 x
1
sen 2 x cos 2 x dx 2
46.
sec 2x tg 2x
1 sen 2x C 4
sen 4 3x
cos 3 3x dx Hacemos :
z 3x dz 3 dx
sen 4 3x
cos 3 3x
dx
1 sen 4 3x 1 sen 4 z 1 ( 1 cos 2 z ) 2 (3 dx) dz dz 3 cos 3 3x 3 cos 3 z 3 cos 3 z
sen 4 3x
dx
1 ( 1 2 cos 2 z cos 4 z ) 1 dz ( sec 3 z 2 sec z cos z ) dz 3 3 3 cos z
cos 3 3x
3x tg 3x dx
3 sen 3x tg 3x dx
(sen 2 x cos 2 x) 2 2 sen 2 x cos 2 x
sen 2 x cos 2 x dx 4 Ln
cos 2 x 3 cos x dx ( cos cos 2 x 3 cos x
2
3 3 3 cos 4/3 x cos 10/3 x cos 16/3 x C 4 5 16
sen 3 x
dx
dx
1 sen 2 2x 2 sen 2 x cos 2 x dx sen 2 x cos 2 x dx sen 2 x cos 2 x dx 1 1 (1 cos 2 2x) sen 4 x cos 4 x 1 1 cos 2 2x 2 sen 2 x cos 2 x dx sen 2 x cos 2 x dx 2 cos 2 x sen 2 x dx
dx
sen 3 x
sen 3 x
2
sen 4 x cos 4 x
sen 2 x cos 2 x dx sen 2 x cos 2 x
cos x sen 5 x dx
cos 2 x 3 cos x dx
44.
3x tg 3x dx ( sec 3x cos 3x sen 2 3x cos 3x ) dx
sen 4 x cos 4 x
cos x sen x dx cos x ( 1 cos x ) sen x dx 5 1/3 2 4 3 cos x sen x dx cos x ( 1 2 cos x cos x ) sen x dx 5 1/3 7/3 13/3 3 cos x sen x dx ( cos x 2 cos x cos x ) sen x dx
3
cos x sen 3 x dx cos x sen 3 x dx cos 1/2 x ( 1 cos 2 x ) sen x dx ( cos 1/2 x cos 5/2 x ) sen x dx
42.
sen
sen 4 3x
2
cos 3 3x dx 3 Ln
1 1 sec z tg z sen z sec 3 z dz 3 3 I
I sec z dz 3
I
1 1 Ln sec z tg z sec z tg z C1 (Idem Prob. 5 - Int. por partes) 2 2
76 4
sen 3x
2
1 1 1 sec z tg z sen z Ln sec z tg z sec z tg z C 3 6 6
sen 4 3x
1
sec z tg z
sen 4 3x
1
sec 3x tg 3x
cos 3 3x dx 3 Ln cos 3 3x dx 2 Ln cos 3 3x dx 2 Ln 47.
sech sech
3
3
1 1 sec z tg z sen z C 6 3 1 1 sec 3x tg 3x sen 3x C 6 3
VII. INTEGRALES DE LA FORMA
z tgh x
1.
x dx 1 z 2 dz
Hacemos :
sech
3
sech
3
x dx
sech
3
x dx
x dx
3 sech x dx
48.
tg
5
1 cos 2θ dθ 2
cos 5 x
cos 3/2 x dx
(1 cos 2 x) 2 cos 7/2 x
m
y
tg 3 x
3
tg 3 x
1
sen 4 x cos 7/2 x
sen x dx
tg 3 x
1
sec 4 x dx 4 cos 2.
cos 7/2 x
5 3 7/2 3/2 1/2 tg x cos x dx (cos x 2 cos x cos x) sen x dx
sec 5 x
n
ctg
5
x dx
ctg
5
x dx
2
( sec x tg x ) dx
x sec 5 x ) ( sec x tg x ) dx 1
1
2
x
1 cos 4 x C 4
x (cos 2 x 2) C
ctg 4 x (csc 2 x 1) 2 ( csc x ctg x ) dx ( csc x ctg x ) dx csc x csc x
(csc 4 x 2 csc 2 x 1) ( csc x ctg x ) dx csc x 1 5 3 ctg x dx (csc x 2 csc x csc x ) ( csc x ctg x ) dx 1 5 4 2 ctg x dx 4 csc x csc x Ln csc x C
sen x dx
(1 2 cos 2 x cos 4 x)
sec 2 x 1
sec 4 x dx 2 sec 2 x 4 sec 4 x C 2 cos
x cos 3 x dx
5 3 tg x cos x dx
tg 2 x
5 ctg x dx
sen 5 x
tgh x sech x dx m n ctgh x csch x dx
y
tg 3 x
sec 4 x dx (sec
1 z 2
1 1 1 1 θ sen 2θ C θ sen θ cos θ C 2 4 2 2 1 1 arc sen z z 1 z 2 C 2 2 1 1 arc sen (tgh x) tgh x 1 tgh 2 x C 2 2 1 1 arc sen (tgh x) tgh x sech x C 2 2
5 3 tg x cos x dx
n
sec 4 x dx tg 3 x
z
x dx 1 sen 2 θ cos θ dθ cos 2 θ dθ
3
m
sec 4 x dx sec 5 x ( sec x tg x ) dx
1
z sen θ θ arc sen z dz cos θ dθ
sech
tg x sec x dx m n ctg x csc x dx
CASO I: Si m es un entero impar positivo
x dx 1 tgh 2 x sech 2 x dx
dz sech 2 x dx 3
x cos 3 x dx
5
x dx
Hacemos :
sech
2 2 cos 5/2 x 4 cos 1/2 x cos 3/2 x C 5 3 2 2 5 3 5 /2 1/2 3/2 tg x cos x dx 5 sec x 4 sec x 3 cos x C
tg
sen x dx
3.
tgh
3
x sech x dx
77
tgh
3
tgh
3
x sech x dx
2
tgh x sech x
x sech x dx ( sech
( sech x tgh x ) dx
1/2
x sech
3/2
1 sech x
csch x dx csch x csch x dx (ctgh x 1) csch 6 4 2 2 csch x dx (ctgh x 2 ctgh x 1) ( csch x) dx
2
6
( sech x tgh x ) dx
sech x
x ) ( sech x tgh x ) dx
2 3 5/2 tgh x sech x dx 2 sech x 5 sech x C
4.
ctgh x csch x dx 5 3 4 2 ctgh x csch x dx ctgh x csch x ( csch x ctgh x ) dx 5 3 2 2 2 ctgh x csch x dx (1 csch x) csch x ( csch x ctgh x ) dx 5 3 2 4 2 ctgh x csch x dx (1 2 csch x csch x) csch x ( csch x ctgh x ) dx 5 3 2 4 6 ctgh x csch x dx (csch x 2 csch x csch x) ( csch x ctgh x ) dx 5
ctgh
5
3
9.
5.
6.
3/2
1 2 1 x csch 3 x dx csch 3 x csch 5 x csch 7 x C 3 5 7
7.
3
2 9/2 2 tg x tg 5/2 x C 9 5
1 x dx ctg 3 x ctg x C 3
3 3 10.
2
2
csch
4
x sech 4 x dx (tgh 2 x tgh 4 x ) sech 2 x dx 6
x dx
sen 7 2x cos x cos x
1 1 tgh 3 x tgh 5 x C 3 5
2
2
x dx
7
sen 2x cos x cos x sen 7 2x cos x
dx dx dx
cos x sen 7 2x cos x cos x sen 7 2x cos x cos x 7
sen 2x cos x cos x sen 7 2x cos x cos x sen 7 2x cos x
tgh
4
dx dx
cos x 3
dx
7
(2 sen x cos x) cos x
1
cos x
3 128
1 3
2
7
3
cos x sen 7 x cos 8 x
1
cos x
sen 7/3 x cos 8/3 x dx 4 3 2 sen 7/3 x dx
1
sec 2 x sec 2 x
43 2 1 4
dx
1
3
tg 7/3 x
(tg 2
1 3
1 3
7/3
dx
1
43 2
(1 tg 2 x) sec 2 x
3 4 /3 3 tg x tg 2 /3 x ] C 4 2
[
3 3 ctg 4 /3 x tg 2 /3 x ] C 4 2
4 2
tg 7/3 x
x tg 1/3 x) sec 2 x dx
[
4 2 dx
2x dx
tgh 2x dx (1 sech 2x) dx (1 2 sech 2x sech 2x) dx 4 2 2 2 tgh 2x dx [ 1 2 sech 2x (1 tgh 2x) sech 2x ] dx 4 2 2 2 2 tgh 2x dx ( 1 2 sech 2x sech 2x tgh 2x sech 2x ) dx 4 2 2 2 tgh 2x dx ( 1 sech 2x tgh 2x sech 2x ) dx tgh
4
2
2x dx x
cos x
sec 4 x
1
2
1 1 tgh 2x tgh 3 2x C 2 6
2
4
dx
dx 5
dx 4 3 2 tg 7/3 x cos 4 x 4 3 2 tg 7/3 x
dx
4
tgh x sech x dx 2 4 2 2 2 2 2 2 tgh x sech x dx tgh x sech x sech x dx tgh x (1 tgh x) sech x dx
tgh 8.
3
4
4
cos x
3
csc x dx 4 2 2 2 2 2 2 csc x dx csc x csc x dx (ctg x 1) csc x dx (ctg x 1) (csc x) dx csc
3
4
x sec 4 x dx (tg 7/2 x tg 3/2 x ) sec 2 x dx
2
cos 7/3 x
tg x sec x dx 3/2 4 3/2 2 2 3/2 2 2 tg x sec x dx tg x sec x sec x dx tg x (tg x 1) sec x dx tg
6
3
2
1 2 x dx ctgh 5 x ctgh 3 x ctgh x C 5 3
csch
3
CASO II: Si n es un entero par positivo 3/2
4
dx
78 2
11.
sen x
cos 6 x dx sen 2 x
cos 6 x dx tg
15. 2
sen 2 x
cos 6 x dx (tg 12.
tg tg
2
2
4
1 3 1 tg x tg 5 x C 3 5
sec
4
x ctg 3 x
sec
4
x ctg 3 x
2
x tg 4 x) sec 2 x dx
x sec x dx
x sec x dx (sec 2 x 1) sec x dx sec 3 x dx Ln sec x tg x
16.
I sec x dx
1 1 I Ln sec x tg x sec x tg x C1 (Idem Prob. 5 - Int. por partes) 2 2 1 1 2 tg x sec x dx 2 Ln sec x tg x 2 sec x tg x Ln sec x tg x C 1 1 2 tg x sec x dx 2 Ln sec x tg x 2 sec x tg x C 6
17.
x dx
tg x dx (sec x 1) dx (sec x 3 sec x 3 sec x 1) dx 6 2 2 2 2 2 2 tg x dx [ (1 tg x) sec x 3 (1 tg x) sec x 3 sec x 1 ] dx 6 2 4 2 2 2 2 tg x dx [ (1 2 tg x tg x) sec x 3 (1 tg x) sec x 3 sec x 1 ] dx 6
2
3
6
4
2
2 3 1 tg x tg 5 x 3 tg x tg 3 x 3 tg x x C 3 5 1 5 1 3 6 tg x dx 5 tg x 3 tg x tg x x C
tg
14.
6
x dx tg x
tgh
4
tgh
4
18.
2
2
1 x dx x tgh x tgh 3 x C 3
2
2
x ctg 3 x dx
tgh
6
sec 2 x sec 2 x
dx
(tg 2 x 1) sec 2 x
dx tg 3/2 x 2 dx (tg 1/2 x tg 3/2 x ) sec 2 x dx tg 3/2 x 2 tg 1/2 x C 3 2 dx tg 3 x 2 ctg x C 3 tg 3/2 x
x sech 4 x dx
tgh
6
x sech 4 x dx tgh 6 x (1 tgh 2 x) sech 2 x dx (tgh 6 x tgh 8 x) sech 2 x dx
tgh
6
x sech 4 x dx
cos 3 x
2 2
cos 3 x
2
sen 2x sen 2x
cos 3 x
2
cos 3 x
2
ctg
4
1 1 tgh 7 x tgh 9 x C 7 9
dx
sen 2x
cos 3 x
sen 2x
dx dx
2 3
cos x 2 sen x cos x dx cos
7/2
x sen
1/2
x
dx
2 3
cos x 2 sen 1/2 x cos 1/2 x
dx
cos 4 x
sen 1/2 x
dx
tg 1/2 x sec 4 x dx
cos 1/2 x
dx tg 1/2 x (1 tg 2 x) sec 2 x dx (tg 1/2 x tg 3/2 x) sec 2 x dx dx 2 tg x
sen 2x
2 5/2 2 tg x C tg x ( tg 2 x 5) C 5 5
3x dx
ctg 3x dx ctg 3x ctg 3x dx (csc 3x 1) ctg 3x dx 4 2 2 2 2 2 2 ctg 3x dx (ctg 3x csc 3x ctg 3x) dx (ctg 3x csc 3x csc 3x 1) dx 4
x dx
tgh x dx tgh x tgh x dx (1 sech x) tgh x dx 4 2 2 2 2 2 2 tgh x dx (tgh x sech x tgh x) dx (1 sech x tgh x sech x) dx 4
x ctg 3 x dx
sec
I
tg
4
x sec 4 x dx tg 2 x sec 2 x sec 2 x dx tg 2 x (1 tg 2 x) sec 2 x dx
3
13.
sec
ctg
4
2
2
2
1 1 3x dx ctg 3 3x ctg 3x x C 9 3
2
79
19.
20.
tg tg
3
tg
3
3
tg
dx
x dx (sec 2 x 1) tg x dx (tg x sec 2 x tg x) dx (tg x sec 2 x x dx 3
sen x ) dx cos x
21.
3
dx
3
2
3x sec 3 3x dx
2
23.
1 1 sec 5 3x sec 3 3x C 15 9
sen 2 x cos 4 x
dx 2
sen x 2
cos 6 x
dx 2
6
tg x cos x
cos x dx
sen 2 x cos 4 x tg dx
sen 2 x cos 4 x
2
x (1 tg 2 x) 2 sec 2 x dx
dx
sen 2 x cos 4 x (tg
2
x 2 tg 2 x) sec 2 x dx
dx
1
sen 2 x cos 4 x ctg x 2 tg x 3 tg 22.
3
1 1 2 tg x tg 3 x C tg x 3
sec 4 x 4
tg x
24.
dx
dx
sen 5 x cos 5 x sen 5 x 5
cos 10 x
dx tg 5 x cos 10 x
cos x
sen 5 x cos 5 x tg
5
cos x tg x
tg 1/2 x sec 2 x dx
dx
dx
(1 tg 2 x) sec 2 x 4
tg x
dx (tg 4 x tg 2 x) sec 2 x dx
4
sec x
1 1 1 dx tg 3 x C ctg 3 x ctg x C 3 tg x 3 tg x 4
sen 2 (x)
cos 6 (x) dx sen 2 (x)
dx
dx 2
xC
sen 5 x cos 5 x
dx
tg 2 x (1 2 tg 2 x tg 4 x) sec 2 x dx
tg 4 x
sen x cos 4 x cos x
2 tg x C
sen x cos 3 x sec 4 x
dx
dx
23.
x 4 tg 3 x
sen x cos 3 x dx
sen x cos x
tg 2 x sec 6 x dx
5
dx
3
dx
sen 2 x cos 4 x dx
x (1 4 tg 2 x 6 tg 4 x 4 tg 6 x tg 8 x) sec 2 x dx
6 4 tg x tg 3 x) sec 2 x dx tg x dx 1 4 1 4 2 2 sen 5 x cos 5 x 4 tg x 2 tg x 6 Ln tg x 2 tg x 4 tg x C dx 1 1 4 4 2 2 sen 5 x cos 5 x 4 ctg x 2 ctg x 6 Ln tg x 2 tg x 4 tg x C
3x sec 3 3x dx
3
5
sen 5 x cos 5 x (tg
1 2 1 tg x Ln cos x C tg 2 x Ln sec x C 2 2
tg 3x sec 3x dx (sec 3x 1) sec 3x sec 3x tg 3x dx 3 3 4 2 tg 3x sec 3x dx (sec 3x sec 3x) sec 3x tg 3x dx tg
sen 5 x cos 5 x tg
x dx
x (1 tg 2 x) 4 sec 2 x dx
tg 5 x sec10 x dx
cos 6 (x) dx tg sen 2 (x)
2
cos 6 (x) dx [ tg sen 2 (x)
1
(x) sec 4 (x) dx tg 2 (x) [ 1 tg 2 (x) ] sec 2 (x) dx 2
cos 6 (x) dx 3π tg
(x) tg 4 (x) ] sec 2 (x) dx
3
(x)
1 5 tg (x) C 5π
80
25.
5
sen 3 x cos 5 x dx 3
5
sen x cos x
dx
26.
dx sen 3 x cos 5 x dx 3
5
3
sen x cos 3 x
cos x
5
4
3
cos x tg x
2 3
30.
2 3
5 tg x dx
2
3
2
3
sec 29.
x dx
sec 4
tg
5
4
2
4
x sec 4 x dx
tg
6
x sec 4 x dx tg 6 x (1 tg 2 x) sec 2 x dx (tg 6 x tg 8 x) sec 2 x dx
tg
6
x sec 4 x dx
I1
1 7 1 tg x tg 9 x C 7 9
7
x sec x dx 4
6
1 4
3 8
3 8
sec 3 x tg x sec x tg x Ln sec x tg x C1
(Idem Prob. 6 - Int. por partes)
1 1 Ln sec x tg x sec x tg x C 2 (Idem Prob. 5 - Int. por partes) 2 2 1 3 3 1 1 3 I sec x tg x sec x tg x Ln sec x tg x Ln sec x tg x sec x tg x C 4 8 8 2 2 1 1 1 I sec 3 x tg x sec x tg x Ln sec x tg x C 4 8 8 I2
32.
1 x dx sec 2 x sec 2 x dx (1 tg 2 x) sec 2 x dx tg x tg 3 x C 3
I2
I 2 sec 3 x dx
1 3 tg x tg x x C 3
x dx
7
1 2 1 sec 11 x sec 9 x sec 7 x C 11 9 7
I1 sec x dx
2
tg x sec x dx tg x sec x ( sec x tg x ) dx 5 7 2 2 6 tg x sec x dx (sec x 1) sec x ( sec x tg x ) dx 5
6
6
I1
tg x dx (sec x 1) dx (sec x 2 sec x 1) dx 4 2 2 2 2 2 2 tg x dx [ (1 tg x) sec x 2 sec x 1 ] dx (tg x sec x sec x 1) dx
28.
x sec 7 x dx
2
5
x dx 2
4
tg
4
I (sec 2 x 1) sec 3 x dx (sec 5 x sec 3 x) dx sec 5 x dx sec 3 x dx
x) dx
1 4 1 1 1 tg x tg 2 x Ln cos x C tg 4 x tg 2 x Ln sec x C 4 2 4 2
4
tg
5
7
31. I tg 2 x sec 3 x dx 3
4
tg
2 tg 1/2 x tg 3/2 x C 2 ctg x tg 3/2 x C
x dx
5
tg
tg 3/2 x sec 4 x dx
tg 3/2 x (1 tg 2 x) sec 2 x dx (tg 3/2 x tg1/2 x) sec 2 x dx
sen x cos x
tg
8
dx
tg x dx tg x (sec x 1) dx (tg x sec x tg 5 3 2 2 tg x dx [ tg x sec x (sec x 1) tg x ] dx 5 3 2 2 tg x dx ( tg x sec x tg x sec x tg x ) dx
27.
tg x sec x dx (sec x 2 sec x 1) sec x ( sec x tg x ) dx 5 7 10 8 6 tg x sec x dx (sec x 2 sec x sec x) ( sec x tg x ) dx
dx
cos 4 x
sen 3 x dx cos 4 x
sen 3 x
cos 4 x
dx
(1 sen 2 x) 2 sen 3 x
sen 3 x dx (csc
3
dx
1 2 sen 2 x sen 4 x sen 3 x
dx
x 2 csc x sen x) dx csc 3 x dx 2 Ln csc x ctg x cos x I
81
I csc x dx 3
I
sec
1 1 Ln csc x ctg x csc x ctg x C1 (Idem Prob. 4 - Int. por partes) 2 2 4
cos x
1
sen 3 x dx 2 Ln cos 4 x
csc x ctg x
1
3
sen 3 x dx 2 csc x ctg x 2 Ln 33.
dx
sen 3 x 3
cos x cos x
sen 3 x
cos 4 x dx (sec
2
dx tg 3 x sec x dx tg 2 x tg x sec x dx
x 1) tg x sec x dx
1 sec 3 x sec x C 3
sen 2 x
sen 2 x
sen 2 x
cos 3 x dx cos 2 x cos x dx tg sen 2 x
cos 3 x dx (sec
3
2
x sec x dx (sec 2 x 1) sec x dx
x sec x) dx sec 3 x dx Ln secx tgx
39.
I
I sec x dx 1 1 Ln sec x tg x sec x tg x C1 (Idem Prob. 5 - Int. por partes) 2 2
sen 2 x
cos 3 x
dx
sen 2 x
35.
sec sec
6
6
40.
1 1 Ln sec x tg x sec x tg x Ln secx tgx C 2 2 1
1
cos 3 x dx 2 sec x tg x 2 Ln
2x tg 2 2x dx (1 tg 2 2x) tg 2 2x sec 2 2x dx (tg 2 2x tg 4 2x) sec 2 2x dx
sec
4
2x tg 2 2x dx
sec
x dx (1 tg 2 x) 2 sec 2 x dx (1 2 tg 2 x tg 4 x) sec 2 x dx
3
41.
1 3 1 tg 2x tg 5 2x C 6 10
x tg3 x dx
sec
3
x tg3 x dx sec 2 x tg 2 x sec x tg x dx sec 2 x (sec 2 x 1) sec x tg x dx
sec
3
x tg3 x dx (sec 4 x sec 2 x) sec x tg x dx
1 1 sec 5 x sec 3 x C 5 3
tg x sec 6 x dx
tg x sec 6 x dx tg x (1 tg 2 x) 2 sec 2 x dx
tg x sec 6 x dx
tg x sec 6 x dx tg1/2 x (1 2 tg 2 x tg 4 x) sec 2 x dx tg x sec 6 x dx (tg 1/2 x 2 tg5/2 x tg 9/2 x) sec 2 x dx
ctg 2x csc
ctg
5
2
2
2 3/2 4 2 tg x tg 7/2 x tg11/2 x C 3 7 11
2x dx
2x dx
1 ctg 2 2x C 4
x csc 4 x dx
ctg
5
x csc 4 x dx ctg 5 x (1 ctg 2 x) csc 2 x dx (ctg 5 x ctg 7 x) csc 2 x dx
ctg
5
1 1 x csc 4 x dx ctg 6 x ctg 8 x C 6 8
secx tgx C
x dx
2x tg 2 2x dx
ctg 2x csc
3
I
4
2 3 1 tg x tg 5 x C 3 5
4
38.
cos 3 x dx
x dx tg x
sec
37.
cos 4 x dx
cos 4 x
34.
csc x ctg x cos x C
sen 3 x
sen 3 x
sec
36.
1 csc x ctg x 2 Ln csc x ctg x cos x C 2
6
tg tg
2
2
x cos 3 x sen 2 x dx
x cos 3 x sen 2 x dx
sen 2 x 2
cos x
cos 3 x sen 2 x dx sen 4 x cos x dx
1 sen 5 x C 5
82
42. I csc 5x dx 5
Hacemos : I
dx dx dx 2 sen 2 x cos 2 x 4 (2 sen x cos x) 2 4 sen 2 2x 4 csc 2x dx
z 5x dz 5 dx
dx
sen 2 x cos 2 x 2 ctg 2x C
1 1 csc 5 5x (5 dx) csc 5 z dz 5 5 I1
VIII.INTEGRALES DE LA FORMA
I1 csc z dz 5
1 3 3 I1 csc 3 z ctg z csc z ctg z Ln csc z ctg z C1 4 8 8 (Idem Prob. 31 - Int. por partes) 1 3 3 I csc 3 z ctg z csc z ctg z Ln csc z ctg z C 20 40 40 1 3 3 I csc 3 5x ctg 5x csc 5x ctg 5x Ln csc 5x ctg 5x C 20 40 40
1.
sen mx cos nx dx sen mx sen nx dx cos mx cos nx dx
y y y
sen 2x cos 3x dx 1
sen 2x cos 3x dx 2 [ sen (2x 3x) sen (2x 3x) ] dx 1
ctg
43.
4
x dx
4
2
2
4
1
45.
2
5
2
2.
1 1
tg 5 x
1
1
cos 3x cos 4x dx 2 sen x 14 sen 7x C (1 tg 2 x) sec 2 x
sec 4 x
tg 5 x
dx (tg 5 x tg 3 x) sec 2 x dx
1 1 1 1 dx tg 4 x tg 2 x C ctg 4 x ctg 2 x C 5 4 2 4 2 tg x
dx
1
cos 3x cos 4x dx 2 [ cos (x) cos 7x ] dx 2 ( cos x cos 7x ) dx
dx
dx
cos 3x cos 4x dx
cos 3x cos 4x dx 2 [ cos (3x 4x) cos (3x 4x) ] dx
2
tg x
sec 4 x
1
sen 2x cos 3x dx 2 cos x 10 cos 5x C
2
1 3 ctg x dx (ctg x csc x csc x 1) dx 3 ctg x ctg x x C 4
sec 4 x
1
sen 2x cos 3x dx 2 [ sen (x) sen 5x ] dx 2 ( sen x sen 5x ) dx
ctg x dx (csc x 1) dx (csc x 2 csc x 1) dx 4 2 2 2 ctg x dx [ (1 ctg x) csc x 2 csc x 1 ] dx 4 2 2 2 2 ctg x dx (ctg x csc x csc x 2 csc x 1) dx
44.
senh mx cosh nx dx senh mx senh nx dx cosh mx cosh nx dx
sen 2 x cos 2 x
3.
senh 3x senh 4x dx 1
senh 3x senh 4x dx 2 [ cosh (3x 4x) cosh (3x 4x) ] dx 1
1
senh 3x senh 4x dx 2 [ cosh 7x cosh (x) ] dx 2 ( cosh 7x cosh x ) dx 1
1
senh 3x senh 4x dx 14 senh 7x 2 senh x C
83
4.
cosh 4x senh x dx
1
1
cos 2x cos 7x dx 2 [ cos (2x 7x) cos (2x 7x) ] dx
1
cos 2x cos 7x dx 2 [ cos (5x) cos 9x ] dx 2 ( cos 5x cos 9x ) dx
cosh 4x senh x dx 2 [ senh (x 4x) senh (x 4x) ] dx
1
1
cosh 4x senh x dx 2 [ senh 5x senh (3x) ] dx 2 ( senh 5x senh 3x ) dx 1
1
8. I sen x sen 2x sen 3x dx
5. I cos 3 2x sen 3x dx I cos 2 2x cos 2x sen 3x dx (
I 1 cos 4x ) cos 2x sen 3x dx 2
1 1 I cos 2x sen 3x dx cos 4x (cos 2x sen 3x) dx 2 2 1 1 I (sen x sen 5x) dx cos 4x (sen x sen 5x) dx 4 4 1 1 I (sen x sen 5x) dx (cos 4x sen x cos 4x sen 5x) dx 4 4 1 1 1 I cos x cos 5x (cos 4x sen x cos 4x sen 5x) dx 4 20 4 1 1 1 I cos x cos 5x (sen 3x sen 5x sen x sen 9x) dx 4 20 8 1 1 1 1 1 1 I cos x cos 5x cos 3x cos 5x cos x cos 9x C 4 20 24 40 8 72 3 1 3 1 I cos x cos 3x cos 5x cos 9x C 8 24 40 72
6.
I
9.
sen 3x sen 5x dx 7.
cos 2x cos 7x dx
sen 4x cos 5x dx 1 1
1
sen 4x cos 5x dx 2 [ sen (x) sen 9x ] dx 2 ( sen x sen 9x ) dx 1
1
sen 4x cos 5x dx 2 cos x 18 cos 9x C 10.
sen 8x sen 3x dx 1
sen 8x sen 3x dx 2 [ cos (8x 3x) cos (8x 3x) ] dx 1
1
sen 8x sen 3x dx 2 [ cos (5x) cos 11x ] dx 2 ( cos 5x cos 11x ) dx 1
1 1 [ cos (2x) cos 8x ] dx ( cos 2x cos 8x ) dx 2 2 1 1 sen 2x sen 8x C 4 16
1
sen 8x sen 3x dx 10 sen 5x 22 sen 11x C
1
sen 3x sen 5x dx
1 1 sen x (cos x cos 5x) dx (sen x cos x sen x cos 5x) dx 2 2 1 1 1 1 (sen 2x sen 4x sen 6x) dx cos 2x cos 4x cos 6x C 4 8 16 24
sen 4x cos 5x dx 2 [ sen (4x 5x) sen (4x 5x) ] dx
sen 3x sen 5x dx
sen 3x sen 5x dx 2 [ cos (3x 5x) cos (3x 5x) ] dx
1
cos 2x cos 7x dx 10 sen 5x 18 sen 9x C
1
cosh 4x senh x dx 10 cosh 5x 6 cosh 3x C
1
11.
cosh 3x cosh x dx 1
cosh 3x cosh x dx 2 [ cosh (3x x) cosh (3x x) ] dx 1
1
1
cosh 3x cosh x dx 2 ( cosh 4x cosh 2x ) dx 8 senh 4x 4 senh 2x C 12.
senh 4x senh x dx
84
1 senh 4x senh x dx 2 [ cosh (4x x) cosh (4x x) ] dx 1 1 senh 4x senh x dx 2 [ cosh 5x cosh (3x) ] dx 2 ( cosh 5x cosh 3x ) dx 1 1 senh 4x senh x dx 10 senh 5x 6 senh 3x C
13.
17.
1
cos x cos 5x dx 2 [ cos (x 5x) cos (x 5x) ] dx 1
1 1
1
18.
1
1
sen 2x cos 7x dx 10 cos 5x 18 cos 9x C 14.
sen 3x cos x dx 1
sen 3x cos x dx 2 [ sen (3x x) sen (3x x) ] dx 1
1
19. 1
sen 3x cos x dx 2 [ sen 2x sen 4x ] dx 4 cos 2x 8 cos 4x C 15.
sen x cos 3x dx 1
sen x cos 3x dx 2 [ sen (x 3x) sen (x 3x) ] dx 1
1
sen x cos 3x dx 2 [ sen (2x) sen 4x ] dx 2 ( sen 2x sen 4x ) dx sen x cos 3x dx 16.
1 1 cos 2x cos 4x C 4 8
1
cos x cos 5x dx 8 sen 4x 12 sen 6x C
sen 2x cos 7x dx 2 [ sen (5x) sen 9x ] dx 2 ( sen 5x sen 9x ) dx 1
1
cos x cos 5x dx 2 [ cos (4x) cos 6x ] dx 2 ( cos 4x cos 6x ) dx
sen 2x cos 7x dx sen 2x cos 7x dx 2 [ sen (2x 7x) sen (2x 7x) ] dx
cos x cos 5x dx
20.
x
3x dx 2 x 3x sen 2 cos 2 dx x 3x sen 2 cos 2 dx x 3x sen 2 cos 2 dx
sen 2 cos
3x dx 2 x 3x sen 2 sen 2 dx x 3x sen 2 sen 2 dx x 3x sen 2 sen 2 dx
1 x 3x x 3x [ sen ( ) sen ( ) ] dx 2 2 2 2 2 1 1 [ sen ( x ) sen 2x ] dx ( sen x sen 2x ) dx 2 2 1 1 cos x cos 2x C 2 4
x
sen 2 sen
1 x 3x x 3x [ cos ( ) cos ( ) ] dx 2 2 2 2 2 1 1 [ cos ( x ) cos 2x ] dx ( cos x cos 2x ) dx 2 2 1 1 sen x sen 2x C 2 4
cosh 2x cosh 9x dx 1
cosh 2x cosh 9x dx 2 [ cosh (2x 9x) cosh (2x 9x) ] dx
sen 2x sen 9x dx
1
1
sen 2x sen 9x dx 2 [ cos (2x 9x) cos (2x 9x) ] dx 1
1 1 sen 2x sen 9x dx 14 sen 7x 22 sen 11x C
1
1
cosh 2x cosh 9x dx 22 senh 11x 14 senh 7x C
1
sen 2x sen 9x dx 2 [ cos (7 x) cos 11x ] dx 2 ( cos 7x cos 11x ) dx
1
cosh 2x cosh 9x dx 2 [ cosh 11x cosh (7 x) ] dx 2 ( cosh 11x cosh 7x ) dx
21.
senh x senh 7x dx 1
senh x senh 7x dx 2 [ cosh (x 7x) cosh (x 7x) ] dx
85
1 1 senh x senh 7x dx 2 [ cosh 8x cosh (6x) ] dx 2 ( cosh 8x cosh 6x ) dx 1 1 senh x senh 7x dx 16 senh 8x 12 senh 6x C
22.
sen sen
3
3
x cos 3x dx
x cos 3x dx sen x (
1 cos 2x ) cos 3x dx 2
1 sen x (cos 3x cos 2x cos 3x) dx 2 1 1 3 sen x cos 3x dx 2 sen x [ cos 3x 2 (cos x cos 5x) ] dx 1 1 1 3 sen x cos 3x dx 2 sen x ( cos 3x 2 cos x 2 cos 5x ) dx 1 1 1 3 sen x cos 3x dx 2 ( sen x cos 3x 2 sen x cos x 2 sen x cos 5x ) dx 1 1 1 1 3 sen x cos 3x dx 4 ( sen 2x sen 4x 2 sen 2x 2 sen 4x 2 sen 6x ) dx 1 3 3 1 3 sen x cos 3x dx 4 ( 2 sen 2x 2 sen 4x 2 sen 6x ) dx 3 3 1 3 sen x cos 3x dx 16 cos 2x 32 cos 4x 48 cos 6x C
sen
23.
3
cos
x cos 3x dx
2
cos
2
x sen 2 4x dx
cos
2
x sen 4x dx
cos
2
x sen 2 4x dx
2
senh senh
2
2
x cosh 5x dx
senh
2
x cosh 5x dx
senh
2
x cosh 5x dx
1 ( cosh 2x cosh 5x cosh 5x ) dx 2 1 1 [ (cosh 7x cosh 3x) cosh 5x ] dx 2 2 1 1 1 senh 7x senh 3x senh 5x C 28 12 10
senh (2 sen x) cosh (sen x) cos x dx
z sen x dz cos x dx senh (2 sen x) cosh (sen x) cos x dx senh 2z cosh z dz
Hacemos :
1
senh (2 sen x) cosh (sen x) cos x dx 2 [ senh (2z z) senh (2z z) ] dz 1
senh (2 sen x) cosh (sen x) cos x dx 2 ( senh 3z senh z ) dz 1
1
senh (2 sen x) cosh (sen x) cos x dx 6 cosh 3z 2 cosh z C 1
1
senh (2 sen x) cosh (sen x) cos x dx 6 cosh (3 sen x) 2 cosh (sen x) C IX. INTEGRALES DE LA FORMA
P(x) e
ax
dx
, P(x) sen ax dx
y
P(x) cos ax dx
x sen 2 4x dx
2 2 cos x sen 4x dx (
24.
25.
senh
2
1 cos 2x 1 cos 8x )( ) dx 2 2
1 ( 1 cos 8x cos 2x cos 2x cos 8x ) dx 4 1 1 [ 1 cos 8x cos 2x (cos 6x cos 10x) ] dx 4 2 1 1 1 1 1 x sen 8x sen 2x sen 6x sen 10x C 4 32 8 48 80
I
1 4x 24x 2 12x 2 48x 12 48 e (8x 3 6x 2 2x 5 )C 4 4 42 43
1 4x 24x 2 12x 2 48x 12 48 e (8x 3 6x 2 2x 5 )C 4 4 16 64 1 4x I e (16x 3 4x 9) C 8 I
2. I (3x 2 2x 1) sen 2x dx
x cosh 5x dx
x cosh 5x dx (
1. I (8x 3 6x 2 2x 5) e 4x dx
cosh 2x 1 ) cosh 5x dx 2
I
1 6 1 6x 2 cos 2x (3x 2 2x 1 ) sen 2x ( )C 2 2 2 2 2
86
1 6 1 6x 2 I cos 2x (3x 2 2x 1 ) sen 2x ( )C 2 4 2 2 1 1 I cos 2x (6x 2 4x 1) sen 2x (3x 1) C 4 2
3. I (x 3 3x) e 6x dx
I sen u (u 5 8u
I I
1 6x 3 3x 2 3 6x 6 e ( x 3x )C 6 6 36 216 1 6x e (36x 3 18x 2 102x 17) C 216
I
4. I
I
4 e 3x
dx
1 3x 6x 2 6 e [ 3x 2 2x 1 ] C 12 3 (3) 2
1 3x 6x 2 6 e (3x 2 2x 1 )C 12 3 9 1 I e 3x (9x 2 12x 1) C 36 I
5. I (2x 4 2x 1) sen 2x dx I
1 24x 2 48 1 8x 3 2 48x cos 2x (2x 4 2x 1 ) cos 2x ( )C 2 2 2 22 24 23
1 24x 2 48 1 8x 3 2 48x cos 2x (2x 4 2x 1 ) cos 2x ( )C 2 4 16 2 2 8 1 1 I cos 2x (2x 4 6x 2 2x 2) cos 2x (4x 3 6x 1) C 2 2 1 I cos 2x (x 4 3x 2 x 1) cos 2x (4x 3 6x 1) C 2 I
6. I (u 5 8u) cos u du
120u 14
) cos u (
5u 4 8 60u 2 120 )C 1 13 15
7. I (x 3 5x 2 2) e 2x dx I
3x 2 2x 1
12
I sen u (u 5 20u 3 112u ) cos u (5u 4 60u 2 112) C
1 6x 3 3x 2 3 6x 6 e ( x 3x )C 6 6 6 2 63
I
20u 3
1 2x 3 3x 2 10x 6x 10 6 e ( x 5x 2 2 )C 2 2 22 23
1 2x 3 3x 2 10x 6x 10 6 e ( x 5x 2 2 )C 2 2 4 8 1 2x I e (4x 3 14x 2 14x 1) C 8
8. I x 4 cos x dx I sen x (x 4
12x 2 12
24 14
) cos x (
4x 3 24x )C 1 13
I sen x (x 4 12x 2 24) cos x (4x 3 24x) C
9. I x 2 sen 2x dx 1 2 1 2x cos 2x (x 2 ) sen 2x ( ) C 2 2 2 2 2 1 2 1 2x I cos 2x (x 2 ) sen 2x ( ) C 2 4 2 2 1 1 I cos 2x (2x 2 1) x sen 2x C 4 2 I
10. I x 2 cos
x dx 2
x 2 x [ x (2) (2 2 ) ] 2 cos [ (2x) (2) ] C 2 2 x 2 x I 2 sen (x 8) 8x cos C 2 2 I 2 sen
87 X.
R (x
INTEGRALES DE LA FORMA
n
, a x ) dx y 2
2
R (x
n
, x a ) dx 2
2
(Donde n es un número entero impar positivo)
1.
x5 x2 9
3.
dx
Hacemos : z 2 x 2 9
x
x2 9 x
5
x2 9 x5 x2 9 x5 x2 9 x5 x2 9
dx
x
4
x dx
x2 9 2
(z 9) 2
2
z2 4
x3
(x 2 9) 3/2
z dz
2
x
2.
x2 3
2
x3
(x 2 9) 3/2
1 5 z 6z 3 81z C 5
x
dx dx
1 x 2 9 [ (x 2 9) 2 30 (x 2 9) 405 ] C 5
dx
1 x 2 9 (x 4 12x 2 216) C 5
4.
x2 3 x5 x
dx
dx dx
dx
x 1 4
2
x2 3
x dx
(z 3) 1 2
z2
4
z2 9 z
x dx
dz (1
2
x 9
9 z
2
z2 9
z dz
(z 2 ) 3/2
) dz z
z3
z dz
9 1 C (z 2 9) C z z
1
(x 2 9 9) C
z2 9
x 9 2
(x 2 18) C
x5
5
dx
x5
2
(x 2 9) 3/2
2
x4 (3 x 2 ) 4
(3 x 2 ) 4 dx
x z 3 2
x2
1
dx
x5
2
x2 z2 9
x2 3 z2
z dz x dx
2
x5
z
3 2z
1
7
4
2
5.
x3 2x 2 7
dx
z dz
(z 2 ) 4
dz (
1 2z
(3 z 2 ) 2
C
(3 x 2 ) 4 dx 2 (3 x 2 ) 3 [ 3 3 (3 x
2
1 dx x 2 3 [ (x 2 3) 2 10 (x 2 3) 40 ] C 2 5 x 3
3
x dx
9 6z 2 z 4
(3 x 2 ) 4 dx 2z 6
z 6z 8 z dz z dz z 4
1 1 dx (z 6z 8) dz z 5 2z 3 8z C z (z 4 10z 2 40) C 2 5 5 x 3
x5 x
dx
Hacemos : z 2 3 x 2
z dz x dx
1 x 2 3 (x 4 4x 2 19) C 5
(3 x 2 ) 4 dx
(3 x 2 ) 4
Hacemos : z x 3 x x
3
(x 2 9) 3/2
1 z (z 4 30z 2 405) C 5
2
5
3
(x 2 9) 3/2
(z 9) z dz z 2
x
x5 x
dx
z dz x dx
dx (z 9) dz (z 18z 81) dz 2
x 3 2
Hacemos : z 2 x 2 9
x2 z2 9
z dz x dx 5
x5 x
2
9 z
7
1 2z 6
6 z
5
1 z3
(3 z 2 ) 2 z8
z dz
) dz
(3 3z 2 z 4 ) C
) (3 x 2 ) 2 ] C
x 4 3x 2 3 2 (3 x 2 ) 3
C
88
Hacemos : z 2
2x 2 7 x 2
z 7 2 2
2x 3
(x 2 1) 4 dx 2
1 z dz x dx 2
2x 3
z 7 2 2 z dz 1 z 7 z dz 4 z z2
(x 2 1) 4
2
6.
x3 2x 2 7 x3 2x 7 2
dx dx
x2
1 x dx 2 2x 2 7
8.
1 1 7 1 (z 2 7) dz z 3 z C z (z 2 21) C 4 12 4 12
2x 2 7 x3 4x
2
1 2x 2 7 (x 2 7) C 6
dx
Hacemos : z 2 4 x 2
x2 4 z2
z dz x dx
7.
x3 4 x2 x3 4x
2
x3 4 x2
2x
dx dx
x2 4 x2
x dx
4 z2 z2
z dz
z2 4 z dz (z 2 4) dz z
1 3 1 1 z 4z C z (z 2 12) C 4 x 2 (4 x 2 12) C 3 3 3
dx
2 (x 2 1) 2
z
5
1 z
) dz
7
1 3 (x 2 1) 3
dx
z dz x dx x2
(x 2 1) 4 dx 2 (x 2 1) 4
x dx 2
z 2 1 (z 2 ) 4
x 2 z 2 1 z dz 2
z 2 1 z8
z dz
1 2z
C
4
1
C
3z 6
3x 2 1 6 (x 2 1) 3
C
dx
x 2 z 2 1
(3 x ) x 3 2 2
(1 x 2 ) 2 (3 x 2 ) 2 x 3 (1 x 2 ) 2 (3 x 2 ) 2 x 3 (1 x 2 ) 2 (3 x 2 ) 2 x 3 (1 x )
2 2
(3 x ) x 2 2
(1 x )
2 2
3
dx
(3 x 2 ) 2 x 2
dx
(z 2 2) 2 (z 2 1)
dx
(z 4 4z 2 4) (z 2 1)
(1 x 2 ) 2 z4
4 z
3
(3 z 2 1) 2 (z 2 1) (z 2 ) 2
z dz
z3
dx (z 3 3z dx
x dx
) dz
x 3 3x 3 x2 x 2 x 3 3x 3 x x2 2
x 3x 3 3
x x2 2
z dz
(z 2 2) 2 (z 2 1)
dz
z3 z 6 3z 4 4 z3
dz
dz
1 4 3 2 2 z z C 4 2 z2
1 2 3 2 (x 1) 2 (x 2 1) C 2 4 2 x 1
XI. INTEGRACIÓN DE FUNCIONES RACIONALES f (x)
1.
Hacemos : z 2 x 2 1 2x 3
1
1
1 4 x 2 (x 2 8) C 3
3
(x 2 1) 4
(1 x 2 ) 2
dz 2 (
z dz x dx
1 1 dx 2x 2 7 (2x 2 7 21) C 2x 2 7 (2x 2 14) C 2 12 12 2x 7 dx
(3 x 2 ) 2 x 3
z
7
Hacemos : z 2 1 x 2
x3 x3
dx
z 2 1
P(x) Q(x)
dx dx (x 1 dx
1 x x2 2
) dx
1 2 dx x x 2 (x 1) (x 2)
1 2 dx x x 2 2 x x2
89
x 2 6x 8
1 A B (x 1) (x 2) x 1 x 2 1 A(x 2) B(x 1) 1 (A B)x (2A B)
x 2 2x 5 dx x 4 Ln(x 3.
AB0 A 1/3, B 1/3 2A B 1
2.
x 3 3x 3 x x2 2
x 3 3x 3 x2 x 2 x 3 3x 3 x2 x 2 x 3x 3 3
x x2 2
dx
(x 1) (x x 1)
dx
1 2 1 dx 1 dx x x 2 3 x 1 3 x 2
dx
1 2 1 1 x x Ln x 1 Ln x 2 C 2 3 3
dx
1 2 1 x 1 x x Ln C 2 3 x2
A 2B 0 A B C 0 A 1/3, B 1/6, C 1/2 A B C 1 dx 1/3 1/6 (2x 1) 1/2 x 3 1 ( x 1 x 2 x 1 ) dx dx 1 dx 1 2x 1 1 dx x 3 1 3 x 1 6 x 2 x 1 dx 2 x 2 x 1 dx 1 1 1 dx 2 x 3 1 3 Ln x 1 6 Ln(x x 1) 2 1 2 3 (x ) 2 4 dx 1 1 1 2x 1 2 x 3 1 3 Ln x 1 6 Ln(x x 1) 3 arc tg ( 3 ) C
3 8x
x 2x 5 x 2 2x 5 3 8x A(2x 2) B 3 8x 2Ax (2A B) 2A 8 A 4, B 11 2A B 3
x 2 6x 8
4.
4 (2x 2) 11 x 2 2x 5
dx
dx
x 2 2x 5 dx x 4 x 2 2x 5 dx 11 x 2 2x 5 x 2 6x 8
x 2 2x 5 dx x 4 Ln(x
2
2x 5) 11
dx
x 3 1 dx
x 3 1 (x 1) (x 2 x 1)
dx
2x 2
B(2x 1) C A x 1 x 2 x 1
1 (A 2B)x 2 (A B C) x (A B C)
A(2x 2) B
x 2 2x 5 dx x
1 A(x 2 x 1) B(2x 1)(x 1) C(x 1)
x 2 2x 5 dx (1 x 2 2x 5 ) dx x x 2 2x 5 dx
x 2 6x 8
dx
2
x 2 6x 8
3 8x
dx
1
x 2 2x 5 dx
2
11 x 1 arc tg ( )C 2 2
x 3 1 dx
3 8x
2x 5)
x 3 1 (x 1) (x 2 x 1)
1 2 1/3 1/3 x x( )dx 2 x 1 x 2
x 2 6x 8
2
1 (x 1) (x x 1) 2
B(2x 1) C A x 1 x 2 x 1
dx
1 A(x 2 x 1) B(2x 1)(x 1) C(x 1)
(x 1) 2 4
1 (A 2B)x 2 (A B C) x (A B C)
A 2B 0 A B C 0 A 1/3, B 1/6, C 1/2 A BC 1 dx
1/3
x 3 1 ( x 1 5.
90
6.
1/6 (2x 1) 1/2
) dx x 2 x 1 dx 1 dx 1 2x 1 1 dx dx 3 2 2 2 x x 1 x 1 3 x 1 6 x x 1 dx 1 1 1 dx Ln x 1 Ln(x 2 x 1) 3 1 3 6 2 x 1 3 (x ) 2 2 4 dx 1 1 1 2x 1 Ln x 1 Ln(x 2 x 1) arc tg ( )C 3 6 3 3 x 1 3
(x 2) (x 3) (x 1)
A (x 2)
2
(1 u) (1 u) (1 u )
BCD 0
(x 2) 2 (x 2 4x 3)
C(2u) D A B 1 u 1 u 1 u 2
A(1 u)(1 u 2 ) B(1 u)(1 u 2 ) C(2u)(1 u)(1 u) D(1 u)(1 u) 2u 2 (A B 2C)u 3 (A B D)u 2 (A B 2C)u (A B D) A B 2C 0 A B D 2 A 1/2, B 1/2, C 0, D 1 A B 2C 0 A B D 0
1 (B C D)x 3 (A 6B 5C 7D)x 2 (4A 11B 8C 16D)x (3A 6B 4C 12D)
1 1 x 3 Ln C x2 2 x 1
2u 2
1 A(x 3)(x 1) B(x 2)( x 3)( x 1) C(x 2) 2 ( x 1) D(x 2) 2 ( x 3)
dx
sen x u2 2u 2 2u 2 dx 2u du du du cos x 1 (u 2 ) 2 1 u 4 (1 u) (1 u) (1 u 2 ) 2
B C D x 2 x 3 x 1
A 6B 5C 7D 0 A 1, B 0, C 1/2, D 1/2 4A 11B 8C 16D 0 3A 6B 4C 12D 1 dx 1 1/2 1/2 (x 2) 2 (x 2 4x 3) ( (x 2) 2 x 3 x 1 ) dx dx dx 1 dx 1 dx (x 2) 2 (x 2 4x 3) (x 2) 2 2 x 3 2 x 1 dx 1 1 1 (x 2) 2 (x 2 4x 3) x 2 2 Ln x 3 2 Ln x 1 C
u 2 sen x
2u 2
dx
sen x sen x sen x dx cos x dx cos x dx 2 cos x cos x 1 sen 2 x
(x 2) 2 (x 2 4x 3) (x 2) 2 (x 3) (x 1) 1
2u du cos x dx
dx
2
sen x dx cos x
Hacemos :
(x 2) 2 (x 2 4x 3) dx
7.
sen x 1/2 1/2 1 dx ( ) du cos x 1 u 1 u 1 u 2 sen x 1 du 1 du du dx cos x 2 1 u 2 1 u 1 u 2
sen x 1 1 dx Ln 1 u Ln 1 u arc tg u C cos x 2 2
sen x 1 u 1 1 sen x 1 dx Ln arc tg u C Ln arc tg sen x C cos x 2 u 1 2 sen x 1 dx
x (x 69 1) 3 68
dx 1 69x x (x 69 1) 3 69 x 69 (x 69 1) 3 dx
Hacemos :
u x 69 1 du 69x 68 dx
91
dx
x (x 69 1) 3 1 u (u 1) 3
A u
3
1 du 69 (u 1) u 3
B
u
2
2t 2
1 du 3 69 u (u 1)
(t 2 t 1) (t 2 t 1) 2
3
1 du 1 du 1 du 1 du 3 2 69 3 69 u 69 u 69 u 69 u 1 x (x 1) dx 1 1 1 1 Ln u Ln u 1 C 69 3 2 69u 69 69 x (x 1) 138u
69
69
dx 1 x 1 1 x (x 69 1) 3 69 [ Ln x 69 1 x 69 1 2 (x 69 1) 2
] C
] C
8. I tg x dx
Hacemos :
t
tg x
dx I I
2t t 2 1 t 4
2t 1 t 4
dt
1 t 4
dt
2t 2 (t 1 2 t) (t 1 2 t) 2
2
I
2 4
t2
I
2 1 dt 2 1 dt Ln(t 2 2 t 1) Ln(t 2 2 t 1) 4 2 t 2 2t 1 4 2 t 2 2t 1
x arc tg (t ) 2
(t 2 1) 2 2t 2 dt
2t 2 (t 2 t 1) (t 2 t 1) 2
2
dt
1 dt 2 2 t 2 2t 1 4
2 t 2 2t 1 1 Ln( ) 4 t 2 2t 1 2
dt (t
2 2 1 ) 2 2
2t 2
t2
1 2
2t 1
dt
1 dt 2 t 2 2t 1
dt (t
2 2 1 ) 2 2
I
tg x 2 tg x 1 2 2 2 Ln( ) arc tg ( 2 tg x 1) arc tg ( 2 tg x 1) C 4 2 2 tg x 2 tg x 1 x sec 2 x 3 4 tgx sec 2 x
dx
x sec 2 x 3 4 tg x 1 tg 2 x
Hacemos :
dt
2t 1
dt
2 t 2 2t 1 2 2 Ln( ) arc tg ( 2 t 1) arc tg ( 2 t 1) C 2 4 2 2 t 2t 1
I
2t 2
2t 2
I
9. I
dt
2t 2
t 2 2t 1
2 1 2 1 (2t 2 ) (2t 2 ) 4 2 4 2 ] dt 2 2 t 2t 1 t 2t 1
I
1 u 1 1 1 [ Ln ] C 69 u u 2u 2
dx 1 x 11 1 1 x (x 69 1) 3 69 [ Ln x 69 1 x 69 1 2 (x 69 1) 2
2
C(2t 2 ) D
I [
dx
x (x 69 1) 3
2 A B 2 C D 2 2 1 2 1 , B , C , D A 4 2 4 2 2B 2D 0 2 A B 2C D 0
C D 0 B C 0 A 1, B 1, C 1, D 1 A B 0 A 1 dx 1 1 1 1 1 x (x 69 1) 3 69 ( u 3 u 2 u u 1) du
t 2t 1 2
2A 2C 0
1 (C D)u 3 (B C)u 2 (A B)u A
dx
A(2t 2 ) B
2t 2 (2A 2C)t 3 ( 2A B 2C D)t 2 ( 2B 2D)t ( 2A B 2C D)
1 A(u 1) B(u)(u 1) C(u )(u 1) D(u )
2t 2 A(2t 2 )(t 2 2t 1) B(t 2 2t 1) C(2t 2 )(t 2 2t 1) D(t 2 2t 1)
C D u u 1 2
2
ux du dx
dx
x sec 2 x 4 4 tg x tg 2 x
dv
sec 2 x
( tg x 2 ) 2 1 v tg x 2
dx
dx
x sec 2 x ( tg x 2 ) 2
dx
92 2
I
x dx x sec x dx tg x 2 tg x 2 tg x 2 ( tg x 2 ) sec 2 x
I
x sec 2 x dx tg x 2 ( tg x 2 ) ( 1 tg 2 x )
Hacemos : I
10.
4x 2 6
tg x dz sec 2 x dx
4x 2 6 x (x 3) 2
(z 2) (1 z )
A 2B 4 C0 A 2, B 1, C 0 3A 6
1 A(1 z 2 ) B(2z)(z 2) C(z 2) 1 (A 2B)z 2 (4B C)z (A 2C)
x 1 I Ln tg x 2 5 I
I
z2 1 z 2
2 arc tg z C 5
tg x 2 x 1 2 Ln arc tg (tg x) C 2 tg x 2 5 5 1 tg x tg x 2 2 tg x 2 2 x 1 x 1 Ln xC Ln xC 2 tg x 2 5 5 tg x 2 5 sec x 5 sec x
A B(2x) C x x2 3
4x 2 6 (A 2B)x 2 Cx 3A
B(2z) C A z2 1 z 2
A 2B 0 4B C 0 A 1/5, B 1/10, C 2/5 A 2C 1 x 1/5 1/10 (2z) 2/5 I ( ) dz tg x 2 z2 1 z 2 x 1 dz 1 2z 2 dz I dz tg x 2 5 z 2 10 1 z 2 5 1 z 2 x 1 1 2 I Ln z 2 Ln (1 z 2 ) arc tg z C tg x 2 5 10 5 x 1 1 2 I Ln z 2 Ln 1 z 2 arc tg z C tg x 2 5 5 5
4x 2 6 A(x 2 3) B(2x)(x) C(x)
x dz tg x 2 (z 2) (1 z 2 ) 2
4x 2 6
x 3 3x dx x (x 2 3) dx
z
1
4x 2 6
x 3 3x dx
4x 2 6
2
2x
x 3 3x dx ( x x 2 3 ) dx 2 4x 2 6
x 3 3x dx 2 Ln x Ln (x 4x 2 6
x 3 3x dx Ln [ x 11.
2
2
dx 2x dx x x2 3
3) C Ln (x 2 ) Ln (x 2 3) C
(x 2 3) ] C
x5
(x 2 4) 2 dx 8x 3 16x
x5
(x 2 4) 2 dx [ x (x 2 4) 2 8x 3 16x (x 4) 2
2
A(2x) B (x 4) 2
2
] dx
1 2 8x 3 16x x dx 2 (x 2 4) 2
C(2x) D x2 4
8x 3 16x A(2x) B C(2x)(x 2 4) D(x 2 4) 8x 3 16x 2Cx 3 Dx 2 (2A 8C)x (B 4D) 2C 8
D0 A 8, B 0, C 4, D 0 2A 8C 16 B 4D 0
93
x
5
1
(x 2 4) 2 dx 2 x x5
(x 2 4) 2
dx
x5
1
x 4 4x 2 14x x 2 2x 8
x 4x 14x 4
2
x 2x 8 2
x 4x 14x 4
2
[
8(2x) (x 2 4) 2
4(2x) x2 4
2
8 x2 4
4 Ln (x 2 4) C
13.
x 2 2x 8 x 4 4x 2 14x x 2 2x 8 x 4 4x 2 14x x 2 2x 8
dx (x 2 2x 8 dx
18x 64 x 2 2x 8
) dx
1 3 18x 64 x x 2 8x dx 3 (x 4) (x 2)
1 68/3 14/3 dx x 3 x 2 8x ( ) dx 3 x4 x2 dx
1 3 68 dx 14 dx x x 2 8x 3 3 x4 3 x2
1 68 14 dx x 3 x 2 8x Ln x 4 Ln x 2 C 3 3 3
dx
(x 2 2x 5) 3 dx dx (x 2 2x 5) 3 [ (x 1) 2 4 ]3
Hacemos :
(x 2 2x 5) 3 Hacemos :
1
dz
4
(z 2 4) 2
u z
dv
z x 1 dz dx
2
dz
1 z2 dz 4 (z 2 4) 3
z
dz (z 4) 3 1 v 2 4 (z 4) 2
dx
A B 18 A 68/3, B 14/3 2A 4B 64 x 4 4x 2 14x
dx
du dz
x 2x 8 18x 64 A B (x 4) (x 2) x 4 x 2 18x 64 A(x 2) B(x 4) 18x 64 (A B)x (2A 4B) 2
dx dz 1 (z 4) z (x 2 2x 5) 3 (z 2 4) 3 4 (z 2 4) 3 2
] dx
1 2 2x 2x x 8 dx 4 dx 2 2 2 2 (x 4) x 4
(x 2 4) 2 dx 2 x 12.
2
2
dx 1 dz 1 z (x 2 2x 5) 3 4 (z 2 4) 2 4 [ 4 (z 2 4) 2
1 dz ] 2 4 (z 4) 2
dx 1 dz z 1 dz (x 2 2x 5) 3 4 (z 2 4) 2 16 (z 2 4) 2 16 (z 2 4) 2 dx z 3 dz (x 2 2x 5) 3 16 (z 2 4) 2 16 (z 2 4) 2 dx
(x 2 2x 5) 3
z 16 (z 2 4) 2
3 1 (z 2 4) z 2 [ dz ] 16 4 (z 2 4) 2 2
dx z 3 dz 3 z (x 2 2x 5) 3 16 (z 2 4) 2 64 z 2 4 64 (z 2 4) 2 dz
Hacemos :
u1 z du 1 dz
dv1
z
dz (z 4) 2 1 v1 2 2 (z 4) 2
dx z 3 dz 3 z 1 dz (x 2 2x 5) 3 16 (z 2 4) 2 64 z 2 4 64 [ 2 (z 2 4) 2 z 2 4 ] dx z 3 dz 3z 3 dz (x 2 2x 5) 3 16 (z 2 4) 2 64 z 2 4 128 (z 2 4) 128 z 2 4 dx z 3z 3 dz (x 2 2x 5) 3 16 (z 2 4) 2 128 (z 2 4) 128 z 2 4 dx z 3z 3 z (x 2 2x 5) 3 16 (z 2 4) 2 128 (z 2 4) 256 arc tg ( 2 ) C
94
3 (x 1)
x 1
3 x 1 (x 2 2x 5) 3 16 [ (x 1) 2 4 ] 2 128 [ (x 1) 2 4 ] 256 arc tg ( 2 ) C 3 (x 1) dx x 1 3 x 1 (x 2 2x 5) 3 16 (x 2 2x 5) 2 128 (x 2 2x 5) 256 arc tg ( 2 ) C dx
dx dx (x 2 4) 2 (x 2 2 2 ) 2 n 2,
2 (2) 3 dx x dx (x 2 4) 2 2 (2 2 ) (2 1) (x 2 2 2 ) 21 2 (2 2 ) (2 1) (x 2 2 2 ) 21
14. Demostrar la fórmula de reducción : dz
2n 3
z
dz
(z 2 k 2 ) n 2k 2 (n 1)(z 2 k 2 ) n 1 2k 2 (n 1) (z 2 k 2 ) n 1 In
In
In
dz
1 k2 1 k
2
(z 2 k 2 ) z 2 (z 2 k 2 ) n dz
u z du dz
In
In
In
16.
1 2
k 1
k2
dz
x 2 x 1
x 3 x 2 x 1 dx x 2 x 1
x 3 x 2 x 1
dz z2
1
(z 2 k 2 ) n 1 k 2 (z 2 k 2 ) n
Hacemos :
In
dx x 1 dx x 1 x (x 2 4) 2 8 (x 2 4) 8 x 2 4 8 (x 2 4) 16 arc tg ( 2 ) C
; n2
(z 2 k 2 ) n
k2
dv
z
(x 1) (x 1) 2
z
1
z
dz
1
x 2 x 1
2k 2 (n 1)(z 2 k 2 ) n 1 z 2k 2 (n 1)(z 2 k 2 ) n 1
[
1
B C x 1 x 1
]
x 2 x 1 x 2 x 1
dx
(x 2 4) 2
1
5/4 1/4 ) dx x 1 x 1
dx
5
dx
1
dx
1
5
1
x 3 x 2 x 1 dx 2 (x 1) 4 Ln x 1 4 Ln x 1 C
2k 2 (n 1) (z 2 k 2 ) n 1
dz z 2n 3 dz (z 2 k 2 ) n 2k 2 (n 1)(z 2 k 2 ) n 1 2k 2 (n 1) (z 2 k 2 ) n 1
1/2
x 3 x 2 x 1 dx 2 (x 1) 2 4 x 1 4 x 1
dz
k 2 2k 2 (n 1) (z 2 k 2 ) n 1 2n 3 dz
15. Usando la fórmula de reducción, calcular
x 3 x 2 x 1 dx ( (x 1) 2
dz
(z 2 k 2 ) n 1 2k 2 (n 1)( z 2 k 2 ) n 1 2k 2 (n 1) (z 2 k 2 ) n 1 1
(x 1)
2
B C 1 A 2C 1 A 1/2, B 5/4, C 1/4 A B C 1
(z 2 k 2 ) n 1 k 2 [ 2(n 1)( z 2 k 2 ) n 1 2(n 1) (z 2 k 2 ) n 1 ]
z
A
dx
x 2 x 1 (B C)x 2 (A 2C)x (A B C)
2(n 1)(z 2 k 2 ) n 1
dz
(x 1) 2 (x 1)
x x 1 A(x 1) B(x 1)(x 1) C(x 1) 2
1
1
x 2 x 1
2
dz
(z 2 k 2 ) n
v
x 2 x 1
dz
dx
17.
x 1
x 3 2x 2 3x dx x 1
x 1
x 3 2x 2 3x dx x (x 2 2x 3) dx
95
x 1 x (x 2x 3) 2
A B(2x 2) C x x 2 2x 3
x 2 x 1 x3 x2
dx
1 x2 Ln C x x 1
x 1 A(x 2 2x 3) B(2x 2)(x) C(x) x 1 (A 2B)x 2 (2A 2B C)x 3A
19.
A 2B 0 2A 2B C 1 A 1/3, B 1/6, C 4/3 3A 1 x 1 1/3 1/6 (2x 2) 4/3 x 3 2x 2 3x dx ( x x 2 2x 3 ) dx x 1 1 dx 1 2x 2 4 dx x 3 2x 2 3x dx 3 x 6 x 2 2x 3 dx 3 x 2 2x 3 x 1 1 1 4 dx 2 x 3 2x 2 3x dx 3 Ln x 6 Ln(x 2x 3) 3 (x 1) 2 2
x 1
1
1
x 3 2x 2 3x dx 3 Ln x 6 Ln (x
18.
x 2 x 1
x x 2 x x 1 3
x x 3
2
2
x x 1 2
x 2 (x 1)
2x 3)
x2 x 2
x2 x 2 (x 1) (x 4) 2
x3 x2 x 2 x 1 x3 x2
x 1 2
x2 x 2
A
B C x x 1
x (x 1) 2
2 1 dx dx dx dx ( ) dx 2 2 2 x x 1 x x 1 x x 1 1 dx 2 Ln x Ln x 1 C Ln x 2 Ln x 1 C x x
C(2x) D x2 4
x2 x 2
1
x2 x 2
1
x2 x 2
1
1/6 (2x) 1 x 1 2
2x
1/6 (2x) 2 x2 4 dx
1
] dx 2x
dx
x 4 5x 2 4 dx 6 x 2 1 dx x 2 1 6 x 2 4 dx 2 x 2 4
dx
1
2A 2C 0 B D 1 A 1/6, B 1, C 1/6, D 2 8A 2C 1 4B D 2
2 2 x 1 arc tg ( )C 3 2
B C 1 A B 1 A 1, B 2, C 1 A 1
A(2x) B
x 2 x 2 (2A 2C)x 3 (B D)x 2 (8A 2C)x (4B D)
x 4 5x 2 4 dx 6 Ln (x
2
1) arc tg x
x 2 1
1 x Ln (x 2 4) arc tg ( ) C 6 2 x
x 4 5x 2 4 dx 6 Ln ( x 2 4 ) arc tg x arc tg ( 2 ) C
x 2 x 1 (B C)x 2 (A B)x A
x x 1
x 2 x 2 A(2x)(x 2 4) B(x 2 4) C(2x)(x 2 1) D(x 2 1)
x 2 x 1 A(x 1) B(x)(x 1) C(x 2 )
2
2
x 4 5x 2 4 dx [ x 2 x 1
x2
x2 x 2
x 4 5x 2 4 dx (x 2 1) (x 2 4) dx
dx
dx
2
x2 x 2
x 4 5x 2 4 dx
20.
2x 2 3x 3
(x 1) (x 2 2x 5) dx 2x 2 3x 3
(x 1) (x 2x 5) 2
B(2x 2) C A x 1 x 2 2x 5
2x 2 3x 3 A(x 2 2x 5) B(2x 2)(x 1) C(x 1) 2x 2 3x 3 (A 2B)x 2 (2A 4B C)x (5A 2B C)
96
A 2B 2 2A 4B C 3 A 1, B 3/2, C 1 5A 2B C 3 2x 3x 3
1
2
(x 1) (x 2 2x 5) dx [ x 1 2x 2 3x 3
dx
22.
x2
3/2 (2x 2) 1 x 2 2x 5
] dx
x2 (x 3 1) (x 3 9)
dx
(x 1) (x 2 2x 5) dx x 1 2 x 2 2x 5 dx x 2 2x 5 2x 2 3x 3
3
(x 1) (x 2 2x 5) dx Ln x 1 2 Ln (x 2x 2 3x 3
3
(x 1) (x 2 2x 5) dx Ln x 1 2 Ln (x 21.
2
2
2x 5) 2x 5)
dx (x 1) 2 4
1 x 1 arc tg ( )C 2 2
x2
x2
x 6 10x 3 9
x2
1 x 6 dx x 6 1 dx (x 3 1) (x 3 1) dx x2 (x 1) (x 1) 3
A(3x 2 ) B x 1 3
C(3x 2 ) D x 1
1/6 (3x 2 ) 1/6 (3x 2 ) ] dx x 3 1 x 3 1 1 3x 2 1 3x 2 dx dx 6 x 3 1 6 x 3 1
1 x 6 dx [
1 x 6 dx x
2
1
1 x 6 dx 6 Ln x
3
1
dx [
x3 9
1/24 (3x 2 ) x 3 1
x2
1
3x 2
x2
1
3
x 6 10x 3 9 dx 24 Ln x
3
A(3x 2 )(x 3 1) B(x 3 1) C(3x 2 )(x 3 1) D(x 3 1) x 2 (3A 3C)x 5 (B D)x 3 (3A 3C)x 2 (B D) 3A 3C 0 BD 0 A 1/6, B 0, C 1/6, D 0 3A 3C 1 B D 0
x2
x 3 1
C(3x 2 ) D
1/24 (3x 2 ) x3 9
] dx
3x 2
1
x 6 10x 3 9 dx 24 x 3 1 dx 24 x 3 9 dx
x2
x2
A(3x 2 ) B
A(3x 2 )(x 3 9) B(x 3 9) C(3x 2 )(x 3 1) D(x 3 1) x 2 (3A 3C)x 5 (B D)x 3 (27A 3C)x 2 (9B D) 3A 3C 0 BD 0 A 1/24, B 0, C 1/24, D 0 27A 3C 1 9B D 0
1 x 6 dx x2
x2
x2
3
x2
x 6 10x 3 9 dx (x 3 1) (x 3 9) dx
2x 2
3
x2
x 6 10x 3 9 dx
x2
1
x 6 10x 3 9 dx 24 Ln 23.
x 3 1
C
x 4 x 2 1 dx x 3 4x 1
x 3 4x 1
x 3 4x 1
x 4 x 2 1 dx (x 2 1) 2 x 2 dx (x 2 1 x) (x 2 1 x) dx
x 4 x 2 1
dx
x 3 4x 1 (x 2 x 1) (x 2 x 1)
x 3 4x 1
1 1 x 1 Ln x 3 1 C Ln C 6 6 x 3 1
x3 9
1 Ln x 3 9 C 24
x 3 4x 1
x 3 4x 1
3
1
(x x 1) (x x 1) 2
2
A(2x 1) B x x 1 2
dx
C(2x 1) D x 2 x 1
97
x 4x 1 A(2x 1)(x x 1) B(x x 1) C(2x 1)(x x 1) D(x x 1) 3
2
2
2
2x 2
2
x 4x 1 (2A 2C)x (A B C D)x (A B C D)x (A B C D) 2A 2C 1 A B C D 0 A 1/2, B 3/2, C 0, D 2 ABCD 4 A BC D 1 3
3
x 3 4x 1
x 4 x 2 1 dx [
(x x 1) (x x 1) 2
2
1/2 (2x 1) 3/2 x x 1 2
2 x x 1
x 3 4x 1
1
2x 1
x 3 4x 1
1
2
x 1)
3 2
x 3 4x 1
1
2
x 1)
3
3
2
x 4 x 2 1 dx 2 Ln (x
dx
24.
dx dx 2 1 2 3 1 2 3 (x ) (x ) 2 4 2 4 arc tg (
2x 1
3
)
3
4
arc tg (
2x 1
3
)C
3
I
x 3 4x 1
1 2x 1 4 2x 1 dx Ln (x 2 x 1) 3 arc tg ( ) arc tg ( )C 4 2 2 3 3 3 x x 1 2x
x 4 x 2 1
26.
dx
2x dx 2 1 2 3 (x ) 2 4 2 1 Hacemos : z x 2 dz 2x dx 2x dz 2 2z 2 2x 2 1 dx arc tg ( ) C arc tg ( )C x 4 x 2 1 2 3 3 3 3 3 z 4
I
2x 2 x 4 x 2 1 2x 2
(x 2 1) 2 x 2
2x 2 (x 2 1 x) (x 2 1 x)
dx
2x 2 (x 2 x 1) (x 2 x 1)
C(2x 1) D x 2 x 1
x2
x 6 10x 3 9 dx x2
x 6 10x 3 9 dx (x 3 1) (x 3 9) dx x2 (x 3 1) (x 3 9)
A(3x 2 ) B x 3 1
C(3x 2 ) D x3 9
x 2 A(3x 2 )(x 3 9) B(x 3 9) C(3x 2 )(x 3 1) D(x 3 1) x 2 (3A 3C)x 5 (B D)x 3 (27A 3C)x 2 (9B D)
3A 3C 0
BD 0 A 1/24, B 0, C 1/24, D 0 27A 3C 1 9B D 0
dx dx
x x 1 2
1 x 2 x 1 1 2x 1 1 2x 1 Ln ( ) arc tg ( ) arc tg ( )C 2 2 3 3 3 3 x x 1
x2
2x
x 4 x 2 1 dx
25. I
A(2x 1) B
2x 2 (2A 2C)x 3 (A B C D)x 2 (A B C D)x (A B C D) 2A 2C 0 A B C D 2 A 1/2, B 1/2, C 1/2, D 1/2 ABCD 0 ABCD 0 1/2 (2x 1) 1/2 1/2 (2x 1) 1/2 I [ ] dx x 2 x 1 x 2 x 1 1 2x 1 1 dx 1 2x 1 1 dx I dx dx 2 2 2 2 2 x x 1 2 x x 1 2 x x 1 2 x x 1 1 1 dx 1 1 dx I Ln ( x 2 x 1) Ln ( x 2 x 1) 1 3 2 1 3 2 2 2 (x ) 2 (x ) 2 2 4 2 4
x 4 x 2 1 dx 2 x 2 x 1 dx 2 x 2 x 1 2 x 2 x 1 x 4 x 2 1 dx 2 Ln ( x
2x 2 A(2x 1)(x 2 x 1) B(x 2 x 1) C(2x 1)(x 2 x 1) D(x 2 x 1)
] dx
dx
2
dx
x2
x 6 10x 3 9
dx [
1/24 (3x 2 ) 1/24 (3x 2 ) ] dx x 3 1 x3 9
98 2
3x
2
1
x 6 10x 3 9 dx 24 Ln x
x2
1
3
x
1
3x
2
I
x 6 10x 3 9 dx 24 x 3 1 dx 24 x 3 9 dx
x2
x 6 10x 3 9 27. I I I
dx
1
1 Ln x 3 9 C 24
28.
1 x3 9 Ln C 24 x 3 1
2 x 2 2x 1 2 2 Ln( ) arc tg ( 2 x 1) arc tg ( 2 x 1) C 2 8 4 4 x 2x 1
dx
x8 x6 dx dx x 8 x 6 x 6 (x 2 1)
1
dx
x (x 1) 6
1 x 4 dx
(x 2 1) 2 2x 2 dx
(x 2 x 1) (x 2 x 1)
A(2x 2 ) B x 2x 1 2
C(2x 2 ) D x 2 2x 1
1 A(2x 2 )(x 2 2x 1) B(x 2 2x 1) C(2x 2 )(x 2 2x 1) D(x 2 2x 1) 1 (2A 2C)x 3 ( 2A B 2C D)x 2 ( 2B 2D)x ( 2A B 2C D) 2A 2C 0
2 A B 2 C D 0 2 1 2 1 , B , C , D A 8 4 8 4 2B 2D 0 2 A B 2C D 1
2x 2
I
2 1 dx 2 1 dx Ln(x 2 2 x 1) Ln(x 2 2 x 1) 8 4 x 2 2x 1 8 4 x 2 2x 1
2x 1
2 x 2 2x 1 1 I Ln( ) 8 x 2 2x 1 4
dx
x
5
C x
4
D x
3
E x
2
F G(2x) H x x 2 1
2
2
2
F 2G 0 E H 0 DF 0 CE 0 A 1, B 0, C 1, D 0, E 1, F 0, G 0, H 1 BD 0 AC 0 B0 A 1
dx 1 1 1 x 8 x 6 5x 5 3x 3 x arc tg x C
2 8
x2
1 dx 2 4 x 2 2x 1 8
B
dx dx dx dx dx x8 x 6 x 6 x 4 x 2 x 2 1
I
dx
dx 1 1 1 1 x 8 x 6 ( x 6 x 4 x 2 x 2 1) dx
2 1 2 1 (2x 2 ) (2x 2 ) 8 4 8 4 ] dx I [ 2 2 x 2x 1 x 2x 1 2x 2
x
6
1 (F 2G)x 7 (E H)x 6 (D F)x 5 (C E) x 4 (B D) x 3 (A C) x 2 Bx A
(x 2 1 2 x) (x 2 1 2 x)
2
A
1 A(x 1) Bx(x 1) Cx (x 1) Dx 3 (x 2 1) Ex 4 (x 2 1) Fx5 (x 2 1) 2Gx 7 Hx 6
dx
1
2
(x 2 2 x 1) (x 2 2 x 1)
2
2
x2
2x 1
dx
1 dx 4 2 2 1 2 2 1 (x ) (x ) 2 2 2 2
1 dx 4 x 2 2x 1
29. I I
x7 x3
dx x 12 2x 4 1 1 x 4 1 4x 3 dx 4 (x 4 ) 3 2x 4 1
Hacemos :
t x4 dt 4x 3 dx
99
I
1 t 1 1 t 1 dt dt 3 4 t 2t 1 4 (t 1) (t 2 t 1)
t 1 (t 1) (t 2 t 1)
1 (A C)t 2 (2A B C)t A AC 0
2A B C 0 A 1, B 1, C 1 A 1 dx 1 1 1 1 x (x 7 1) 2 7 [ t (t 1) 2 t 1 ] dt
B(2t 1) C A t 1 t 2 t 1
t 1 A(t 2 t 1) B(2t 1)(t 1) C(t 1) t 1 (A 2B)t 2 (A B C)t (A B C) A 2B 0 A B C 1 A 2, B 1, C 2 A B C 1 1 (2t 1) 2 1 2 I [ ] dt 4 t 1 t 2 t 1 1 dt 1 2t 1 1 dt I dt 2 2 2 t 1 4 t t 1 2 t t 1 1 1 1 dt I Ln t 1 Ln t 2 t 1 1 5 2 4 2 (t ) 2 2 4
I
1 1 1 2t 1 5 Ln t 1 Ln t 2 t 1 Ln C 2 4 2 5 2t 1 5
1 1 1 2x 4 1 5 I Ln x 4 1 Ln x 8 x 4 1 Ln C 2 4 2 5 2x 4 1 5 dx
x (x 7 1) 2
30.
dx
x (x 7 1) 2 Hacemos :
t (t 1)
2
dx 1 x (x 7 1) 2 7 Ln
7x 6
1
7 tx
x 7 (x 7 1) 2 7
A B C 2 t (t 1) t 1
1 A(t 1) 2 B(t) C(t)(t 1)
dx
t
dx 1 7 x (x 7 1) 2 7 Ln x
1 dt 7 t 1
1 1 Ln t 1 C 7 (t 1) 7
1
1 Ln x 7 1 C 7
7 (x 1) dx 1 1 Ln x Ln x 7 1 C 7 2 7 x (x 1) 7 (x 1) 7 7
dx
x (x 999 1) 2
31.
dx
x (x 999 1) 2 Hacemos :
dt 7x 6 dx dx 1 dt 7 2 7 t (t 1) 2 x (x 1) 1
dx 1 dt 1 dt x (x 7 1) 2 7 t 7 (t 1) 2
1 999x 998 dx 999 x 999 (x 999 1) 2
t x 999
dt 999x 998 dx dx 1 dt 999 2 999 x (x 1) t (t 1) 2 1
t (t 1)
2
A B C t (t 1) 2 t 1
1 A(t 1) 2 B(t) C(t)(t 1) 1 (A C)t 2 (2A B C)t A AC 0 2A B C 0 A 1, B 1, C 1 A 1
100
1 1 1 1 [ ] dt 999 2 2 999 t (t 1) t 1 x (x 1) dx 1 dt 1 dt 1 dt 999 2 2 999 t 999 999 t 1 x (x 1) (t 1) dx
dx 1 x (x 999 1) 2 999 Ln
t
dx 1 999 x (x 999 1) 2 999 Ln x
1
1 Ln x 999 1 C 999
1) 1 Ln x 999 1 C 1) 999
999 (x
999
dx
x (x 9 1) 3
1 9x 8 dx x (x 9 1) 3 9 x 9 (x 9 1) 3
dt 9x dx 1 dt 9 3 9 t (t 1) 3 x (x 1)
t (t 1) 3
A B C D 3 2 t (t 1) t 1 (t 1)
1 A(t 1) 3 B(t) C(t)(t 1) D(t)(t 1) 2 1 (A D)t 3 (3A C 2D) t 2 (3A B C D)t A AD0
A 1, B 1, C 1, D 1 3A B C D 0 A 1 dx 1 1 1 1 1 x (x 9 1) 3 9 [ t (t 1) 3 (t 1) 2 t 1 ] dt 3A C 2D 0
dx
1 dt 1 dt 1 dt 1 dt 9 3 3 2 9 t 9 (t 1) 9 (t 1) 9 t 1 x (x 1)
2
1 1 Ln t 1 C 9 (t 1) 9
dx
x12 (x 11 1) dx
11x 10
1
x12 (x 11 1) 11 (x 11 ) 2 (x 11 1) dx t x 11
x12
dt 11x 10 dx dx 1 dt 2 11 (x 1) 11 t (t 1)
1
dx
1
33.
t x9 8
dx
x (x 9 1) 3
1
t
18 (t 1) 1 1 1 1 Ln x 9 Ln x 9 1 C 9 2 9 9 18 (x 1) 9 (x 1) 9 1 1 1 Ln x Ln x 9 1 C 9 2 9 18 (x 1) 9 (x 1) 9
Hacemos :
dx
Hacemos :
dx
x (x 9 1) 3
1 1 Ln t 1 C 999 (t 1) 999
dx 1 x (x 999 1) 2 Ln x 999 (x 999 32.
dx 1 x (x 9 1) 3 9 Ln
t (t 1) 2
A t
2
B C t t 1
1 A(t 1) B(t)(t 1) C(t 2 ) 1 (B C) t 2 (A B)t A B C 0 A B 0 A 1, B 1, C 1 A 1 dx 1 1 1 1 x 12 (x 11 1) 11 [ t 2 t t 1 ] dt
dx
1
dt
x 12 (x 11 1) 11 t 2 dx
1
1 dt 1 dt 11 t 11 t 1
1
x 12 (x 11 1) 11t 11 Ln dx
1
dx
1
1
t
x 12 (x 11 1) 11x 11 11 Ln x
1 Ln t 1 C 11
11
1
1 Ln x 11 1 C 11
x 12 (x 11 1) 11x 11 Ln x 11 Ln x
11
1 C
101
34.
1 (A C)t 2 (2A B C) t A
ctg x
(sen 7 x 1) dx
AC 0
ctg x
cos x
1
2A B C 0 A 1, B 1, C 1 A 1 ctg x 1 1 1 1 (sen 7 x 1) 2 dx 7 [ t (t 1) 2 t 1 ] dt ctg x 1 dt 1 dt 1 dt (sen 7 x 1) 2 dx 7 t 7 (t 1) 2 7 t 1
6
7 sen x cos x
(sen 7 x 1) dx sen x (sen 7 x 1) dx 7 sen 7 x (sen 7 x 1) dx t sen 7 x
Hacemos :
dt 7 sen 6 x cos x dx ctg x 1 dt (sen 7 x 1) dx 7 t (t 1)
1
1
1
(sen 7 x 1) dx 7 Ln sen ctg x
1
1 dt 1 dt 1 1 Ln t Ln t 1 C t 7 t 1 7 7
7
x
1 Ln sen 7 x 1 C 7
1
7
x 1 C
cos x
(sen 7 x 1) 2
dx
Hacemos :
t sen x
sen x (sen 7 x 1) 2
7
dt 7 sen 6 x cos x dx ctg x 1 dt (sen 7 x 1) 2 dx 7 t (t 1) 2 t (t 1)
2
7
x
1 7 (sen x 1) 7
1
36.
1 Ln sen 7 x 1 C 7
1
A B C 2 t (t 1) t 1
1 A(t 1) 2 B(t) C(t)(t 1)
dx
1 7 sen 6 x cos x dx 7 sen 7 x (sen 7 x 1) 2
7
x 1 C
tg x
(cos 99 x 1) 2 dx tg x
sen x
1
99 cos 98 x sen x
(cos 99 x 1) 2 dx cos x (cos 99 x 1) 2 dx 99 cos 99 x (cos 99 x 1) 2 dx t cos 99 x
dt 99 cos 98 x sen x dx tg x 1 dt (cos 99 x 1) 2 dx 99 t (t 1) 2
(sen 7 x 1) 2 dx
1
1
Hacemos :
ctg x
ctg x
ctg x
1 1 Ln t 1 C 7 (t 1) 7
ctg x
(sen 7 x 1) dx Ln sen x 7 Ln sen 35.
t
(sen 7 x 1) 2 dx Ln sen x 7 (sen 7 x 1) 7 Ln sen
(sen 7 x 1) dx 7 [ t t 1 ] dt 7 ctg x
1
(sen 7 x 1) 2 dx 7 Ln sen
A B 0 A 1, B 1 A 1 ctg x
ctg x
(sen 7 x 1) 2 dx 7 Ln
1 A B t (t 1) t t 1 1 A(t 1) B(t) 1 (A B)t A
1 t (t 1)
2
A B C t (t 1) 2 t 1
1 A(t 1) 2 B(t) C(t)(t 1) 1 (A C)t 2 (2A B C)t A AC 0 2A B C 0 A 1, B 1, C 1 A 1
102
1 1 1 1 (cos 99 x 1) 2 dx 99 [ t (t 1) 2 t 1 ] dt tg x 1 dt 1 dt 1 dt (cos 99 x 1) 2 dx 99 t 99 (t 1) 2 99 t 1 tg x
1
1
37. I
I
x 4 sen x sen x cos x (x 1) cos x 4
(x 1) sen x cos x 4
(x 1) cos x 4
(t 1) (t 1) (t 1)
I1
I2
x 1 C
I2
sen x dx cos x
dx 4
tgh x dx
Hacemos :
tgh x
dx
2t 1 t 4
tgh x dx
dt
C(2t) D A B t 1 t 1 t 2 1
1 1 1 t 1 Ln t 1 Ln t 1 arc tg t C Ln arc tg t C 2 2 2 t 1
1 Ln 2
tgh x 1 tgh x 1
arc tg ( tgh x ) C
cos x sen x 1 dx sen x 2 t 2 sen x 1
cos x sen x 1 2t 2 2 dx sen x 2 1 t 2 dt (2 1 t 2 ) dt 2t 2 arc tg t C
cos x sen x 1 dx 2 sen x 1 2 arc tg ( sen x 1) C sen x 2
dx
sen 5x (1 cos 5x) dx
dt
(t 1) (t 1) (t 2 1)
2t dt cos x dx
40.
t2
tgh x dx
Hacemos :
1 sen x 1 2 x 2 2x 1 2 2 I Ln arc tg sen x Ln( ) arc tg ( 2 x 1) arc tg ( 2 x 1) C 2 2 8 4 4 sen x 1 x 2x 1
2t 2
1/2 1/2 1 ) dt t 1 t 1 t 2 1 1 dt 1 dt dt tgh x dx 2 2 t 1 2 t 1 t 1
39.
x 1 2 x 2 2x 1 2 2 I2 Ln( ) arc tg ( 2 x 1) arc tg ( 2 x 1) C 2 2 8 4 4 x 2x 1 Idem. Prob. 27 Int. Funciones Racionales
38.
t 4 1
dt
tgh x dx (
sen x dx dx 4 cos x x 1
1 sen x 1 Ln arc tg sen x C1 Idem. Prob. 06 Int. Func. Racionales 2 sen x 1
2t 2
A(t 1)(t 2 1) B(t 1)(t 2 1) C(2t)(t 1)(t 1) D(t 1)(t 1) 2t 2 (A B 2C)t 3 (A B D)t 2 (A B 2C)t (A B D) A B 2C 0 A B D 2 A 1/2, B 1/2, C 0, D 1 A B 2C 0 A B D 0
I1
I1
99
dt
2t 2
dx
dx
1 t 4
2
1 1 1 (cos 99 x 1) 2 dx 99 Ln t 99 (t 1) 99 Ln t 1 C tg x 1 1 1 99 99 (cos 99 x 1) 2 dx 99 Ln cos x 99 (cos 99 x 1) 99 Ln cos x 1 C tg x
2t 2
2t 2
tg x
(cos 99 x 1) 2 dx Ln cos x 99 (cos 99 x 1) 99 Ln cos
tgh x dx
1
5 sen 5x
sen 5x (1 cos 5x) 5 sen 2 5x (1 cos 5x) dx
103
dx sen 5x (1 cos 5x)
1 5 sen 5x dx 5 (1 cos 2 5x) (1 cos 5x)
t cos 5x dt 5 sen 5x dx dx 1 dt 1 dt sen 5x (1 cos 5x) 5 (1 t 2 ) (1 t ) 5 (t 2 1) (t 1) dx 1 dt sen 5x (1 cos 5x) 5 (t 1) (t 1) 2
Hacemos :
1 (t 1) (t 1) 2
dx
1
dt
1/2
1
dt
1/4 ] dt t 1
sen 5x (1 cos 5x) 20 t 1 10 (t 1) 2 dx
1
1
1 dt 20 t 1
1
sen 5x (1 cos 5x) 20 Ln t 1 10 (t 1) 20 Ln t 1 C dx 1 t 1 1 sen 5x (1 cos 5x) 20 Ln t 1 10 (t 1) C dx
1
sen 5x (1 cos 5x) 20 Ln
cos x sen x
2 dx
cos x sen x
Hacemos :
2
sen x 2
cos x sen x
t cos x 2
2t dt sen x dx
dx 2
dt 4
dt 1 t 4
1 t 1 cos x 2 arc tg t C Ln 2 arc tg ( cos x ) C 1 t 1 cos x
x5
x5
1
x3
x 3 1 dx 3 x 3 1 3x
2 dx cos x sen x 2 dx
t (1 t ) 4
x 3 1 dx
42.
cos 5x 1 1 C cos 5x 1 10 (cos 5x 1)
Ln
cos x sen x
Hacemos : 41.
4
2t
A B 2C 0 A B D 0 A 1/4, B 1/4, C 0, D 1/2 A B 2C 0 A B D 1 2 dx 1/4 1/4 1/2 cos x sen x 4 (1 t 1 t 1 t 2 ) dt 2 dx dt dt dt cos x sen x 1 t 1 t 2 1 t 2 2 dx cos x sen x Ln 1 t Ln 1 t 2 arc tg t C
AC 0 2A B 0 A 1/4, B 1/2, C 1/4 A B C 1
1/4
2 dx
t 2 (1 t 4 ) dt
dt 2
1 (A B 2C)t 3 (A B D)t 2 (A B 2C)t (A B D)
1 (A C)t 2 (2A B)t (A B C)
1
cos x sen x
2t
1 A(1 t )(1 t 2 ) B(1 t )(1 t 2 ) C(2t)(1 t )(1 t) D(1 t )(1 t)
1 A(t 1) 2 B(t 1) C(t 1)(t 1)
dx
2
(1 t) (1 t) (1 t 2 ) C(2t) D 1 A B 2 (1 t ) (1 t ) (1 t ) 1 t 1 t 1 t 2
A B C t 1 (t 1) 2 t 1
sen 5x (1 cos 5x) 5 [ t 1 (t 1) 2
2 dx
sen x cos x (1 cos x) 2
dx
t x 3 1
2
dx
x3 t 1
dt 3x 2 dx x5 1 t 1 1 1 1 1 dx dt (1 ) dt t Ln t C1 3 3 t 3 t 3 3 x 1 x5
1
x 3 1 dx 3 (x
3
1 1 1 1) Ln x 3 1 C1 x 3 Ln x 3 1 C 3 3 3
104
43. I
I
x x 1
4x 2 8x A(x 2 1) 2 B(x 1)(x 2 1) 2 C(2x)(x 1) 2 D(x 1) 2
3
(x 2 2) 2
dx
x 3 2x x 1
E(2x)(x 1) 2 ( x 2 1) F(x 1) 2 ( x 2 1)
dx
x (x 2 2) x 1
dx
(x 2) (x 2) x x dx I dx dx 2 2 2 2 x 2 (x 2) (x 2) 2 1 2x 1 2x dx I dx dx 2 2 x2 2 2 (x 2 2) 2 (x 2) 2 I
2
2
2
2
1 1 1 (x 2 2) x 2 Ln (x 2 2) dx 2 2 (x 2 2) 2 (x 2 2) 2
1 1 1 dx 1 x2 Ln (x 2 2) dx 2 2 (x 2 2) 2 x 2 2 2 (x 2 2) 2 x Hacemos : ux dv dx 2 (x 2) 2 1 du dx v 2 2 (x 2)
I
1 1 1 dx x 1 dx Ln (x 2 2) 2 2 2 2 2 2 4 2 (x 2) x 2 4 (x 2) x 2 1 1 x 1 dx I Ln (x 2 2) 2 2 (x 2 2) 4 (x 2 2) 4 x 2 2 I
I
1 2x 1 x Ln (x 2 2) arc tg ( )C 2 2 2 4 (x 2) 4 2
I Ln x 2 2 I Ln x 2 2
44. I
2x 4 (x 2) x2 2
4 (x 2 2)
4x 8x
1
arc tg (
4 2 1
4 2
x
)C
4x 2 8x (B 2E)x 5 (A B 4E F)x 4 (2B 2C 4E 2F)x 3 (2A 2B 4C D 4E 2F)x 2 (B 2C 2D 2E 2F)x (A B D F) B 2E 0
A B 4E F 0 2B 2C 4E 2F 0 A 1, B 2, C 1, D 4, E 1, F 1 2A 2B 4C D 4E 2F 4 B 2C 2D 2E 2F 8 ABDF 0
I [
arc tg (
)C
4x 2 8x (x 1) (x 1) 2
2
2
A (x 1)
2
C(2x) D E(2x) F B x 1 (x 2 1) 2 x 2 1
2
2
I
1 1 dx dx x2 2 Ln x 1 Ln ( x 2 1) 4 4 dx x 1 x 2 1 x 2 1 x 2 1 (x 2 1) 2
I
(x 1) 2 1 1 dx x2 Ln [ ]3 4 dx x 1 x 2 1 x 2 1 x 2 1 (x 2 1) 2
Hacemos :
2
dx
1 (2x) 4 1 (2x) 1 2 ] dx x 1 (x 2 1) 2 x 2 1
( x 2 1) x 2 1 1 dx 2 Ln x 1 Ln ( x 2 1) 4 dx x 1 x 2 1 x 2 1 (x 2 1) 2
2 x
I
ux du dx
2
(x 1) 2 (x 2 1) 2
(x 1) dx
2
dx 2x dx 2x dx dx 4 dx 2 2 2 2 2 2 x 1 (x 1) (x 1) (x 1) x 1 x 1 1 1 dx dx 2 Ln x 1 4 Ln ( x 2 1) 2 2 2 x 1 x 1 (x 1) x 2 1
I I
1
dv
x
dx (x 1) 2 1 v 2 (x 2 1) 2
I
(x 1) 2 1 1 dx 2x dx Ln [ ]3 2 2 2 2 2 x 1 x 2 1 x 1 x 1 x 1 x 1
I
(x 1) 2 1 2x 1 dx Ln [ ] 2 2 x 1 x 2 1 x 1 x 1
105
I I
(x 1) 1 2x 1 Ln [ ] arc tg x C x 1 x 2 1 x 2 1 2
3x 2 x (x 1) (x 2 1)
45. I I
Ln [
(x 1) 2 x 2 1
Hacemos :
] arc tg x C
dx (x x ) (x 2 x 1) 2 dx
x (x 1) (x 2 x 1) 2
x (x 1) (x 2 x 1) 2
C(2x 1) D E(2x 1) F A B x x 1 (x 2 x 1) 2 x 2 x 1
1 A(x 1)(x 2 x 1) 2 B(x)(x 2 x 1) 2 C(2x 1)(x)(x 1) D(x)(x 1) E(2x 1)(x)(x 1)(x x 1) F(x)(x 1)(x x 1) 2
2
1 (A B 2E)x 5 (3A 2B 5E F)x 4 (5A 3B 2C 6E 2F)x 3 (5A 2B 3C D 4E 2F)x 2 (3A B C D E F)x A A B 2E 0
5A 3B 2C 6E 2F 0 A 1, B 1, C 0, D 1, E 0, F 1 5A 2B 3C D 4E 2F 0 3A B C D E F 0 A 1 1 1 1 1 I [ ] dx 2 2 2 x x 1 (x x 1) x x 1 dx dx dx dx I 2 2 2 x x 1 (x x 1) x x 1 3A 2B 5E F 0
dx dx 1 2 3 2 1 2 3 [ (x ) ] (x ) 2 4 2 4 x 1 dx dx I Ln 1 3 1 3 x (x ) 2 [ (x ) 2 ] 2 2 4 2 4 I Ln x Ln x 1
1 2
dz dx x 1 dz dz I Ln 3 3 x (z 2 ) (z 2 ) 2 4 4 3 (z 2 ) z 2 x 1 dz 4 4 I Ln dz x 2 3 3 2 3 2 z (z ) 4 4
2
1
z x
I Ln
x 1 dz 4 dz 4 z2 dz 3 3 3 3 3 x z2 z2 (z 2 ) 2 4 4 4
x 1 7 dz 4 z2 dz x 3 3 2 3 2 3 2 z (z ) 4 4 z Hacemos : u z dv dz 3 (z 2 ) 2 4 1 du dz v 3 2 (z 2 ) 4 x 1 7 dz 2z 2 dz I Ln x 3 3 2 3 2 3 2 3 z 3 (z ) z 4 4 4 x 1 2z 5 dz I Ln 3 x 3 2 3 3 (z 2 ) z 4 4 x 1 2z 10 2z I Ln arc tg ( ) C 3 x 3 3 (z 2 ) 3 3 4 1 1 2 (x ) 2 (x ) x 1 10 2 2 ] C I Ln arc tg [ 1 2 3 x 3 3 3 3 [ (x ) ] 2 4
I Ln
106
x 1 2x 1 10 2x 1 I Ln arc tg ( )C 2 x 3 3 (x x 1) 3 3 3x 2
x (x 1) 3 dx
46.
3x 2 x (x 1) 3
dx
x1/2 (1 x1/4 ) 4t 4 Ln t 1 C 4x 2.
3x 2 (A D)x 3 (3A C 2D) x 2 (3A B C D)x A AD 0
3.
3x 2
x2
a bx m1/n1 a bx m2 /n 2 a bx mk /n k XII. INTEGRALES DEL TIPO R [ x, ( ) ,( ) ,. . ., ( ) ] dx c dx c dx c dx
1.
t 6 x 1
x 1 3 x 1 dx x 1 x 1 3
Hacemos :
6t 5 t3 t2
dt
6t 3 1 dt 6 (t 2 t 1 ) dt t 1 t 1
2t 3 3t 2 6t 6 Ln t 1 C 2 x 1 3 3 x 1 6 6 x 1 6 Ln 6 x 1 1 C
1
2
x 2 1 2x 1 x 2 x 2
dx
z x2 dz 2x dx
x 2 1 dx 1 z 1 dz 1 z 1 1 z 1 dz dz 2 x 2 1 z z 2 2 z z 1 z z 1 z 1 1 x
x 2 1 dx 1 z 1 1 dz 1 dz dz 1 x 2 x 2 2 2 2 2 z z 1 z 1 z z 2 1 Hacemos : z sec θ
dz sec θ tg θ dθ
x 1/2 (1 x 1/4 )
dx
x 1 3 x 1 dx
x 2 1 dx 1 x 2 x
dx
Hacemos :
dx
x 2 1 dx 1 x 2 x
4x 3
x (x 1) 3 dx Ln [ ( x 1) 2 ] 2 (x 1) 2 C
x 1 t 6
3x 2
dx dx dx dx 2 2 2 x (x 1) 3 x 1 (x 1) 3x 2 1 2 dx 2 Ln x 2 Ln x 1 C 3 2 x 1 x (x 1) 2 (x 1)
x 1 3 x 1
dx 6t 5 dt
3x 2 A(x 1) 3 B(x) C(x)(x 1) D(x)(x 1) 2
x (x 1) 3 dx 2
4 Ln x 1/4 1 C
dx
Hacemos :
A B C D x (x 1) 3 (x 1) 2 x 1
3A C 2D 0 A 2, B 1, C 2, D 2 3A B C D 3 A2 3x 2 2 1 2 2 x (x 1) 3 dx [ x (x 1) 3 (x 1) 2 x 1 ] dx
1/4
x t4
dx 4t 3 dt 4t 3
x1/2 (1 x1/4 )
t x 1/4
t 1 dt 4 dt 4 (1 ) dt 2 t 1 t 1 t (1 t)
z
z 2 1
sec θ tg θ x 2 1 dx 1 sec θ tg θ 1 dθ dθ 2 x 2 2 sec θ sec 2 θ 1 1 x sec 2 θ 1
x 2 1 dx 1 sec θ tg θ 1 sec θ tg θ 1 1 dθ dθ sec θ dθ dθ 2 x 2 tg θ 2 sec θ tg θ 2 2 1 x
1
107
4.
x 1 dx 1 x 2 x
Ln sec θ tg θ θ C
x 2 1 dx 1 x 2 x
Ln z z 2 1 arc sec z C
x 2 1 dx 1 x 2 x
Ln x 2 x 4 1 arc sec (x 2 ) C
2
1 2
1 2
1 2
1 2
1 2
sen 2 x 2 cos 2 x Hacemos : z sen x dz cos x dx dz I2 2 z2
1 2
tg 2 x 2 dx
tg x 2
tg 2 x 2 dx
sec 2 x
2
dx
tg x 2 2
dx
tg 2 x 2
sec x 1 2 2
tg x 2 2
dx
sec x 1 2
tg x 2 2
I2
dx
tg 2 x 2
I2
sec 2 x
dx tg 2 x 2 Hacemos : z tg x
5.
dz sec x dx z2 2
I1
Ln sec θ tg θ C 3 Ln
I1
Ln tg x tg 2 x 2 C1
I2
tg 2 x 2
dθ
z
)
2
z 2
2 cos θ 2 1 sen θ 2
dθ
) C 2 arc sen (
sen x 2
cos θ dθ dθ cos θ ) C2
sen x
)C
2
dx
x t 14
t x 1/14
2 tg 2 θ 1 z2 2 2
dθ
z 2
sec 2 θ dθ sec θ dθ sec θ C3
t 16 t 15
dt 14
t 5 1 dt t 1
x 1/7 x 1/2
dx
14 5 7 4 14 3 t t t 7 t 2 14t C 5 2 3
x 1/7 x 1/2
dx
14 5/14 7 2/7 14 3/14 x x x 7 x 1/7 14x 1/14 C 5 2 3
x 8/7 x 15/14 6.
(t 2 t 7 ) (14t 13 )
dx 14 ( t 4 t 3 t 2 t 1) dt
x 8/7 x 15/14
Ln z z 2 2 C1
dx
x 1/7 x 1/2
x 8/7 x 15/14
2
2 sec 2 θ
I1
dx
dθ
x 1/7 x 1/2
x 8/7 x15/14
x 8/7 x 15/14
dz 2 sec 2 θ dθ 2 tg 2 θ 2
dx
tg 2 x 2 dx Ln tg x tg 2 x 2 arc sen (
x 1/7 x 1/2
z2 2
z
z 2 tg θ
2 sec 2 θ
2 sen 2 x
dx 14t 13 dt
dz
Hacemos :
2 2 sen θ 2
Hacemos :
2
2 cos θ
I 2 θ C 2 arc sen (
dx
I1
I1
cos x
dz 2 cos θ dθ
tg 2 x 2 dx
dx
z 2 sen θ θ arc sen (
Hacemos :
I1
cos x
I2
x 2/7 x 1/7
x 8/7 x15/14
dx
108
xt
Hacemos :
dx 14t x
2/7
x
1/7
x 2/7 x 1/7
(t t ) (14t 4
2
t
16
t
13
)
15
dt 14
t 1 dt t 1
x 3 1
9.
8.
x 1 3
x 1 x 1 3
x 1
x t2
dx dx
t 1
x 1 x 3 1 1 x 1 x
1 x 1 x
1 x
t 3 1
(2t dt)
(2t 1) 1 t t 1 2
(t 1) (t 2 t 1) 2t 1
dt
t t 1 2
dt
dt
1
2t t 2 t 1
dt
1 x
2
arc tg (
3
t t 1 2
1 x
x 9 4t 2 dx dt x 9 (1 t 2 ) (1 t) (1 t)
(1 t ) (1 t) (1 t)
1 x 1 x
dx
1 x 2
A(2t) B 1 t
2
C D 1 t 1 t
A(2t)(1 t)(1 t) B(1 t)(1 t) C(1 t 2 )(1 t ) D(1 t 2 )(1 t ) 4t 2 (2A C D)t 3 (B C D)t 2 (2A C D) t (B C D) 2A C D 0 B C D 4 A 0, B 2, C 1, D 1 2A C D 0 B C D 0
)C
dx
4t 2
1
dx
cos θ dθ cos θ
x 9 1 36t 4t 2 dx . t. dt dt x 9 9 (1 t 2 ) (1 t 2 ) 2 (1 t 2 ) (1 t 2 )
2
3
1 x
dθ 1 x 2
9 (1 t 2 ) x 9 t 2 x x 9 1 t 2 36t dx dt (1 t 2 ) 2
4t 2
dx
1 x 1 x
1 sen θ 2
1 t 2
dt
2 x 1
cos θ
x 9 dx x 9
dx Ln t 2 t 1
dx Ln x x 1
dx 1 x 2 dθ 1 x 2 θ C 1 x 2 arc sen x C
t x 1/2 2t (t 1)
2
dx 1 x 2
Hacemos :
dt 1 3 x 1 (t ) 2 2 4 x 1 2 2t 1 dx Ln t 2 t 1 arc tg ( )C 3 3 3 x 1 3
1 x
x
dx 2t dt x 1
1 x
dx
Hacemos :
1 x
dx 7x 1/7 14x 1/14 28 Ln x 1/14 1 C
dx
dx cos θ dθ
2 ) dt t 1
x 2/7 x 1/7
x 1
1 x
1 2x dx dx 1 x 2 2 2 1 x 1 x 1 x 2 x sen θ θ arc sen x
dx
Hacemos :
2
dx 7t 2 14t 28 Ln t 1 C
x 8/7 x 15/14
1 x
x 2/7 x 1/7
x 8/7 x 15/14
1/14
dt
dx 14 ( t 1
x 8/7 x 15/14
7.
13
dx
x 8/7 x 15/14
t x
14
dx 1 x 2
x 1 x 2
dx
x
x 9 2 1 1 2 1 1 dx ( ) dt ( ) dt 2 2 x 9 1 t 1 t t 1 t 1 1 t 1 t
109
1
x 9 t 1 dx 2 arc tg t Ln t 1 Ln t 1 C 2 arc tg t Ln C x 9 t 1
1 x
x 9 x 9 dx 2 arc tg ( ) Ln x 9 x 9
x
1
x
x 9 x 9 dx 2 arc tg ( ) Ln x 9 x 9 2
x 9 1 x 9 C x 9 1 x 9 x 9 x 9 x 9 x 9
Hacemos :
2 t C
2x
2x 1 2 x 1/3 4 (2 x) 2 3 2 x dx 2 ( 2 x ) (2 x) 2 dx 2
Hacemos :
t dt
2
2x 2x 4
2x
1
dx
(2 x) 2 3 2 x dx 2 t
1/3
dt
3 2/3 3 2 x 2/3 t C ( ) C 4 4 2x
sen 2 x sen x dx
Hacemos :
sen x sen x 1
1 sen x sen x 1 t 1 sen x sen x 1 t
sen x sen x 1 1 sen x
cos x dx
2
cos x dx
sen x 1 sen x
cos x dx
dt cos x dx 1 t 1 t 1 t 1 t sen 2 x sen x dx dt dt dt t t 1 t t 1 t 1/2 (1 2t ) 1/2 1 1 2t 1 dt sen 2 x sen x dx dt dt 2 2 t t2 t t2 t t2
sen θ θ arc sen t cos θ dθ cos θ
sen 2 x sen x dx t t 2 dθ t t 2 θ C
sen 2 x sen x dx t t 2 arc sen t C
sen 2 x sen x dx (1 sen x) (1 sen x) 2 arc sen 1 sen x C
sen 2 x sen x dx sen x sen 2 x arc sen 1 sen x C
1 sen 2 θ
dθ t t 2
cos θ dθ cos θ
cos 2 x cos x dx
cos 2 x cos x dx cos x cos x 1 dx
cos 2 x cos x dx
sen 2 x sen x dx
sen 2 x sen x dx sen x sen x 1 dx
dt
t t2 2 t 1 t 2 t 1 ( t ) 2
sen 2 x sen x dx t t 2
Hacemos : 11.
dt
12.
(2 x) 2
t dt
(2 x) 2 3 2 x dx
10.
sen 2 x sen x dx t t 2
t dt 2 t
1 cos 2 x
sen x dx
dt sen x dx 1 t 1 t 1 t cos 2 x cos x dx dt t t 1 t 1/2 (1 2t) 1/2 1 cos 2 x cos x dx dt 2 t t2 dt cos 2 x cos x dx t t 2 2 t 1 t
Hacemos :
cos x cos x 1
1 cos x cos x 1 t 1 cos x cos x 1 t
cos x cos x 1
dt
sen x dx
cos x 1 cos x
sen x dx
1 t
dt t 1 t 1 2t 1 dt dt 2 t t2 t t2 dt t t2 2 t 1 ( t )2
sen θ θ arc sen t cos θ dθ
cos 2 x cos x dx t t 2
cos θ 1 sen θ 2
dθ t t 2
cos θ dθ cos θ
110
13.
cos x cos x dx t t dθ t t θ C
cos 2 x cos x dx t t 2 arc sen t C
cos 2 x cos x dx (1 cos x) (1 cos x) 2 arc sen 1 cos x C
cos 2 x cos x dx cos x cos 2 x arc sen 1 cos x C
2
2
2
Hacemos :
1 x dx 1 4t 4t 2 t2 t . . dt dt 4 1 x x 2 1 t 2 (1 t 2 ) 2 (1 t 2 ) 2 (1 t 2 ) 2 dt 2 ( ) 1 t 2 t Hacemos : ut dv dt (1 t 2 ) 2 1 du dt v 2 (1 t 2 )
dx
(cos x sen x)
cos 2x
dx
(cos x sen x)
cos 2x
dx
(cos x sen x)
dx cos x (1 tg x) cos 2 x sen 2 x dx
cos 2 x (1 tg x) 1 tg 2 x t 1 tg x tg x 1 t
Hacemos :
cos 2x
sec 2 x (1 tg x) 1 tg 2 x
dx
t
1 u
dt
u
cos 2x
cos 2x
dx
(cos x sen x) 14.
1 x dx 1 x x 2
1 x dx 2t dt dt 2t Ln t 1 Ln t 1 C 2 t 1 t 1 1 x x 2 1 t 1 t 2
1 x 2 1 x dx 2t t 1 1 x Ln C Ln 1 x 1 x x 2 t 1 1 t 2 1 1 x
1 x dx 1 x 2 Ln 1 x x 2 x
1 x dx 1 x 2 1 1 x 2 Ln C 1 x x 2 x x
u2
dx
(cos x sen x)
1 t
du
dx
(cos x sen x)
1 x dx 2t dt 2t dt 2 2 2 2 2 2 2 1 x x 1 t 1 t 1 t t 1 1 x dx 2t dt 2t 1/2 1/2 2 2( ) dt 2 2 2 1 x x (t 1) (t 1) t 1 t 1 1 t 1 t
dt sec 2 x dx dx dt dt (cos x sen x) cos 2x 2 t 1 (1 t ) t 2t t 2
Hacemos :
cos 2x
1 u
du
du
2
u2
u 2 1 u u2
2u 1 C
2 (1 tg x) 1 tg x
1 u2
2u 1
2 1 C t C
2t
1 tg x 1 tg x
1 x 1 t 2 t 2 x 1 x 1 t 2 4t dx dt (1 t 2 ) 2
du 2u 1
C
1 x 1 x 1 x 1 x
1 x 1 1 x C 1 x 1 1 x
C
t C
15.
2 senx cos x dx 3 senx Hacemos : t 3 sen x sen x t 3
dt cos x dx
2 ( t 3) 2 senx 2 senx cos x dx cos x dx dt 3 senx 3 senx t
111
2 senx 5 t 5 t 5 t 5 t cos x dx dt dt dt 3 senx t t 5 t 5t t 2
1/2 (5 2t) 5/2 2 senx 1 5 2t 5 dt cos x dx dt dt 3 senx 2 2 t 5 t 5t t 2 5t t 2
2 senx dt cos x dx 5t t 2 5 3 senx 2 t 5 ( t )2
Hacemos :
t dt 2 t
5 sen θ θ arc sen 5 cos θ dθ
2 senx 5 cos θ cos x dx 5t t 2 5 dθ 3 senx 5 5 sen 2 θ
2 senx 5 cos θ cos x dx t 5 t 5 dθ t 5 t 5 dθ 3 senx 5 cos θ
2 senx cos x dx t 5 t 5θ C t 5 t 5 arc sen 3 senx
2 senx cos x dx 3 senx 3 senx
5 (3 senx ) 5 arc sen
2 senx cos x dx 3 senx 3 senx
2 senx 5 arc sen
1 x 1 x
t 3 x
dx
6t 2
Hacemos :
I t.
I (
1 1 t
3
1 t 3
3
t 1 3
.
(1 t 3 ) 2
6t 2 (1 t )
3 2
1 t 3 1 t 3
dt
dt
6t 3 (t 1) (t 1) 3
3
dt
(t 1) (t t 1)
3 (t 1) (t t 1) 2
3 t 1
) dt 3
dt t 1 3
3
dt t 1 3
3 dt (t 1) (t 2 t 1)
B(2t 1) C A t 1 t 2 t 1
3 A(t 2 t 1) B(2t 1)(t 1) C(t 1)
3 D(t 2 t 1) E(2t 1)(t 1) F(t 1)
t C 5
3 senx C 5
3 senx C 5
3 (D 2E)t 2 (D E F)t (D E F) D 2E 0 D E F 0 D 1, E 1/2, F 3/2 D E F 3 1/2 (2t 1) 3/2 1/2 (2t 1) 3/2 1 1 I [ ] dt [ ] dt 2 t 1 t 1 t t 1 t 2 t 1 1 3 dt 1 3 dt I Ln t 1 Ln t 2 t 1 Ln t 1 Ln t 2 t 1 2 2 t 2 t 1 2 2 t 2 t 1 1 3 dt 3 dt I Ln t 2 1 Ln (t 2 t 1) (t 2 t 1) 1 3 1 3 2 2 2 (t ) 2 (t ) 2 2 4 2 4 1 2t 1 2t 1 I Ln t 2 1 Ln t 4 t 2 1 3 arc tg ( ) 3 arc tg ( )C 2 3 3 2t 1 2t 1 I Ln t 2 1 Ln t 4 t 2 1 3 arc tg ( ) 3 arc tg ( )C 3 3 I Ln
Donde : 3
2
A 2B 0 A B C 0 A 1, B 1/2, C 3/2 A B C 3 E(2t 1) F 3 D 2 t 1 (t 1) (t t 1) t 2 t 1
t 5
1 x dx 1 x x
3 dt
3 (A 2B)t 2 (A B C)t (A B C)
16. I 3
I
t 2 1 t t 1 4
2
t 3
3 arc tg (
1 x 1 x
2t 1 3
) 3 arc tg (
2t 1 3
)C
112
17. I I
dx 4
(x 1) 3 (x 2) 5
1 x 1 4 dx (x 1) (x 2) x 2
x 1 x2
Hacemos :
dx
2t 1 4
( I
12t 3 (1 t 4 ) 2
1 t
4
1) (
2t 1 4
1 t
4
1 t 4
I [
dt
1
I
2t 4 1
t 4 x
12t 3
. t.
(1 t )
4 2
2)
1
dt
9t
4
.
12t 4 (1 t )
4 2
18. I
1 x
(1 t )
4 2
dx
I 2 t . 8t 4 8t 2 (1 t 2 ) 3
.
4t
1 t 2 (1 t 2 ) 2
A(2t) B (1 t 2 ) 3
dt
8t 2 ( t 2 1)
C(2t) D (1 t 2 ) 2
(1 t 2 ) 3
24 (1 t )
2 2
24
(1 t )
2 3
(1 t 2 ) t 2 (1 t )
2 3
dt (1 t ) t2 (1 t )
2 3
8
1 t 2
dt (1 t )
1 t 2 8
(1 t )
2 2
(1 t )
2 3
8
(1 t )
2 2
dt 1 t 2 dt
dt 24
dt
ut
dt
dt
t2
dt 8
] dt
8
2 2
dt 24
16
2 2
Hacemos :
(1 t )
2 2
8
dt 1 t 2
t
dv
dt (1 t 2 ) 3 1 du dt v 4 (1 t 2 ) 2 4t dt dt dt I 4 8 8 2 2 2 2 2 2 (1 t ) (1 t ) (1 t ) 1 t 2 4t dt dt I 12 8 2 2 2 2 (1 t ) (1 t ) 1 t 2
1 u 1 t 2 t2 u 1 u 1 t 2 4t du dt (1 t 2 ) 2
1 t 2
2 3
I 16
1 u u du 1 u
Hacemos :
I 16 I 16
dx 2u du I2
(1 t ) dt
dt
x u2
Hacemos :
16
I 16
4 4 4 x 1 dt t C 4 C 3 3 3 x2
1 x
2E 0 F8 2C 4E 0 A 0, B 16, C 0, D 24, E 0, F 8 D 2F 8 2A 2C 2E 0 BDF 0
dt
8t 4 8t 2 (1 t 2 ) 3
dt
E(2t) F
I I
1 t 2
8t 4 8t 2 A(2t) B C(2t)(1 t 2 ) D(1 t 2 ) E(2t)(1 t 2 ) 2 F(1 t 2 ) 2 8t 4 8t 2 2Et 5 Ft 4 (2C 4E)t 3 (D 2F)t 2 (2A 2C 2E)t (B D F)
I
4t (1 t )
2 2
4t (1 t )
2 2
4t (1 t )
2 2
12 12 12
(1 t 2 ) t 2 (1 t )
2 2
dt 1 t
12
2
t2 (1 t )
2 2
dt 8
dt 1 t 2
t2 (1 t )
dt 4
2 2
dt 8
dt 1 t 2
dt 1 t 2
dt 1 t 2
113
ut
Hacemos :
t
dv
33/2 (2t 1) 171/2 3 ] dt t 1 t2 t 2 dt 33 2t 1 171 dt I 2t 6 3t 4 8t 3 6t 2 48t 3 dt 2 2 t 1 2 t t 2 2 t t2 33 171 2t 1 I 2t 6 3t 4 8t 3 6t 2 48t 3 Ln t 1 Ln t 2 t 2 arctg ( )C 2 7 7 33 I 2 x 3 3 x 8 4 x 6 6 x 48 12 x 3 Ln 12 x 1 Ln 6 x 12 x 2 2 I 2t 6 3t 4 8t 3 6t 2 48t [
dt
(1 t ) 1 du dt v 2 (1 t 2 ) 4t 6t dt dt 4t 6t dt I 6 4 2 2 2 2 2 2 2 2 2 (1 t ) 1 t 1 t 1 t (1 t ) 1 t 1 t 2 I
6t 3 2t (1 t )
2 2
2 arc tg t C
I (u 2) 1 u 2 2 arc tg
1 u 3 1 u ) 2 1 u 1 u 1 u 2 arc tg C 1 u 2 1 u (1 ) 1 u
6(
1 u 1 x C ( x 2) 1 x 2 arc tg C 1 u 1 x
171
arctg (
x
20.
2x 9
Hacemos :
x t 12 dx 12t
12t
11
t 6 t 4 2t 3
11
t x 1/12
dt
dt 12
t
36t 72t 96 2
(t 1) (t t 2) 2
3
2
dt
3t 6t 8
x
2
(t 1) (t t 2)
I 2t 3t 8t 6t 48t 4
dx 2x 9
2x 9 t 2 dx t dt t
8
t3 t 2
I 12 [ t 5 t 3 2t 2 t 4 6
x
2
] dt
36t 2 72t 96 (t 1) (t 2 t 2)
21. dt
B(2t 1) C A t 1 t2 t 2
dx 2x 9
t 9 .t 2 2
2 3
arc tg (
3x 5 dx
36t 2 72t 96 (A 2B)t 2 (A B C)t (2A B C)
A 2B 36 A B C 72 A 3, B 33/2, C 171/2 2A B C 96
t2 9 2
x
dt 2
dt t 9 2
2 3
t 3
arc tg ( ) C
2x 9 )C 3
3x 5 dx x
Hacemos :
36t 2 72t 96 A(t 2 t 2) B(2t 1)(t 1) C(t 1)
)C
7
dx
x 3 x 24 x
Hacemos :
2 12 x 1
7
dx
19. I
I
2 2
t 2 x
t2 5 3
2 t dt 3
3x 5 2 t t2 5 dx . t dt 2 dt 2 [ 1 ] dt 2 x 3 t2 5 (t 5 ) (t 5 ) t 5 3 3x 5 5 5 dt dt dx 2t ( ) dt 2t 5 5 x t 5 t 5 t 5 t 5
114
3x 5 t 5 dx 2t 5 Ln t 5 5 Ln t 5 C 2t 5 Ln C x t 5
3x 5 dx 2 3x 5 5 Ln x
3x 5 5 3x 5 5
C
dx
1 x dx 1 x x
4t (1 t 2 ) 2
t .
1
dt
.
4t
1 t 2 (1 t 2 ) 2
dt
4t 2 (t 2 1) (t 2 1)
dt
1 t 2
22.
dx
x x 3
x t6
Hacemos :
t x 1/6
dx 6t dt
x 3 x dx
x x dx 3
23.
x 3 x
6t 5 t3 t2
dt
6t 3 6 dt ( 6t 2 6t 6 ) dt t 1 t 1
2 x 3 3 x 6 6 x 6 Ln 6 x 1 C x 1
(x 1) 2 3 x 1 dx Hacemos :
x 1 x 1 dx
t 3 x (t 3 1) 2
t 3 1 t 3 1
dt
x 1 1 6t 2 1 6t 3 dx . t . dt . (x 1) 2 x 1 t 3 1 2 2 (t 3 1) 2 dt ( t 3 1) 2 2 ( ) ( 1) t 3 1 t 3 1 1 x 1 3 3 3 4 3 x 1 4 (x 1) 2 3 x 1 dx 2 t dt 8 t C 8 3 ( x 1) C 1
24.
(t 1) (t 1) (t 2 1)
1 x dx 1 x x
t 2 x
1 t 2 1 t 2
C(2t) D A B t 1 t 1 t 2 1
A( t 1)(t 2 1) B(t 1)(t 2 1) C(2t)(t 1)( t 1) D(t 1)( t 1) 4t 2 (A B 2C)t 3 (A B D)t 2 (A B 2C)t (A B D) A B 2C 0 A B D 4 A 1, B 1, C 0, D 2 A B 2C 0 A B D 0
1 x dx 1 1 2 dt dt dt ( ) dt 2 2 1 x x t 1 t 1 t 2 1 t 1 t 1 t 1 1 x dx t 1 Ln t 1 Ln t 1 2 arc tg t C Ln 2 arc tg t C 1 x x t 1
1 x dx Ln 1 x x
1 x dx Ln 1 x x
25. I
x 3 2 x x 3 2 x
Hacemos : 1 x 1 x
dt
4t 2
3
Hacemos :
(t 1) (t 1) (t 1)
6t 2
4t 2
2
2t 3 3t 2 6t 6 Ln t 1 C
1
4t 2
5
dx
1 x dx 1 x x
1 x 1 1 x 1 x 2 arc tg C 1 x 1 x 1 1 x 1 x 1 x 1 x 1 x
2 arc tg
dx
2 x t3 dx 3t 2 dt
x t 3 2
1 x C 1 x
115
I I
(t 2) t 3
t3 2 t
. 3t 2 dt
3t 6t 6
3
t3 t 2
dt ( 3t 3 3t
3t 6t 2
t3 t 2
dx
) dt
3 4 3 2 3t 2 6t 3 3 3t 2 6t t t dt t 4 t 2 dt 4 2 4 2 t3 t 2 (t 1) (t 2 t 2)
(
B(2t 1) C A 2 (t 1) (t t 2) t 1 t2 t 2
I
3t 2 6t A(t 2 t 2) B(2t 1)(t 1) C(t 1) 3t 2 6t (A 2B)t 2 (A B C)t (2A B C) A 2B 3
A B C 6 A 3/4, B 15/8, C 27/8 2A B C 0 I I I
I I
arc tg (
2 3 2 x 1
4 7
26. I I
7
3
(x 1) 2 (x 1) 4
x 1 x 1
t 3 x
t 1 3
t 3 1
1) (
t 3 1
. t. 1)
6t 2 (t 3 1) 2
1
dt (
2t 3 t 3 1
.
)(
2 t 3 1
)
6t 3 (t 3 1) 2
dt
3 3 3 x 1 dt t C 3 C 2 2 2 x 1
x 2 1 x 3
1 x
x 2 1 x 3
1 x
x 1 x 2
3
1 x
x 2 1 x 3
1 x
x 1 x 2
3
1 x 1 3 dx (x 1) (x 1) x 1
Hacemos :
dx
t 3 1
t 3 1
dt
dx
1 x t 6
x t 6 1
dx 6t 5 dt
28.
)C
t 3 1
Hacemos :
3 4 3 2 3/4 15/8 (2t 1) 27/8 t t [ ] dt 4 2 t 1 t2 t 2 3 4 3 2 3 15 27 dt t t Ln t 1 Ln t 2 t 2 2 4 2 4 8 8 t t2 3 4 3 2 3 15 27 dt t t Ln t 1 Ln t 2 t 2 1 2 7 4 2 4 8 8 (t ) 2 4 3 4 3 2 3 15 27 2t 1 2 t t Ln t 1 Ln t t 2 arc tg ( )C 4 2 4 8 4 7 7 33 3 3 15 (2 x ) 4 3 (2 x ) 2 Ln 3 2 x 1 Ln 3 (2 x ) 2 3 2 x 2 4 2 4 8 27
27.
(t 3 1) 2
1
I
3t 2 6t
6t 2
1 x
dx
(t 6 1) 2 t 3 t
2
. 6t 5 dt (t 12 2t 6 1 t 3 ) . 6t 3 dt
dx (6t 15 12t 9 6t 6 6t 3 ) dt dx
3 16 6 10 6 7 3 4 t t t t C 8 5 7 2
dx
3 6 6 3 (1 x) 8/3 (1 x) 5/3 (1 x) 7/6 (1 x) 2/3 C 8 5 7 2
x 1 x 1 x 1 x 1
x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1
dx
dx dx dx dx
( x 1 x 1) ( x 1 x 1) ( x 1 x 1) ( x 1 x 1) x 1 2 (x 1) (x 1) x 1 x 1 x 1 2x 2 (x 1) (x 1) 2
dx
dx
dx [ x (x 1) (x 1) ] dx
1 2 1 x 1 x (x 1) (x 1) dx x 2 (x 1) dx 2 2 x 1
116
x 1 1 t t 2 x x 1 1 t 2 4t dx dt (1 t 2 ) 2
2
Hacemos :
x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1
dx dx
ut
Hacemos :
du dt
x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1
x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1
x 1 x 1
1 2 1 t 4t x ( 1) . t . dt 2 2 1 t (1 t 2 ) 2
x 1 x 1
2
2
dv v
t (1 t 2 ) 3 1
dx
1 2 2t dt t2 x 2 2 dt 2 (1 t 2 ) 2 1 t 2 (1 t 2 ) 2
v
(1 t 2 ) 2 1
dt
2 (1 t 2 )
dx
1 2 2t dt t dt x 2 2 2 2 2 2 (1 t ) 1 t 1 t 1 t 2
dx
1 2 2t t dt x 2 2 2 2 (1 t ) 1 t 1 t 2
dx
1 2 2t t dt x 2 2 2 2 (1 t) (1 t) (1 t ) 1 t
dx
1 2 2t t 1/2 1/2 x ( ) dt 2 2 2 2 1 t 1 t (1 t ) 1 t
dx
1 2 2t t 1 1 t x Ln C 2 2 2 2 2 1 t (1 t ) 1 t
dx
1 2 t (1 t 2 ) 1 1 t x Ln C 2 2 2 2 1 t (1 t )
x 1 x 1
x 1 x 1 x 1 x 1
x 1 x 1
29.
1 2 1 1 x x ( x 1) ( x 1) Ln 2 2 2
dx
1 2 1 1 x x x 2 1 Ln x x 2 1 C 2 2 2
x 1 x 1
5
x ( x x2 )
x t 10
5
2
A
x( x x )
1 t (t 1)
t x 1/10
dx 10t 9 dt 10t 9
dx
5
x 1 x 1
dx
dx
Hacemos :
x 1 x 1 x 1 (1 ) 1 1 x 1 x 1 x 1 Ln C x 1 2 2 x 1 (1 ) 1 x 1 x 1
1 dx x 2 2 x 1 x 1
4 (1 t )
(1 t 2 ) t 2 1 2 2t x 2 dt 2 (1 t 2 ) 2 (1 t 2 ) 2
1 2 2t t 1 1 x Ln 1 t Ln 1 t C 2 2 2 2 2 2 (1 t ) 1 t
x 1 x 1
dt
dx
dv
x 1 x 1
dx
2
2 2
t
x 1 x 1
1 2 2 4t 1 t x ( ) dt x 2 8 dt 2 2 2 2 2 1 t (1 t ) (1 t 2 ) 3
1 2 2t dt x 2 2 2 2 (1 t ) (1 t 2 ) 2
du dt
x 1 x 1
dx
ut
Hacemos :
x 1 x 1
t
5
B t
4
t
10
(t t )
C t
3
5
4
D t
2
dt 10
dt t (t 1) 5
E F t t 1
1 A(t 1) B(t)(t 1) C(t 2 )(t 1) D(t 3 )(t 1) E(t 4 )(t 1) Ft 5 1 (E F)t 5 (D E)t 4 (C D)t 3 (B C)t 2 (A B)t A EF0 D E 0 C D 0 A 1, B 1, C 1, D 1, E 1, F 1 B C 0 A B 0 A 1
C
117
1 1 1 10 ( 5 4 3 2 ) dt 5 2 t t 1 t t t t x( x x ) dx 5 10 5 10 4 3 2 10 Ln t 10 Ln t 1 C 5 t 2t 3t t x ( x x2 ) dx
1
1
dx 5
x( x x ) 2
dx 5
x( x x ) 2
5
2t
4
3t
5
5
2 x
10
2
3
1
5
t
2
10
3
10
x
3
5
x
10 10
10 Ln
x
10 10
x
x 1
C
x x 1 x 1 3
I
2t 3 t2 t
33. I
6
x
1 x 3
t 6 x 1
dx 6t 5 dt I
t 6 1
6t 9 6t 3 . 6t 5 dt dt t 1 t3 t2
I ( 6t 8 6t 7 6t 6 6t 5 6t 4 6t 3 ) dt I I
2 9 3 8 6 7 6 6 5 3 4 t t t t t t C 3 4 7 5 2 2 3 6 6 3 (x 1) 3/2 (x 1) 4/3 (x 1) 7/6 ( x 1) (x 1) 5/6 (x 1) 2/3 C 3 4 7 5 2
31. I
dx (2x 1)
2/3
(2x 1)1/2
2x 1 t 6
Hacemos :
t 6 2x 1
dx 3t 5 dt I I
3t
5
t t 4
3
dt
2
3t 3 3 dt ( 3t 3 ) dt t 2 3t 3 Ln t 1 C t 1 t 1 2
3 (2x 1)1/3 3 (2x 1)1/6 3 Ln 6 2x 1 1 C 2
32. I
dx 1 2x 4 1 2x
dt
2t 2 2 dt ( 2t 2 ) dt t 2 2t 2 Ln t 1 C t 1 t 1 4 1 2x
1 C
dx
x t6
t x 1/6
dx 6t 5 dt
dx
x 1 t 6
Hacemos :
t 4 1 2x
dx 2t 3 dt
Hacemos : 30. I
I 1 2x 2 4 1 2x 2 Ln
10 t 10 Ln C t t 1 5
1 2x t 4
Hacemos :
I I
t
. 6t 5 dt
6t 6
dt ( 6t 4 6t 2 6
6
) dt 1 t 1 t 1 t 2 6 5 66 5 t 2t 3 6t 6 arc tg t C x 2 x 6 6 x 6 arc tg 6 x C 5 5
34. I
2
2
dx x (1 2 x 3 x )
Hacemos :
x t6
t x 1/6
dx 6t 5 dt 6t 5 dt dt I dt 6 6 6 3 2 3 2 t (1 2t t ) t (2t t 1) t (t 1) (2t 2 t 1) C(4t 1) D 1 A B 2 t t 1 t (t 1) (2t t 1) 2t 2 t 1 1 A(t 1)(2t 2 t 1) B(t)(2t 2 t 1) C(4t 1)(t)(t 1) D(t)(t 1) 1 (2A 2B 4C)t 3 (A B 3C D)t 2 (B C D)t A 2A 2B 4C 0 A B 3C D 0 A 1, B 1/4, C 3/8, D 1/8 BCD 0 A 1 1 1/4 3/8 (4t 1) 1/8 I 6 [ ] dt t t 1 2t 2 t 1
118
3 9 3 dt I 6 Ln t Ln t 1 Ln 2t 2 t 1 2 2 4 4 2t t 1 3 9 3 dt I 6 Ln t Ln t 1 Ln 2t 2 t 1 1 7 2 4 8 (t ) 2 4 16 3 3 3 3 4t 1 I Ln t 8 Ln (t 1) 2 Ln (2t 2 t 1) 3 arc tg ( )C 4 4 4 2 7 7 3 t8 3 4t 1 I Ln arc tg ( )C 2 2 3 4 2 7 7 (t 1) (2t t 1) 3 x x 3 4 x 1 I Ln arc tg ( )C 2 3 6 3 6 4 2 7 7 ( x 1) (2 x x 1) 3
35. I I
dx n
( n : número natural )
(x a) n 1 (x b) n 1
1 xb n dx (x a) (x b) x a
xb x a
Hacemos :
dx
n (b a) t
(
b at n 1 t n
a) (
1 t n
1
I [
ba
][
(b a) t n
1 t 1 t n n xb C ba x a n
n
. ]
XIII.INTEGRALES DE LA FORMA
x 2 4x 2 x 4 1 Hacemos : x u
dx x 2 4x 2 x 4 dx x
2
4x 2 x 4 dx
x
2
4x x 4 dx
x
2
4x x 4
2
2
2u
b at n
du
1 t n
n 1
(1 t n ) 2 b at n
dx
Hacemos :
t n x
1
I
I
6
1.
du
u2 du
1
u2 1/8 (8u 1) 1/8
1
8
u u2 du 2 4 1 4u u 4 4 u2 u
4u 2 u 4 8u 1 4u u 4 2
du du
1 1 4u 2 u 4 4 8
n (b a) t n 1
b) n (b a) t n (1 t n ) 2
(1 t n ) 2 dt
dt
n n dt tC ba ba
dx (x a) px 2 qx r
, nN
dx
1 1 4u 2 u 4 2 2 4 8 x 4x x 4 dx x 2 4x 2 x 4 dx x 2 4x 2 x 4 dx x
2
4x x 4 dx
x
2
4x x 4
2
2
1 du 8 4u 2 u 4 du 1 63 (2u ) 2 4 16
1 63 tg θ 4 4 63 sec 2 θ dθ 8
dt
. t.
dx
63 sec 2 θ 8 dθ 63 2 63 tg θ 16 16
1 1 sec 2 θ 4u 2 u 4 dθ 4 16 tg 2 θ 1
1 1 sec 2 θ 4u 2 u 4 dθ 4 16 sec θ
1 1 4u 2 u 4 sec θ dθ 4 16
1 1 4u 2 u 4 Ln sec θ tg θ C1 4 16
119
2.
dx x 2 4x 2 x 4 dx x
2
4x x 4 2
dx x 2 4x 2 x 4 dx x 2 4x 2 x 4
1 1 4 4u 2 u 4 8u 1 4u 2 u 4 Ln C1 4 16 63 63
1 1 1 4u 2 u 4 Ln 2u 4u 2 u 4 C 4 16 4
1 4
4 x
2
1 1 2 1 4 1 4 Ln 4 C x 16 x 4 x2 x
4x 2 x 4 1 x 8 4x 2 x 4 Ln C 4x 16 4x x
dx (x 2) x 2 3x 9
x 2
Hacemos :
1 u
dx
dx (x 2) x 2 3x 9 dx (x 2) x 3x 9 2
u
Hacemos :
u2
3.
dx (x 2) x
2
dx (x 2) x 2
u2 1 1 1 ( 2) 2 3 ( 2) 9 u u u du
du u 2 7u 1
dx (x 2) x 3x 9 2
dx (x 2) x 2 3x 9 dx (x 2) x 2 3x 9 dx (x 2) x 2 3x 9
45 sec θ 2
Ln
2u 7
2 u 2 7u 1
45
45
C1
Ln 2u 7 2 u 2 7u 1 C Ln
2 1 2 7 72 ( ) 1 C x2 x2 x2
Ln
7 x 12 2 x 2 3x 9 C x2 x2
Ln
7 x 12 2 x 2 3x 9 C x2
x 3
dx x 2 3x 2 2x 1 1 du Hacemos : x dx u u2
7 45 (u ) 2 2 4
45 sec θ tg θ dθ 2 45 sec θ tg θ sec θ tg θ 2 dθ dθ 45 45 3x 9 sec 2 θ 1 sec 2 θ 4 4 sec θ tg θ dθ sec θ dθ Ln sec θ tg θ C1 tg θ 3x 9
du
7 2
(x 2) x 2 3x 9
du du
dx
x 3 x 2 3x 2 2x 1 x 3
x2
dx
1
u2 3/2 (2u 2) 2
du u 2 2u 3 3 2u 2 du dx du 2 2 3x 2 2x 1 u 2 2u 3 u 2 2u 3 x 3 du dx 3 u 2 2u 3 2 2 3x 2x 1 (u 1) 2 2
x 2 3x 2 2x 1 x 3 x2
dx
1 3 du 3u 1 u . du 2 2 3 2 u u 2u 3 1 u2 u
u 1 2 tg θ
Hacemos :
du 2 sec 2 θ dθ
x 3 x 2 3x 2 2x 1
dx 3 u 2 2u 3 2
2 sec 2 θ 2 tg 2 θ 2
dθ
120
4.
x 3 x 2 3x 2 2x 1 x 3
x2 x2 x2
3x 2x 1
2
2
x 3 x
3x 2x 1
2
2
x 3 x 2 3x 2 2x 1 x 3 x 2 3x 2 2x 1 3
x x3 x4
5.
3
xx x
3
tg 2 θ 1
Hacemos :
dθ
3
4
x x3 x4
dx 3 u 2 2u 3 2 Ln
u 2 2u 3 2
dx
(x 1) 4 x 2
1 x
dx
2
1 u
dx
du u2
u2 1 1 ( 1) 2 4 u u
u4 (1 u) 2
du
dx 4 1 2 (x 1) 4 x 2 [ u 2u 3 1 u (1 u) 2
u 1 2
] du
dx 1 3 1 2 (x 1) 4 x 2 3 u u 3u 4 Ln 1 u 1 u C
C1
dx 1 1 (x 1) 4 x 2 3 (x 1) 3 ( x 1) 2
2 1 1 2 3 2 Ln 1 3 C 2 x x x x
3 3x 2 2x 1 x 1 3x 2 2x 1 2 Ln C x x
3 1 4 Ln 1 x 1 x 1
1
1 1 x 1 dx 1 1 3 x x 1 (x 1) 4 x 2 3 (x 1) 3 ( x 1) 2 x 1 4 Ln x 1 x C
dx 3 u 2 2u 3 2 Ln u 1 u 2 2u 3 C dx 3
x 1
du
2
x 3 x
sec θ
sec 2 θ dx 3 u 2u 3 2 dθ sec θ 3x 2 2x 1 x 3 dx 3 u 2 2u 3 2 sec θ dθ 2 3x 2x 1 x 3 dx 3 u 2 2u 3 2 Ln sec θ tg θ C1 2 3x 2x 1
XIV.
INTEGRALES DE LA FORMA
CASO I: Si c 0 Hacemos:
R ( x,
C
ax 2 bx c ) dx
ax 2 bx c tx c
dx x
Hacemos :
dx 3 u 2 2u 3 2
2
1 u
dx
u 3
dx
du
1 1 u u 3 du 1 u2 4 u
6.
2
1
3 u 2 1 u du 3 u 2 1 2u du 2
3 3 1 3 1 x 2 4/3 dx (u 2 1) 4/3 C ( 1) 4/3 C ( ) C 8 8 x2 8 x2
dx x 2x 2 x 1
Hacemos :
2x 2 x 1 tx 1
2x 2 x 1 1 x
2x 2 x 1 t 2 x 2 2 tx 1 (2 t 2 ) x 2 (1 2t ) x 0 2t 1 x 2 t2 2x 2 x 1 t (
dx
(x 1) 4 x 2
t
dx
2 ( t 2 t 2) (2 t 2 ) 2
2t 1 2 t2 dt
) 1
t2 t 2 2 t2
121
dx x 2x 2 x 1 dx x 2x x 1 2
dx x 2x 2 x 1
1
(
2t 1 2 t2
)(
2 (t t 2) 2
t2 t 2 2 t2
. )
(2 t 2 ) 2
dt
2 dt 2t 1
8.
2x x 1 1 ) 1 C x 2
Ln 2t 1 C Ln 2 (
dx x x 2 3x 2
2 2x 2 x 1 2 x C x
7.
ax bx c a x t
x 2 3x 2
x x x 1 2
x 2 x 1 x t
x
t x 2 x 1 x (1 2t)x (1 t 2 ) 0
t 2 1 1 2t
t 2 1 t 2 t 1 x x 1 t 1 2t 1 2t dx
dx
2 ( t 2 t 1) (1 2t) 2
dt
1
.
2 ( t 2 t 1)
dt 2
dt
t 2 1 t 2 t 1 (1 2t) 2 t 2 1 )( ) 1 2t 1 2t dx 2 1 1 dt dt dt ( ) dt 2 (t 1) (t 1) t 1 t 1 t 1 t 1 x x x 1 dx t 1 Ln t 1 Ln t 1 C Ln C 2 t 1 x x x 1 x x 2 x 1
dx x x 2 x 1
dx x x 2 3x 2
2t
2 t2 1 t
1)
2
1
(
t 1 t 2
dt
(1 t 2 ) 2 2t
2
1 t
2
dx
)(
. t 1 t
2
)
2t (1 t )
2 2
x x 3x 2 dx 2
x x 2 3x 2 dx x x 2 3x 2
dt
2
(t 2 ) (t 2 )
1
1
dt
2 t
x 2 x 1 x 1 x 2 x 1 x 1
C
dx
2
x x 2 3x 2
9. I
1
dx x
2
x 2x 4 2
2
1
2
Ln t 2
(
Ln
t(
dt 2
1
2
1 t 2
dx
x 2 x 1 x 2 2tx t 2
2 t2
2
dx
Hacemos :
x2 x 1
x 2 t 2 (x 1) (1 t 2 )x (t 2 2) 0 x
CASO II: Si a 0 Hacemos:
(x 2) (x 1) t (x 1) t
x 2 3x 2
Hacemos :
Ln
ax 2 bx c t ( x r)
CASO III: Si ax 2 bx c tiene dos raíces reales r y s Hacemos:
Ln
dt t 2 2
1
2 ( 2 2 2 2 ) dt t 2
t 2
dt
2 t 1 2
2
Ln t 2 C
x2 2 1 x 1 C Ln x2 2 2 x 1
1 2
Ln
t 2 t 2
x 2 2 (x 1) x 2 2 (x 1)
C
C
122
Hacemos :
x 2 2x 4
x 2x 4 2 x 2
tx 2 t
x 2 2x 4 t 2 x 2 4tx 4 (1 t 2 )x 2 (2 4t)x 0
x
1 u
dx
du
u2 du
u u2 du 2 1 1 2 x 2 x 2 2x 4 4u 2u 1 4 u2 u2 u 1/8 (8u 2) 1/4 dx du 2 2 x x 2x 4 4u 2 2u 1 dx 1 8u 2 1 du du 2 2 2 2 8 4 x x 2x 4 4u 2u 1 4u 2u 1 dx 1 1 du 4u 2 2u 1 2 2 4 4 1 3 x x 2x 4 (2u ) 2 2 4 1 3 Hacemos : 2u tg θ 2 2 3 du sec 2 θ dθ 4 3 sec 2 θ dx 1 1 2 4 4u 2u 1 dθ 2 2 4 4 3 2 3 x x 2x 4 tg θ 4 4
dx
1 1 3 2 1 3 1 I dt [ ] dt t Ln 2t 1 C 2 8 8 (2t 1) 2t 1 8 16 (2t 1) 8
dx
1 1 sec 2 θ 4u 2 2u 1 dθ 4 8 tg 2 θ 1
x 2 2x 4 2 I 8x
1 1 sec 2 θ 4u 2 2u 1 dθ 4 8 sec θ
1 1 4u 2 2u 1 sec θ dθ 4 8
1 1 4u 2 2u 1 Ln sec θ tg θ C1 4 8
1 1 2 4u 2 2u 1 4u 1 4u 2 2u 1 Ln C1 4 8 3 3
x
2 (2t 1) 1 t 2
x 2 2x 4 dx
t(
4 (t 2 t 1) (1 t 2 ) 2 1
I
4t 2 1 t 2
)2
2 (t 2 t 1) 1 t 2
dt
.
4 (t 2 t 1)
dt
I
1 1 t 2 dt 2 (2t 1) 2
2 (2t 1) 2 2 (t 2 t 1) (1 t 2 ) 2 ] [ ] 1 t 2 1 t 2 1 1 t 5/4 1 1 4t 5 [ ] dt dt dt 2 4 (2t 1) 2 8 8 (2t 1) 2 [
4t 5
A
(2t 1) (2t 1) 4t 5 A B(2t 1) 4t 5 2Bt (A B) 2
2
B 2t 1
2B 4 A 3, B 2 A B 5
3 2 x 2 2x 4 4 16 ( 1) x
1 2 x 2 2x 4 4 Ln 1 C 8 x
x 2 2x 4 2 3x 1 x 4 2 x 2 2x 4 I Ln C 8x x 16 (x 4 2 x 2 2x 4 ) 8 10.
Hacemos :
dx x 2 x 2 2x 4
x 2 x 2 2x 4 dx x 2 x 2 2x 4 dx x
2
x 2x 4 dx
x
2
x 2x 4
2
2
dx x 2 x 2 2x 4
123
x2
1 1 4u 2 2u 1 Ln 4u 1 2 4u 2 2u 1 C 4 8 x 2 2x 4 dx
x 2 x 2 2x 4
1 4
4 x2
2 1 4 4 2 1 Ln 1 2 1 C x 8 x x2 x
x 2 2x 4 1 4 x 2 x 2 2x 4 Ln C 4x 8 x x x 2 2x 4 dx
x
2
x2
dx
x x 2x 3 2
Hacemos :
x t t x 2x 3 x x 2 x 3 x 2 2tx t 2 (2 2t)x (3 t 2 ) 0 x 2x 3 2
2
2
x
dx
12.
dx x x 2x 3 2
dx x x 2 2x 3
t2 3 2 (1 t)
x 2 2x 3
t2 3 t 2 2t 3 t 2 (1 t) 2 (1 t)
t 2 2t 3 2 (1 t) 2
t 3 t 2t 3 [ ][ ] 2 (1 t) 2 (1 t) 2
2
arc tg (
2
t
3
3
)C
2 3
.
t 2 2t 3 2 (1 t)
arc tg (
2
dt 2
dt t 3 2
x 2 2x 3 x 3
)C
x x 2x 3 2
dx x x 2x 3 2
13.
dx
du u2
1 u 1 3
u2 1 2 3 u2 u du
du 1 2u 3u
2
1 3
du 1 2 u u2 3 3
4 1 (u ) 2 9 3
1 2 sen θ 3 3 2 du cos θ dθ 3 u
2 cos θ 1 cos θ 3 dθ dθ 2 2 3 4 4 3 2 x x 2x 3 1 sen θ sen θ 9 9 dx 1 cos θ 1 1 dθ dθ 3 θ C 2 cos θ 3 3 x x 2x 3 3 1 dx 1 3u 1 1 x arc sen ( )C arc sen ( )C 2 2 3 3 x x 2 2x 3 dx 1 3 x arc sen ( )C 2 2x 3 x x 2x 3 dx
1
dx (x 1) x 2 3x 2
Hacemos :
x 2 3x 2
(x 2) (x 1) t (x 1) t
x 2 t 2 (x 1) (1 t 2 )x (t 2 2) 0 x
dx
x x 2 2x 3 1 Hacemos : x u
dt
1
dx
Hacemos :
x 2 2x 4 1 4 x 2 x 2 2x 4 Ln C 4x 8 x x 2 2x 4 dx
11.
du
dx
2 t2 1 t 2
x 2 3x 2
t(
2 t2 1 t
2
1)
t 1 t 2
x2 x 1
124
dx
2t (1 t )
2 2
dx
1
(x 1) x 3x 2 2
(
dx
2t
2
1 t 2
.
1) (
t 1 t 2
1
(x 1) x 2 3x 2
Hacemos :
dt
(
1
)(
.
t
1 t 2 1 t 2 dx x2 2 C 2 x 1 (x 1) x 3x 2
14.
)
2t (1 t 2 ) 2 2t
2 2 ) (1 t )
dt
I2
dt 2 dt 2t C
I2 I2
dx
I2
(x 1) x 2 3x 2
x 1
Hacemos :
1 u
dx
du
I2
u2
du
dx
(x 1) x 3x 2 2
dx
2 x x2
I
x2
I2
I2
2 x x2 dx
du 1 u
1 x2 C 2 C x 1 x 1
du 1 u
I2
dx x2
dx
x2
2 x x2 dx
x2
2 x x2
dx x 2 x x2 dx
x 2 x x2
dx 2 x x2 dx
9 1 (x ) 2 4 2
2 x x2 dx
x2
2 x x2 dx
x2
2 x x2 dx
x2
2 x x2 dx
x2
2 x x2 dx
3 cos θ 2 dθ 9 9 2 x 2 x x2 sen θ 4 4 dx cos θ dθ x 2 x x2 1 sen 2 θ dx cos θ dθ cos θ x 2 x x2 dx dθ x 2 x x2 dx θ x 2 x x2 dx 2x 1 arc sen ( ) 3 x 2 x x2 dx
2 x x2 1 du Hacemos : x dx u u2 x2
du
du
2x 1 u2 arc sen ( ) 3 1 1 1 1 1 1 2 2 u u2 u u u2 u2 u du 2x 1 I 2 du arc sen ( ) 2 2 3 2u u 1 2u u 1 1/4 (4u 1) 1/4 du 2x 1 I 2 du arc sen ( ) 2 2 3 2u u 1 2u u 1 I 2
dx
2 x x2 x2
1 1 1 ( 1) 2 3 ( 1) 2 u u u
2 1 u C 2 1
(x 1) x 2 3x 2
15. I
u2
1 3 sen θ 2 2 3 dx cos θ dθ 2 x
u
2
1 4u 1 1 du 2x 1 du arc sen ( ) 2 2 2 2 3 2u u 1 2u u 1 1 du 2x 1 I 2u 2 u 1 arc sen ( ) 3 2 2 1 1 u2 u 2 2 I
125
I 2u 2 u 1
1 2
2
2x 1 arc sen ( ) 3 1 2 9 (u ) 4 16 du
I 2u 2 u 1 I 2u 2 u 1
x I
x 2
1
Ln
2 2 1
Ln
dx (x 2) x 4x 1 2
dx (x 2) x 2 4x 1
1
du
1
Hacemos :
2 2
1 1 1 Ln x 2 2
2 x x2 1 Ln x 2 2
2 x x2 2 I Ln x 4
4u 1 2 2
arc sen (
2 x x2 4x 2x 1 arc sen ( )C x 3 2 2x 2 x x2 2 2 2x 1 arc sen ( )C x 4 3
du u2
u
dx (x 2) (x 2) 3
2
1
3
u2 1
1 u
u
2
3
1 u2 3
sen θ cos θ dθ
3
(x 2) x 2 4x 1
dx (x 2) x 4x 1 2
1 1 x x 2 x 1 x x 2
1 1 x x 2 x 1 x x 2 1 1 x x 2 x 1 x x 2
1 3u 2
3
dx
17.
du
du
1
1
3
cos θ
3
1
dθ
3
cos θ
1 1 1 sen 2 θ sen 2 θ 3 3 dx 1 cos θ 1 1 dθ dθ θC 3 cos θ 3 3 (x 2) x 2 4x 1
2x 1 )C 3
4 1 2 1 2x 1 1 x arc sen ( )C 2 x 3 2 2 x
dx
1
4u 1 2 2 2u 2 u 1 2x 1 arc sen ( ) C1 3 3 3 2u 2 u 1
1 u
du
2x 1 I 2u u 1 sec θ dθ arc sen ( 3 ) 2 2 1 2x 1 I 2u 2 u 1 Ln sec θ tg θ arc sen ( ) C1 3 2 2
2
(x 2) x 2 4x 1
1
2
2
dx
Hacemos :
1 3 Hacemos : u sec θ 4 4 3 du sec θ tg θ dθ 4 3 sec θ tg θ 1 2x 1 4 I 2u 2 u 1 dθ arc sen ( ) 3 2 2 9 9 2 sec θ 16 16 sec θ tg θ 1 2x 1 I 2u 2 u 1 dθ arc sen ( ) 3 2 2 sec 2 θ 1 sec θ tg θ 1 2x 1 I 2u 2 u 1 dθ arc sen ( ) tg θ 3 2 2
I
16.
3
arc sen ( 3u) C
1
arc sen (
3
3 )C x2
dx
dx dx
dx x 1 x x 2 dx x 1 x x 2
1 x x 2 x 1 x x 2
dθ
dx
dx dx Ln x x x 1 x x 2
126
1 1 x x
2
x 1 x x 2
Hacemos :
x
dx Ln x
1 u
dx
dx
x 1 x x 2 du
u2
1 1 x x 2 x 1 x x 2 1 1 x x 2 x 1 x x
du
1 1 x x
2
x 1 x x 2 1 1 x x 2 x 1 x x 2
Hacemos :
dx Ln x
du
1 1 x x
x 1 x x 2 1 1 x x 2 x 1 x x 2 1 1 x x 2 x 1 x x 2 1 1 x x
2
x 1 x x 2 1 1 x x 2 x 1 x x 2 1 1 x x
2
x 1 x x 2
Ln x
du u 2 u 1
1 3 (u ) 2 2 4
3 tg θ 2
3 sec 2 θ dθ 2
3 sec 2 θ sec 2 θ 2 dθ Ln x dθ 2 3 2 3 tg θ 1 tg θ 4 4
dx Ln x
dx Ln x
18.
du
dx Ln x
1 u 2
2
u2 1 1 1 1 u u u2
2 u u 1 3
x 1 x x 2
1 1 x x 2 x 1 x x 2 1 1 x x 2 x 1 x x 2 1 1 x x 2 x 1 x x 2
dx Ln x 2 2 1 x x 2 C
dx
dx dx
3
C1
1 x x 2
1 x x 2
dx Ln x Ln 2u 1 2 u 2 u 1 C 2 1 1 dx Ln x Ln 1 2 1 C x x2 x
x 1 x x 2 dx x 1 x x 2
dx Ln x
dx
2u 1
dx
1 x x 2 x 1 x x 2
dx
dx dx Ln x x x 1 x x 2
dx x 1 x x 2
1 x x 2 1 x
tx 1 t
1 x x 2 t 2 x 2 2 tx 1 (1 t 2 ) x 2 (1 2t ) x 0 1 2t x t 2 1
dx Ln x Ln sec θ tg θ C1 dx Ln x Ln
1 1 x x 2
Hacemos :
sec 2 θ dθ Ln x sec θ dθ sec θ
2
2
x 2 2 1 x x 2 C x
dx Ln x Ln
1 1 x x 2 x 1 x x 2 1 1 x x 2 x 1 x x 2 1 1 x x 2 x 1 x x 2
t(
1 2t t 2 1
2 ( t t 1)
) 1
t 2 t 1 t 2 1
2
( t 2 1) 2
dt 1
dx Ln x ( dx Ln x 2
1 2t t 2 1 dt 1 2t
dx Ln x Ln 1
)(
t 2 t 1 t 2 1
. )
2 ( t 2 t 1) (t 2 1) 2
Ln x Ln 1 2t C
2 1 x x 2 2 C x
dt
127
1 1 x x
x 1 x x 2 1 1 x x 2 x 1 x x 2
19.
2
dx Ln
x 2 2 1 x x 2 x2
C
C
dx (1 x) 1 x x 2
Hacemos : 1 x
x 2 2 1 x x x
dx Ln x Ln
2
dx (1 x) 1 x x 2 dx (1 x) 1 x x 2
Hacemos :
u
1 2
1 u
dx
u2 1 1 1 1 ( 1) ( 1) 2 u u u du
du
(1 x) 1 x x 2 dx (1 x) 1 x x 2
(1 x) 1 x x 2 dx
Hacemos :
1 x 2 1 x x 2 C x 1
2u 1 3
C1
C
1 x 2 1 x x 2
t x t 1 x x 2 x 1 x x 2 t 2 2tx x 2 (2t 1)x (1 t 2 ) 0 t 2 1 2t 1
1 x x 2
x 1
1 x x 2
dx
3
Ln
(1 x) 1 x x 2
1 3 (u ) 2 2 4
2 u 2 u 1
2 1 2 1 1 2 ( ) 1 C 1 x 1 x 1 x
dx
3 tg θ 2
Ln
Ln
Ln
(1 x) 1 x x 2
u 2 u 1
3 sec 2 θ dθ 2 3 sec 2 θ dx sec 2 θ sec 2 θ 2 dθ dθ 3 2 sec θ dθ 3 2 (1 x) 1 x x 2 tg θ 1 tg θ 4 4 dx sec θ dθ Ln sec θ tg θ C1 (1 x) 1 x x 2
dx
2
dx
x
du
(1 x) 1 x x
20.
2
u du
du
dx
t
2 ( t 2 t 1) (2t 1) 2
dx (1 x) 1 x x 2 dx
t 2 1 t 2 t 1 2t 1 2t 1 dt
1 t 2 1 t 2 t 1 (1 )( ) 2t 1 2t 1
1
2 ( t 2 t 1) (2 t 1) 2
2 ( t 2 t 1)
dt
dt t 2 2t t 2 t 1 (2 t 1) 2 ( )( ) 2t 1 2t 1 dx dt dt 1/2 1/2 2 2 2 2( ) dt t (t 2) t t2 t 2t (1 x) 1 x x 2
Ln 2u 1 2 u 2 u 1 C
(1 x) 1 x x 2
dx (1 x) 1 x x
2
dx (1 x) 1 x x 2
.
.
Ln t Ln t 2 C Ln Ln
x 1 x x 2 x 2 1 x x 2
t C t2
C
128
21.
dx x x 2 1
dx x x 1 dx
x x 2 1
dx
x x 2 1 x 2 x 2 1
(x x 1) ( x x 1) 1 (x x 2 1) dx x 2 x 2 1 dx 2 2 x x 1 2
2
2
x 1 (x 1) (x 1)
x 1 x 1
x 1 t 2 (x 1) (1 t 2 )x (t 2 1) 0 x
dx
t 2 1 t 1 2
4t ( t 1) 2
2
Hacemos :
1 2
x2 8
1)
ut
( t 2 1) 3
dv
dx x x 2 1 dx x x 2 1 dx x x 2 1
1 2
x2
x x 2 1
t 1
dx
2
1 2
x2 1 2
x2
( t 2 1) 2 2t ( t 2 1) 2 2t ( t 1) 2
2
x x 2 1 dx x x 2 1
dt
t
dt (t 2 1) 3 1 v 2 4 (t 1) 2
2t
2
2t
dt
t2
du dt
1 2t 4t 1 8t 2 x 2 2 . 2 2 dt x 2 2 3 dt 2 t 1 ( t 1) ( t 1) x x 2 1 2 x x 2 1
dx
t 2 1
dx
dx
x x 1 2
x x 1
dx
x x 1 dx 2
t 2 1
x 2 1 t (
dx
2 2 2
dt ( t 2 1) t 2 ( t 2 1) 2 dt t 1 2
2
dt t2
( t 1) 2
2
dt
dx x x 2 1 dx x x 2 1
22.
( t 2 1) 2
dt (t 1) 2 1 v 2 2 (t 1)
1 2
(t 1)
1 2
(t 1)
x2 x2 1 2
x2 1 2
x2 1 2
x2
t
dv
du dt
dx
t (x 1) t
2
Hacemos :
ut
Hacemos :
2t 2
2
2t 2
2
t (t 1) 2
(t 1) 2
2
t (t 2 1) (t 1) 2
2
t (t 2 1) (t 1) 2
2
2
dt
2
t 1 2
t t 1 2
(
t t 1 2
dt t 1 2
dt t 1 2
1/2 1/2 ) dt t 1 t 1
1 1 Ln t 1 Ln t 1 C 2 2
1 t 1 Ln C 2 t 1
x 1 x 1 ( 1) 1 x 1 x 1 Ln x 1 2 ( 1) 2 x 1
1 2 x 2
1 2
1 2
1 2
1 2
1 2
1 2
x 2 x x 2 1 Ln
x 1 1 x 1 C x 1 1 x 1
x 1 x 1 x 1 x 1
x 2 x x 2 1 Ln x x 2 1 C
(1 1 x x 2 ) 2 x 2 1 x x 2
(1 1 x x 2 ) 2 x 2 1 x x 2 (1 1 x x 2 ) 2 x 2 1 x x 2
dx
dx
11 x x 2 2 1 x x 2
dx
x 2 x 2 2 1 x x 2
x 2 1 x x 2 x 2 1 x x 2
dx
dx
C
129
(1 1 x x )
2 2
x 2 1 x x 2 (1 1 x x 2 ) 2 x
2
1 x x
Hacemos :
2
1 x 2 dx
x 2 1 x x 2 (1 1 x x 2 ) 2 x
1 x x
2
(1 1 x x 2 ) 2 x 2 1 x x 2 (1 1 x x )
2 2
x 2 1 x x 2 (1 1 x x 2 ) 2 x 2 1 x x 2 (1 1 x x 2 ) 2 x 2 1 x x 2
Hacemos :
x
1 u
(1 1 x x 2 ) 2 x 2 1 x x 2
dx
x2 x 2 1 x x 2 x2 x
2
1 x x
2
dx dx
dx 1 x x 2
2
dx
1 3 (x ) 2 2 4
dx x
2
2 x
3 tg θ 2
3 sec 2 θ dθ 2
(1 1 x x 2 ) 2
2
dx
dx
dx
dx dx dx dx
x2 x 2 1 x x 2 x2 x
2
1 x x
2
x2 x 2 1 x x 2 x2 x 2 1 x x 2 x2 x 2 1 x x 2 x2 x 2 1 x x 2
dx
dx
dx
dx
3 sec 2 θ 2 2 dθ x 3 2 3 tg θ 4 4
sec 2 θ
2 dθ x tg 2 θ 1
23.
sec 2 θ 2 dx dθ sec θ x dx sec θ dθ
(1 1 x x 2 ) 2 x
2
1 x x
2
(1 1 x x 2 ) 2 x
2
1 x x
2
(1 1 x x 2 ) 2 x 2 1 x x 2 (1 1 x x 2 ) 2 x 2 1 x x 2
dx
2 2u 1 Ln 2x 1 2 1 x x 2 du x u 2 u 1
dx
2 Ln 2x 1 2 1 x x 2 2 u 2 u 1 C x
dx
2 1 1 Ln 2x 1 2 1 x x 2 2 1 C x x2 x
dx
2 2 1 x x 2 Ln 2x 1 2 1 x x 2 C x x
dx
(1 1 x x 2 ) 2 x 2 1 x x 2
2 ( 1 x x 2 1) Ln 2x 1 2 1 x x 2 C x
dx
1 x x 2
tx 1 t
1 x x 2 1 x
1 x x 2 t 2 x 2 2 tx 1 (1 t 2 ) x 2 (1 2t ) x 0 2t 1 x 1 t 2
2 x
2 1 x x 2 3
x 2 1 x x 2
Hacemos :
dx Ln sec θ tg θ
dx Ln
(1 1 x x 2 ) 2
1 x x 2
2 x
2x 1 3
2 x
dx
t(
2t 1 1 t 2
2 ( t 2 t 1) (1 t 2 ) 2
) 1
t 2 t 1 1 t 2
dt
t 2 t 1 2 ) 2 (1 1 x x 2 ) 2 2 (t 2 t 1) 1 t dx . 2 2t 1 t 2 t 1 (1 t 2 ) 2 dt x 1 x x 2 ( )2 ( ) 1 t 2 1 t 2 (1
du u2
2 Ln 2x 1 2 1 x x 2 x 1 u2
1 2 du u . 1 1 u2 1 u u2
t 2t 2 2 ) (1 1 x x 2 ) 2 2 (t 2 t 1) 1 t 2 dx . dt 2 2t 1 2 t 2 t 1 (1 t 2 ) 2 x 1 x x 2 ( ) ( ) 1 t 2 1 t 2 (
130
(1 1 x x )
2 2
x 2 1 x x 2 (1 1 x x 2 ) 2 x 2 1 x x 2 (1 1 x x 2 ) 2 x 2 1 x x 2 (1 1 x x 2 ) 2 x 2 1 x x 2
dx 2 dx 2 dx 2
(t 2t )
2 2
(2t 1) 2 (1 t 2 )
dt 2
t 2 (1 4 t 4 t 2 ) (4t 2 4 t 1) (1 t 2 ) t2 1 t 2
dt 2 ( 1
t (1 2 t ) 2
2
(2t 1) 2 (1 t 2 )
dt 2
t 2 (4t 2 4t 1) (4t 2 4t 1) (1 t 2 )
1 t C 1 t
1 x x 2 1 (1 1 x x ) 2 ( 1 x x 1) x dx Ln C 2 2 x x 1 x x 1 x x 2 1 1 x 2 2
(1 1 x x 2 ) 2 x 2 1 x x 2
24. I
I
x 2 x 1 x x 2 x 1
x2 x
2
dx
1
2 ( 1 x x 2 1) x 1 x x 2 1 Ln C x x 1 x x 2 1
x
dx
dx x x 2 x 1 x x 2 x 1 x 1 dx I dx x 2 x 1 x x 2 x 1 1/2 (2x 1) 3/2 dx I dx x 2 x 1 x x 2 x 1 1 2x 1 3 dx dx I dx 2 2 x 2 x 1 x 2 x 1 x x 2 x 1 3 dx dx I x 2 x 1 2 1 3 x x 2 x 1 (x ) 2 2 4
3 tg θ 2
3 sec 2 θ dθ 2 3 sec 2 θ 3 dx 2 2 x x 1 dθ 2 2 3 2 3 x x x 1 tg θ 4 4
dt
I x 2 x 1
3 sec 2 θ dx dθ 2 tg 2 θ 1 x x 2 x 1
3 sec 2 θ dx dθ 2 2 sec θ x x x 1 3 dx I x 2 x 1 sec θ dθ 2 2 x x x 1 3 dx I x 2 x 1 Ln sec θ tg θ 2 2 x x x 1 I x 2 x 1
I x 2 x 1
dx
1 2
dx
I
1/2 1/2 ) dt 1 t 1 t
dx 2t Ln 1 t Ln 1 t C 2t Ln
Hacemos :
dt
3 2 x 2 x 1 2x 1 dx Ln 2 3 3 x x 2 x 1
3 dx Ln 2 x 1 2 x 2 x 1 2 2 x x x 1 1 du x dx u u2
I x 2 x 1 Hacemos :
du I x 2 x 1
u2 1 1 1 u2 u du
3 Ln 2 x 1 2 x 2 x 1 2 u 2 u 1 3 du x 2 x 1 Ln 2 x 1 2 x 2 x 1 2 1 3 (u ) 2 2 4
I x 2 x 1 I
3 Ln 2 x 1 2 x 2 x 1 2 1 u
131
1 u 2
Hacemos :
du
I x 2 x 1
I x 2 x 1
3 tg θ 2
3 sec 2 θ dθ 2 3 Ln 2x 1 2 x 2 x 1 2
3 sec 2 θ 2 dθ 3 2 3 tg θ 4 4
3 sec 2 θ Ln 2x 1 2 x 2 x 1 dθ 2 tg 2 θ 1
3 sec 2 θ Ln 2x 1 2 x 2 x 1 dθ 2 sec θ 3 x 1 Ln 2x 1 2 x 2 x 1 sec θ dθ 2 3 x 1 Ln 2x 1 2 x 2 x 1 Ln sec θ tg θ C1 2
I x 2 x 1 I x2 I x2 I
3 2 u 2 u 1 2u 1 x x 1 Ln 2x 1 2 x 2 x 1 Ln C1 2 3 3 2
I x 2 x 1 I
3 2 1 1 x 2 x 1 Ln 2x 1 2 x 2 x 1 Ln 1 2 1 C 2 x x2 x
I x 2 x 1
25.
3 Ln 2x 1 2 x 2 x 1 Ln 2u 1 2 u 2 u 1 C 2
x2 (x 1) x 2 1 x2
3 2 x 2 x x 1 Ln 2x 1 2 x 2 x 1 Ln C 2 x 2
(x 1) 3
(x 1) x 2 1 (x 1) x 2 1 Hacemos : x tg θ
dx sec 2 θ dθ
dx
dx x 2 1
3
dx
(x 1) x 1 2
x2 (x 1) x 2 x2 (x 1) x 2 x2 (x 1) x 2 x2 (x 1) x 2 x2 (x 1) x 2
dx
sec 2 θ tg θ 1 2
dθ 3
dx (x 1) x 2 1
sec 2 θ dx dθ 3 sec θ 1 (x 1) x 2 1 dx dx sec θ dθ 3 1 (x 1) x 2 1 dx dx Ln sec θ tg θ 3 1 (x 1) x 2 1 dx dx Ln x 2 1 x 3 1 (x 1) x 2 1 dx dx Ln x x 2 1 3 1 (x 1) x 2 1 dx
x 1
Hacemos :
1 u
dx
du u2 du
dx
dx
x2
x2 (x 1) x 2 1 x2 (x 1) x 1 2
x2 (x 1) x 2 1 x2 (x 1) x 1 2
x2 (x 1) x 1
(x 1) x 2 1
Hacemos :
2
dx Ln x x 2 1 3
dx Ln x x 2 1 3 dx Ln x x 2 1 3 dx Ln x x 2 1
dx Ln x x 2 1
1 1 tg θ 2 2 1 du sec 2 θ dθ 2 u
3 2 3 2
u2 1 1 ( 1) 2 1 u u du (u 1) 2 u 2 du 2u 2 2u 1 du
u2 u
1 2
du 1 1 (u ) 2 2 4
132
x2 (x 1) x 1 2
x2 (x 1) x 2 1
dx Ln x x 2 1
dx Ln x x 2 1
x2
3 2 3 2
1 sec 2 θ 2 dθ 1 2 1 tg θ 4 4
2
sec θ tg 2 θ 1
dθ
sec 2 θ dx Ln x x 1 dθ 2 sec θ (x 1) x 2 1 x2 3 dx Ln x x 2 1 sec θ dθ 2 (x 1) x 2 1 x2 3 dx Ln x x 2 1 Ln sec θ tg θ C1 2 2 (x 1) x 1
x2 (x 1) x 1 2
x2 (x 1) x 1 2
dx Ln x x 2 1 dx Ln x x 2 1
3
Ln
2 3
2u 2 2u 1
2
(x 1) x 1 2
x2 (x 1) x 2 1
26.
dx Ln x x 2 1
dx Ln x x 2 1
3
2
u
2
Ln
(x 1)
2
2
3
2 1 x 1
2
Ln
x 2 1 2 (x 1)
( cos x sen x ) 1
sen 2x 2
1 C 2
du sec 2 x dx dx ( cos x sen x ) 1
dx ( cos x sen x ) 1 sen x cos x
sen 2x 2
cos 2 x ( 1 tg x ) sec 2 x tg x sec 2 x ( 1 tg x ) tg 2 x 1 tg x sec 2 x ( 1 tg x ) 1 tg x tg 2 x
dx
dx
du (1 u) 1 u u 2
t 2 1 2t 1
du
dx
t u t 1 u u 2 u 1 u u 2 t 2 2tu u 2 (2t 1)u (1 t 2 ) 0
1 u u 2
1 1 C x 1 2
1 u u 2
u
dx
sen 2x ( cos x sen x ) 1 2 Hacemos : u tg x
x 1 C x 1
dx sen 2x ( cos x sen x ) 1 2 dx
sen 2x ( cos x sen x ) 1 2
Hacemos :
Ln
sen 2x 2
dx
2 2u 2 2u 1 2u 1 C1
2 x2
( cos x sen x ) 1
3
2
dx
t 2 1 t 2 t 1 2t 1 2t 1
t
2 ( t 2 t 1) (2t 1) 2
dx ( cos x sen x ) 1
sen 2x 2
dx
dt
1 t 2 1 t 2 t 1 (1 )( ) 2t 1 2t 1 1
2 ( t 2 t 1) (2 t 1) 2
2 ( t 2 t 1)
dt
dt t 2 2t t 2 t 1 (2 t 1) 2 ( )( ) 2t 1 2t 1 dt dt 1/2 1/2 2 2 2 2( ) dt t (t 2) t t2 sen 2x t 2t ( cos x sen x ) 1 2 sen 2x ( cos x sen x ) 1 2 dx
.
.
133
dx
t Ln t Ln t 2 C Ln C t2 sen 2x ( cos x sen x ) 1 2
dx sen 2x ( cos x sen x ) 1 2 dx sen 2x ( cos x sen x ) 1 2 dx ( cos x sen x ) 1
Ln
Ln
u 2 1 u u 2
C
tg x 1 tg x tg x 2
tg x 2 1 tg x tg 2 x tg x sec 2 x tg x tg x 2 sec 2 x tg x
C
C
4e 4 dx
e 2x 4e x 4 dx e 2x 4e x 4
28. I
I
dx e 2x 4e x 4
ex
4e 4 1 Hacemos : z u x
dx e
2x
4e 4
Hacemos :
1 2
arc sen (
z2 2z
)C
1 ex 2 arc sen ( )C 2 2 ex
dx (x 1) 3 5x 2 8x 4
(x 1)
ex
e 2x 4e x 4
dx
x
dz
z z 4z 4 du dz u2 du
1 2u
2
1 u
du du u2 2 1 4 1 4u 4u 2 (1 2u ) 2 4 u2 u
2 sen θ
2 du cos θ dθ 2
1 u3
I
dz e dx e
dθ
2
dx
I
z ex
dx 2x
1 cos θ 1 cos θ dθ dθ 2 2 2 cos θ 2 2 sen θ 1 sen θ 1 1 1 1 2u dθ θ C arc sen ( )C 2 2 2 2
2
3
5 (x 1) 2 2 (x 1) 1 x 1
1 u
dx
du u2
du
x
e
2 cos θ
1
x
Hacemos :
e 2x 4e x 4
Hacemos :
dx 2x
dx
27.
sen 2x 2
Ln
u 1 u u 2
u2 u2 du 2 5 2 5 2u u 1 u2 u
(u 2 2u 5) 2u 5 5 2u u 2
I 5 2u u 2 du I 5 2u u 2 du
du 2u 5 5 2u u 2 2u 2 5 2u u
2
du du 3
I 5 2u u 2 du 2 5 2u u 2 3 I 2 5 2u u 2 (u 1) 2 4 du 3
Hacemos :
u 1
du 5 2u u 2 du
5 2u u 2 du (u 1) 2 4
2 tg θ
du 2 sec 2 θ dθ I 2 5 2u u 2 4 tg 2 θ 4 ( 2 sec 2 θ dθ ) 3
2 sec 2 θ 4 tg 2 θ 4
dθ
134
I 2 5 2u u 2 4 tg 2 θ 1 sec 2 θ dθ 3 I 2 5 2u u 2 4 sec 3 θ dθ 3
2
sec θ tg 2 θ 1
XV. INTEGRALES DE LA FORMA
dθ
1.
I 2 5 2u u 2 4 sec 3 θ dθ 3 Ln sec θ tg θ I 2 5 2u u 3 Ln sec θ tg θ 4 sec θ dθ 3
I1
I1 sec θ dθ 3
1 1 I1 Ln sec θ tg θ sec θ tg θ C1 (Idem Prob. 5 - Int. por partes) 2 2 I 2 5 2u u 2 3 Ln sec θ tg θ 2 Ln sec θ tg θ 2 sec θ tg θ C1 I 2 5 2u u 2 Ln sec θ tg θ 2 sec θ tg θ C1 I 2 5 2u u Ln 2
5 2u u 2 u 1 5 2u u 2 u 1 2( )( ) C1 2 2 2 2
I 2 5 2u u 2 Ln u 1 5 2u u 2
1 (u 1) 5 2u u 2 C 2
1 I (u 3) 5 2u u 2 Ln u 1 5 2u u 2 C 2 1 1 2 1 1 2 1 I ( 3) 5 Ln 1 5 C 2 2 x 1 x 1 (x 1) x 1 x 1 (x 1) 2 I
I
I
1 4 3x 5x 2 8x 4 x 5x 2 8x 4 ( ) Ln C 2 x 1 x 1 x 1 x 1 (4 3x) 5x 2 8x 4 2 (x 1) 2
(3x 4) 5x 2 8x 4 2 (x 1) 2
Ln
Ln
m
(a bx n ) p dx
CASO I: p es un número entero: x z r Donde: r = m.c.m.(denominador de m y n)
sec 2 θ dθ sec θ
I 2 5 2u u 2 4 sec 3 θ dθ 3 sec θ dθ
2
x
5x 2 8x 4 x C x 1 5x 2 8x 4 x C x 1
x
1/2
m
(1 x 1/3 ) 2 dx
1 1 , n , p 2 2 3
pZ
x z 6 r m.c.m.(2 , 3 ) 6 dx 6z 5 dz 1/2 1/3 2 x (1 x ) dx
x
1/2
x
1/2
(1 x 1/3 ) 2 dx
x 1/2 (1 x z
1/3 2
)
3
(1 z )
2 2
dx
[1 (z )
6 1/3 2
( 6z 5 dz ) 6
(1 x 1/3 ) 2 dx 6 [ z 4 2z 2 3
1/2 1/3 2 x (1 x ) dx
(z 6 )1/2
( 6z 5 dz )
]
z
8
(1 z 2 ) 2
4z 2 3 (1 z 2 ) 2
dz
] dz
6 5 4z 2 3 z 4z 3 18z 6 dz 5 (1 z 2 ) 2
x
1/2
(1 x 1/3 ) 2 dx
4 (1 z 2 ) 1 6 5 z 4z 3 18z 6 dz 5 (1 z 2 ) 2
x
1/2
(1 x 1/3 ) 2 dx
6 5 dz dz z 4z 3 18z 24 6 2 5 1 z (1 z 2 ) 2
1/2 1/3 2 x (1 x ) dx
x
1/2
(1 x 1/3 ) 2 dx
1/2 1/3 2 x (1 x ) dx
Hacemos :
u z
(1 z 2 ) z 2 6 5 dz z 4z 3 18z 24 6 dz 5 1 z 2 (1 z 2 ) 2 6 5 dz dz z2 z 4z 3 18z 24 6 6 dz 5 1 z 2 1 z 2 (1 z 2 ) 2 6 5 dz z2 z 4z 3 18z 18 6 dz 5 1 z 2 (1 z 2 ) 2 dv
z (1 z 2 ) 2
dz
135
du dz
x
1/2
(1 x 1/3 ) 2 dx
x
1/2
(1 x 1/3 ) 2 dx
x
1/2
(1 x 1/3 ) 2 dx
x
1/2
(1 x 1/3 ) 2 dx
CASO II:
2.
x
1/3
v
1
dx 6 6 1/6 x 6 (65 x 6 )1/6 x (65 x ) dx
2 (1 z ) 2
6 5/6 36 x x 4 x 18 6 x 21 arc tg 6 x C 5 1 3 x
m 1 es un número entero: a bx n z s Donde: s = denomin. de p n
(2 x 2/3 )1/4 dx
1 2 1 m , n , p 3 3 4
2 x 2/3 z 4 m 1 2 Z 1/3 3 n dx 6x z dz
x (2 x ) dx x (z ) . 6x z dz 6 x z 1/3 2/3 1/4 4 4 8 4 x (2 x ) dx 6 (z 2) z dz 6 (z 2z ) dz 1/3
x
1/3
x
1/3
x
1/3
CASO III:
2/3 1/4
6 6 6 65 x z x 1 m 1 m 6, n 6, p p 1 Z 65x 6 1 z 6 6 n 1 7 5 dx x z dz 65 dx 1 6 6 6 1/6 1 7 5 6 1 1 7 5 x 6 (65 x 6 )1/6 x (z x ) ( 65 x z dz) 65 x . z x . x z dz
6 5 dz 3z dz z 4z 3 18z 18 3 2 2 5 1 z 1 z 1 z 2 6 5 dz 3z z 4z 3 18z 21 2 5 1 z 1 z 2 6 5 3z z 4z 3 18z 21 arc tg z C 5 1 z 2
1/3
4 1/4
1/3
3
2/3
4
dz
dx
x 6 (65 x 6 )1/6 4.
(65 x 6 ) 5/6 1 1 5 4 z dz z C C 65 325 325x 5
x
x 3 1 dx
x
x 3 1 dx x 1/2 (x 3 1)1/2 dx
3 2 3 x 1 z x 1 1 m 1 m , n 3, p p 1 Z 1 x 3 z 2 2 2 n 2 dx x 4 z dz 3 2 2 3 1/2 2 3 1/2 4 1/2 3/2 4 x x 1 dx x (z x ) ( 3 x z dz) 3 x .z x .x z dz
1 2 1 (2 x 2/3 )1/4 dx 6 ( z 9 z 5 ) C z 5 (10z 4 36) C 9 5 15 1 (2 x 2/3 )1/4 dx (2 x 2/3 ) 5/4 [ 10 (2 x 2/3 ) 36 ] C 15 1 2/3 1/4 (2 x ) dx (2 x 2/3 ) 5/4 (10x 2/3 16) C 15
Hacemos :
x
x 3 1 dx
2 sec 2 θ 2 tg θ sec 3 θ . sec θ tg θ dθ dθ 3 (sec 2 θ 1) 2 3 (tg 2 θ) 2
m 1 p es un número entero: a bx n z s x n Donde: s = denomin. de p n
x
x 3 1 dx
2 tg θ sec 3 θ 2 sec 3 θ 2 dθ dθ csc 3 θ dθ 4 3 3 3 tg θ 3 tg θ
x
2 6 2 2 1 2 z2 x z dz . z 2 dz dz 3 3 (z 2 1) 2 3 (z 2 1) 2 z sec θ
x 3 1 dx
dz sec θ tg θ dθ
I
3.
dx
x 6 (65 x 6 )1/6
I csc θ dθ 3
136
1 1 I Ln csc θ ctg θ csc θ ctg θ C1 (Idem Prob. 4 - Int. por partes) 2 2 2 1 1 3 x x 1 dx 3 ( 2 Ln csc θ ctg θ 2 csc θ ctg θ) C 2 1 1 3 x x 1 dx 3 csc θ ctg θ 3 Ln csc θ ctg θ C 2
x 3 1 dx
x
x 1 dx 3
x
x 1 dx 3
x
z
1 Ln 3 (z 1) 3 2
z
1 Ln 2 3 (z 1) 3
z z 1 2
z 1 z 2 1
3(
x 3/2 x 3 1 x
x
5.
x
4
4
x 3 1 dx
1 e 4x
Hacemos :
1 e 4x e
1)
1 Ln 6
x x4 x 1 Ln 3 6
ex
4
3
x 3/2 x 3 1 1 Ln 3 6
ex
x
C
x 3 1
x 3 1 dx
1 e 4x
z 1
x 3/2 x 1 3
x 3/2
C z
1 Ln 2 3 (z 1) 3
z 1 z 1
1 z 1 z 1 z 1 Ln C Ln C 2 2 6 z 1 6 z 1 3 (z 1) 3 (z 1)
x 3 1 dx
x
1 2
z
x 3 1
m 2, n 4, p
C
1 e 4x e 2x
C 1
x 3 1 x 3/2 x 3 1 x 3/2 x 3 1 x x x 3 1 x x
1 u 4 u
2
x
1 e
4x
dx u 4 z 4 dz
z4 z 1 4
dz (1
1 z 1 4
) dz z
dz z 1
e
x
dz
dx z
2
C
C
2A C D 0 B C D 0 A 0, B 1/2, C 1/4, D 1/4 2A C D 0 B C D 1
4
1 e 4x e
4
1 e e
4
x 4x
x
1 e 4x e
x
dx z (
1/2 1 z
2
1/4 1/4 ) dz z 1 z 1
dx z
1 dz 1 dz 1 dz 2 2 1 z 4 z 1 4 z 1
dx z
1 1 1 arc tg z Ln z 1 Ln z 1 C 2 4 4 4
du u 2 (1 u 4 )1/4 du
1 e 4x e
4
. e x dx
ex du e x dx 4
4
dx u 2 (z 4 u 4 )1/4 . u 5 z 3 dz u 2 .z u . u 5 z 3 dz
1 (2A C D)z 3 (B C D)z 2 (2A C D)z (B C D)
u
dx
ex
1 A(2z)(z 2 1) B(z 2 1) C(1 z 2 )(z 1) D(1 z 2 )(z 1)
1
dx dx
1 e 4x
(1 z ) (z 1) (z 1) A(2z) B 1 C D 2 2 z 1 z 1 (1 z ) (z 1) (z 1) 1 z
4
4
1 4
1 u 4 z 4 u 4 m 1 p 0 Z u 4 1 z 4 n 5 3 du u z dz
4
1 e e
4
4x
x
1 e 4x ex
dx
dx
1 u u
4
1 u 4 1 1 u 4 1 1 u 4 u arc tg ( ) Ln C 4 u 2 u 4 1 u 4 u
4
4
1 u 4 1 1 u ) Ln C 4 4 1 u 4 1 u
4
1 1 u arc tg ( 2 u
4
4
4
4
137
4
1 e e
x
3
6.
4x
dx
4
1 e e
4x
x
4
1 1 e arc tg ( 2 ex
4x
)
4
1 1 e e Ln C 4 4 1 e 4x e x 4x
x
8.
x
( 3 x 1 ) 2 dx 1 1 , n , p 2 3 3 x z 3 r 3 dx 3z 2 dz m
3
x
( 3 x 1)2 3
dx
3
3
dx
x
6 5 6 z 2z 3 C ( 3 x 1 ) 5/2 2 ( 3 x 1 ) 3/2 C 5 5
dx
(1 x 2 ) 3/2 dx 2 3/2 (1 x 2 ) 3/2 (1 x ) dx
pZ
m 0, n 2, p
z3
3
( z3 1)2
. 3z 2 dz 3
3z 2
x
( 3 x 1 )1/2
( 3 x 1 ) 2 dx 3 [ z 2 (z 1) 2
] dz
z3 (z 1) 2
dz
x
9 (z 1) 3 3 2 3 dz dz 6z dz z 2 6z 9 3 2 2 z 1 (z 1) (z 1) 2
3
x
3 2 3 6z 9 Ln z 1 C z 1
dx dz 2 2 3/2 3 3 3 3 2 (1 x 2 ) 3/2 (z x ) (x z dz) z x . x z dz z dz z 2
3 2 9z 6 z 6z dz 2 (z 1) 2
3
3 2
dx 1 (1 x 2 ) 3/2 z C
1 1 x 2 x
( 3 x 1 ) 2 dx 2 z ( 3 x 1 ) 2 dx 2 z 3
x
3 2/3 6 3 x 9 Ln 3 x 1
( 3 x 1 ) 2 dx 2 x 7.
( 3 x 1 )1/2 3
( x 1)
1/2
x
( 3 x 1 )1/2 3
x
( 3 x 1 )1/2 3
x 1
x
3
dx x 1/3 ( x1/3 1 )1/2 dx
3
x 1/3 1 z 2 m 1 2 Z 2/3 n dx 6x z dz
dx x 1/3 (z 2 )1/2 (6x 2/3 z dz) 6 x 1/3 . z . x 2/3 z dz dx 6 x 1/3 z 2 dz 6 (z 2 1) z 2 dz 6 (z 4 z 2 ) dz
10.
C
x 1 x 2
C
dx 3
x (1 x 2 ) 2
2 2 , n , p 1 3 3 x z 3 r 3 dx 3z 2 dz
dx
1 1 1 m , n , p 3 3 2
3
3
m
C
x
3
3
9. 3
1 x 2 z 2 x 2 m 1 p 1 Z x 2 1 z 2 n dx x 3 z dz
dx 3
2
3
2
x (1 x ) dx 2
x (1 x ) 2
x3 1 x 2
pZ
3z 2 3
3
z (1 z ) 6
6
dz 3
z2 z (1 z ) 2
2
dz 3
dz 1 z 2
3 arc tg z C 3 arc tg (3 x ) C
dx
m 3, n 2, p
1 2
1 x 2 z 2 m 1 2 Z 1 n dx x z dz
138
x
3
1 x 2 x3
x
dx
1 x 2
x . (1 z ) 2
z2
. x 1 z dz
(1 z ) z dz z 2
1 1 dx (1 z ) dz z 3 z C z (3 z 2 ) C 3 3 2
1 x 2
x.x
dx
2
3
1 x 2
dx
1 1 1 x 2 (3 1 x 2 ) C 1 x 2 (x 2 2) C 3 3
4
(1 x ) 3 dx 8 (z 4 1) z 6 dz 8 (z 10 z 6 ) dz
4
(1 x ) 3 dx
4
(1 x ) 3 dx
11.
dx
x 2 (1 x 2 ) 3/2
m 2, n 2, p
dx
x 2 (1 x 2 ) 3/2 dx
x 2 (1 x 2 ) 3/2 dx
x 2 (1 x 2 ) 3/2
4 4
x 2 z2
dz
z 2 1 z2
dz
1 z 2 z2
dz
dz z2
1 x 2
3
3
1 x 1/2 z 4 m 1 2 Z 1/2 3 n dx 8x z dz
(1 x ) 3 dx (z 4 ) 3/4 (8x 1/2 z 3 dz) 8 z 3 . x1/2 z 3 dz 8 x 1/2 z 6 dz
x
dx x 1/3 (2 x 1/3 )1/2 dx
3
x
23 x
3
x
x
53
53
2 x 1/3 z 2 m 1 2 Z 2/3 n dx 6x z dz
dx x 1/3 (z 2 )1/2 (6x 2/3 z dz) 6 x 1/3 . z . x 2/3 z dz dx 6 x 1/3 z 2 dz 6 (2 z 2 ) z 2 dz 6 (2z 2 z 4 ) dz dx 4z 3
x
23 x
14.
x
23 x
x
x
23 x
1 x 2 C x
(1 x ) 3 dx (1 x 1/2 ) 3/4 dx
1 3 , p 2 4
3
1 1 1 x 2 zC C z x 1 x 2 x x
dx
x
23 x
dz
(1 x ) 3 dx
m 0, n
4
1 x 2 z 2 x 2 m 1 p 2 Z x 2 1 z 2 n dx x 3 z dz
3
8 7 8 z (7z 4 11) C (1 x ) 7/4 (7 7 x 11) C 77 77 8 (7 x 4) (1 x ) 7/4 C 77
1 1 1 m , n , p 3 3 2
x 2 (z 2 x 2 ) 3/2 x3 z dz x 2 . z 3 x 3 . x 3 z dz
dx x 2 (1 x 2 ) 3/2 12.
3 2
3
23 x
dx 2 2 3/2 x 2 (1 x 2 ) 3/2 x (1 x ) dx
23 x
13.
8 11 8 7 z z C 11 7
dx
6 5 1 z C z 3 (20 6z 2 ) C 5 5
1 1 (2 3 x ) 3/2 (20 12 6 3 x ) C (2 3 x ) 3/2 (8 6 3 x ) C 5 5
dx
2 (4 3 3 x ) (2 3 x ) 3/2 C 5
(1 x 3 ) 2 dx (1 x 3 ) 2 dx x 5 (1 x 3 ) 2/3 dx
m 5, n 3, p
2 3
1 x 3 z 3 m 1 2 Z 2 2 n dx x z dz
x
53
(1 x 3 ) 2 dx x 5 (z 3 ) 2/3 (x 2 z 2 dz) x 5 . z 2 . x 2 z 2 dz
x
53
(1 x 3 ) 2 dx x 3 z 4 dz (z 3 1) z 4 dz (z 7 z 4 ) dz
139
x
53
(1 x 3 ) 2
x
53
(1 x 3 ) 2
x
53
1 x 1/3
15.
(1 x 3 ) 2
x 2/3
x
1 x 1/3
x
16.
2/3
3
3
2/3
3
3
dx
x 3 (1 x 3 )1/3
m 3, n 3, p
1 x 1/3 z 2 m 1 1 Z 2/3 n dx 6x z dz
dx x
2 1/2
(z )
(6x
2/3
z dz) 6 x
2/3
.z. x
2/3
z dz 6 z dz
dx 2z 3 C 2 (1 x 1/3 ) 3/2 C 2 (1 3 x ) 3/2 C
18.
4
4
3
2 x 2/3 z 4 m 1 2 Z 1/3 3 n dx 6x z dz
x (2 x 2 )1/4 dx x 1/3 (z 4 )1/4 (6x 1/3 z 3 dz) 6 x 1/3 . z . x1/3 z 3 dz 3
3
x (2 x 2 )1/4 dx 6 x 2/3 z 4 dz 6 (z 4 2) z 4 dz 6 (z 8 2z 4 ) dz
3
x (2 x 2 )1/4 dx
3
3
3
x (2
3
(1 x ) dx 1 2 x 3 (1 x 3 )1/3 z dz 2 z C 2x 2
2
3
3
1 3
1 x 3 z 3 x 3 m 1 p 1 Z x 3 1 z 3 n dx x 4 z 2 dz
dx 3 3 3 1/3 4 2 3 1 1 4 2 x 3 (1 x 3 )1/3 x (z x ) (x z dz) x . z x . x z dz
x (2 x 2 )1/4 dx x 1/3 (2 x 2/3 )1/4 dx
x (2
3
dx 3 3 1/3 x 3 (1 x 3 )1/3 x (1 x ) dx
x (2 x 2 )1/4 dx
3
2 (5 x 2/3 8) (2 x 2/3 ) 5/4 C 15
x (2 x 2 )1/4 dx
3 2/3
2/3
1 2 1 m , n , p 3 3 4
17.
dx x 2/3 (1 x 1/3 )1/2 dx
2 1 1 m , n , p 3 3 2
1 x 1/3
dx
x 2/3 1 x 1/3
1 1 1 5 dx z 8 z 5 C z (5z 3 8) C 8 5 40 1 dx (1 x 3 ) 5/3 (5 5x 3 8) C 40 1 dx (5x 3 3) (1 x 3 ) 5/3 C 40
2 9 12 5 1 z z C z 5 (10z 4 36) C 3 5 15 1 x 2 )1/4 dx (2 x 2/3 ) 5/4 (20 10 x 2/3 36) C 15 1 x 2 )1/4 dx (10 x 2/3 16) (2 x 2/3 ) 5/4 C 15
dx 1 x 4 dx
1 x
4
(1 x 4 ) 1/4 dx
m 0, n 4, p
4 4
C
dx 1 x
4
dx 1 x 4
1 4
1 x 4 z 4 x 4 m 1 p 0 Z x 4 1 z 4 n dx x 5 z 3 dz
(z 4 x 4 ) 1/4 (x 5 z 3 dz) z 1 x 1 . x 5 z 3 dz x 4 z 2 dz
z2 z 4 1
z2 (z 1) (z 1) (z 1) 2
dz
z2 (z 1) (z 1) (z 2 1)
dz
C(2z) D A B z 1 z 1 z 2 1
A(z 2 1)(z 1) B(z 2 1)(z 1) C(2z)(z 2 1) D(z 2 1) z 2 (A B 2C)z 3 (A B D)z 2 (A B 2C)z (A B D)
z2
A B 2C 0 A B D 1 A 1/4, B 1/4, C 0, D 1/2 A B 2C 0 ABD 0 dx 1/4 1/4 1/2 1 dz 1 dz 1 dz ( ) dz 4 2 2 z 1 z 1 z 1 4 z 1 4 z 1 2 z 1 1 x 4 dx 1 1 1 1 z 1 1 Ln z 1 Ln z 1 arc tg z C Ln arc tg z C 4 4 4 2 4 z 1 2 1 x 4 4
4 4
dx 1 x 4 dx 1 x 4
1 4
Ln
1 4
Ln
4
140
x 5 2x 2
1 x 4 x
4
1 x 4 x
x 5 2x 2
(1 x 3 ) 3/2 x 5 2x 2
(1 x 3 ) 3/2 x 5 2x 2
dx
x 5 2x 2
(1 x 3 ) 3/2
dx
x 5 2x 2
dx
(1 x 3 ) 3/2
(1 x 3 ) 3/2
x5 (1 x 3 ) 3/2
(1 x 3 ) 3/2
3 1 x 3 4 3 1 x
3
x5 (1 x 3 ) 3/2
x 2x 5
2
(1 x 3 ) 3/2
dx
3 2
4
dx
x 2x
dx
2
2
dx
3 1 x
3
4 3 1 x 3 4 3 1 x 3 4 3 1 x
3
4 3 1 x
3
2 5 3 2 x . z . x z dz 3
2 3 2 4 2 x3 x z dz 2 dz 3 3 1 x 3 3 z
2 z 2 1 4 2 2 dz dz dz 2 3 3 z2 z 3 1 x 3 3
2 2 z C 3 3z
2 2 1 x 3 C 3 3 1 x 3
2 2 1 x 3 C 3 3 1 x 3
dx
x 5 (25 x 5 )1/5
5 5 5 25 x z x 1 m 1 m 5, n 5, p p 1 Z 25x 5 1 z 5 5 n 1 6 4 dx x z dz 25 dx 1 5 5 5 1/5 1 6 4 5 1 1 6 4 x 5 (25 x 5 )1/5 x (z x ) ( 25 x z dz) 25 x . z x . x z dz
dx
dx
x 5 (1 x 3 ) 3/2 dx
dx
1 x z m 1 2 Z 2 2 n dx x z dz 3
2 x 5 (z 2 ) 3/2 ( x 2 z dz) 3 3 1 x 3
x 5 2x 2
4
dx 5 5 1/5 x 5 (25 x 5 )1/5 x (25 x ) dx
3
m 5, n 3, p
(1 x 3 ) 3/2
x 2x
2 3x 2 x5 dx dx 3 (1 x 3 ) 3/2 (1 x 3 ) 3/2 4
(1 x 3 ) 3/2
dx
(1 x 3 ) 3/2
4
x2
x 5 2x 2
5
1 1 x 4 arc tg ( )C 2 x
dx 2
(1 x 3 ) 3/2
dx
2
(1 x 3 ) 3/2
dx
dx
x 2x
5
20.
19.
dx
5
1 x 4 1 4 1 1 x 4 x arc tg ( )C 2 x 1 x 4 1 x
4
(1 x 3 ) 3/2
x 5 (25 x 5 )1/5
(25 x 5 ) 4/5 1 1 4 3 z dz z C C 25 100 100x 4
2
21.
e e
9x
9x
(1 e 3x ) 5/4 dx
(1 e 3x ) 5/4 dx e 8x (1 e 3x ) 5/4 e x dx
Hacemos :
ex du e x dx u
141
e
9x
(1 e
3x 5/4
)
dx u (1 u ) 8
3 5/4
du
1 u 3 z 4 m 1 m 8, n 3, p 3 Z 4 2 3 n du u z dz 3 4 8 5 2 3 9x 3x 5/4 8 4 5/4 4 2 3 e (1 e ) dx u (z ) ( 3 u z dz) 3 u . z . u z dz 4 6 8 4 9x 3x 5/4 4 2 8 e (1 e ) dx 3 u z dz 3 (1 z ) z dz 4 4 9x 3x 5/4 4 8 8 8 12 16 e (1 e ) dx 3 (1 2z z ) z dz 3 (z 2z z ) dz 4 1 9 2 13 1 17 9x 3x 5/4 e (1 e ) dx 3 [ 9 z 13 z 17 z ] C 4 1 2 1 9x 3x 5/4 3 9/4 3 13/4 3 17/4 e (1 e ) dx 3 [ 9 (1 u ) 13 (1 u ) 17 (1 u ) ] C 4 1 2 1 9x 3x 5/4 3x 9/4 3x 13/4 3x 17/4 e (1 e ) dx 3 [ 9 (1 e ) 13 (1 e ) 17 (1 e ) ] C 5 4
22.
cos x sen 7 x
(sen 2 x cos 2 x sen 4 x) 3/2 cos x sen 7 x
(sen 2 x cos 2 x sen 4 x) 3/2 Hacemos :
(1 sen 4 x) 3/2
23.
(sen 2 x cos 2 x sen 4 x) 3/2 3 m 7, n 4, p 2
dx
u7 (1 u )
4 3/2
3
dx
1 u 4 z 2 m 1 2 Z 1 3 n du u z dz 2 dx u (z )
cos x sen 7 x
dx
(sen 2 x cos 2 x sen 4 x) 3/2
du u 7 (1 u 4 ) 3/2 du
7
2 3/2
1 ( u 3 z dz) 2
1 7 3 3 1 u . z . u z dz u 4 z 2 dz 2 2
cos x sen 7 x
dx
1 1 1 1 z C 1 u 4 C 2 2z 2 2 1 u 4
cos x sen 7 x
dx
1 1 1 sen 4 x C 2 2 1 sen 4 x
x5 8x 3 27
x5 8x 27 3
dx
dx x 5 (8x 3 27) 1/3 dx
1 m 5, n 3, p 3
3
cos x sen 7 x
(sen 2 x cos 2 x sen 4 x) 3/2
3
3
u sen x du cos x dx
cos x sen 7 x
1 u4 1 z 2 1 1 1 dz dz dz dz 2 2 z2 2 2 2 z2 z
(sen 2 x cos 2 x sen 4 x) 3/2
dx
dx
dx
(sen 2 x cos 2 x sen 4 x) 3/2
3 cos x sen 7 x
cos x sen 7 x
(sen 2 x cos 2 x sen 4 x) 3/2
24.
8x 3 27 z 3 m 1 2 Z 1 2 2 n dx x z dz 8
x5
1 1 1 dx x 5 (z 3 ) 1/3 ( x 2 z 2 dz) x 5 . z 1 . x 2 z 2 dz x 3 z dz 8 8 8 8x 27 3
x5 8x 27 3
x5 8x 27 3
dx
1 1 3 1 1 5 27 2 (z 27) z dz (z 4 27z) dz z z C 88 64 320 128
dx
1 27 (8x 3 27) 5/3 (8x 3 27) 2/3 C 320 128
dx
x 7 (x 3 1) 4/3 dx 7 3 4/3 x 7 (x 3 1) 4/3 x (x 1) dx
m 7, n 3, p
4 3
x 3 1 z 3 m 1 2 Z 4 2 n dx x z dz
dx 7 3 4/3 4 2 7 4 4 2 x 7 (x 3 1) 4/3 x (z ) (x z dz) x . z . x z dz
142 3
dx x 3 2 x 7 (x 3 1) 4/3 x z dz z 2
dz
z 1 3
z
2
dz z dz
dz z
dx 1 2 1 1 3 1 2/3 x 7 (x 3 1) 4/3 2 z z C 2 (x 1) (x 3 1)1/3 C dx
x 7 (x 3 1) 4/3 XVI.
(1 x 3 ) 2/3 2x
2
INTEGRALES DE LA FORMA
1.
x (1 x 3 )1/3
C
3.
R (cosx , senx) dx
2 1 z 2 2z dz , cos x , sen x dx 2 2 1 z 1 z 1 z 2 2 dz 2 dx 2 1 z dz cos x 2 sen x 3 1 z 2 4z 2 1 z 4z 3 (1 z 2 ) 3 1 z 2 1 z 2 dx 2 dz dz cos x 2 sen x 3 2z 2 4z 4 dz z 2 2z 2 (z 1) 2 1
1
x z tg ( ) 2
3
tg x
2 tg 2 x dx z
dz tg x dx , cos x 2 1 z
1
tg x
1
z 2 1
1
1 z 2
, sen x
z
tg 2 x 1
1
sec 2 x
2 tg 2 x dx 2 Ln ( z 2 2 ) C 2 Ln ( tg 2 x 2 ) C 2 Ln ( tg 2 x 2 ) C 4.
dx
4 3 cos x Hacemos :
x z tg ( ) 2
2 1 z 2 2z dz , cos x , sen x dx 2 2 1 z 1 z 1 z 2
2
x
dx
4 3 cos x
dx
3 cos 2 x dz 1 z Hacemos : z tg x dx , cos x , sen x 2 2 1 z 1 z 1 z 2 dz dx dz dz 1 dz 1 z 2 3 cos 2 x 2 2 1 3 4 3 (1 z ) 1 4 3z 3 z2 2 3 1 z
3 tg x )C 2
arc tg (
1 z 2 tg x z dz z z z 2 tg 2 x dx 2 z 2 . 1 z 2 (z 2 1) (z 2 2) dz ( z 2 1 z 2 2 ) dz tg x 1 2z 1 2z 1 1 2 2 2 tg 2 x dx 2 z 2 1 dz 2 z 2 2 dz 2 Ln (z 1) 2 Ln (z 2) C
cos x 2 sen x 3 arc tg (z 1) C arc tg [ tg ( 2 ) 1 ] C 2.
dx
Hacemos :
dx
dx
3 3z 1 3z arc tg ( )C arc tg ( )C 6 2 2 2 3
3 cos 2 x 2
cos x 2 sen x 3 Hacemos :
dx
3 cos 2 x
2
4
2 dz 1 z 2 dz dz 2 2 2 2 3 (1 z ) 4 (1 z ) 3 (1 z ) 7 z2 1 z 2
dx 2 z 2 7 4 3 cos x 7 arc tg ( 7 ) C 7 arc tg [ 5.
x tg ( ) 2 ] C 7
dx
2 sen x 3 cos x Hacemos :
x z tg ( ) 2
2 1 z 2 2z dz , cos x , sen x dx 2 2 1 z 1 z 1 z 2
143
2 2 1 z dz dz 2 2 3 (1 z ) 2 (1 z ) 2z 3 (1 z 2 ) 2z 2 1 z 2 1 z 2 dx dz dz 2 sen x 3 cos x 2 5 2z z 2 2 6 (z 1) 2 Hacemos : u z 1 du dz dx du du du 2 sen x 3 cos x 2 6 u 2 2 ( 6 u) ( 6 u) 2 (u 6 ) (u 6 ) 2
dx
2 sen x 3 cos x
1 dx
1 2 6 2 6 ) du 6 u 6 6
dx
1 6
Ln u 6
1 6
du
u
Ln u 6 C
6
1 6
Ln
1
u 6 u 6
dx
2 sen x x 2 1 z 2 2z z tg ( ) dx dz , cos x , sen x 2 2 2 1 z 1 z 1 z 2 2 dx 2 2 1 z 2 dz 2 sen x 2 (1 z 2 ) 2z dz 2z 2 2z 2 dz 2z 2 1 z 2 dx dz dz 2 2z 1 arc tg ( )C 2 sen x z 2 z 1 3 1 2 3 3 (z ) 4 2 x 2 tg ( ) 1 dx 2 2 arc tg [ ] C 2 sen x 3 3
Hacemos :
x z tg ( ) 2
2 1 z 2 2z dz , cos x , sen x dx 2 2 1 z 1 z 1 z 2
2 dx 5 3 cos x
5
2 2 1 z 2 dz dz dz 2 2 2 3 (1 z ) 5 (1 z ) 3 (1 z ) 2 8z 2
1 z 2 dx dz 1 dz 5 3 cos x 1 4z 2 4 1 2 z 4
1 2
1 2
x 2
arc tg (2z) C arc tg [ 2 tg ( ) ] C
du
6 u
x tg ( ) 1 6 dx 1 z 1 6 1 2 C 2 sen x 3 cos x 6 Ln z 1 6 C 6 Ln x tg ( ) 1 6 2 6.
dx
5 3 cos x Hacemos :
1
2 sen x 3 cos x 2 ( u 2 sen x 3 cos x
7.
6 C
8.
sen x
1 sen x dx x 2 1 z 2 2z z tg ( ) dx dz , cos x , sen x 2 2 2 1 z 1 z 1 z 2 2z sen x 4z 1 z 2 . 2 dz 1 sen x dx (1 z 2 ) (z 1) 2 dz 2z 1 z 2 1 1 z 2 A(2z) B 4z C D 2 2 2 2 z 1 (1 z ) (z 1) 1 z (z 1)
Hacemos :
4z A(2z)(z 1) 2 B(z 1) 2 C(1 z 2 ) D(1 z 2 )(z 1) 4z (2A D)z 3 (4A B C D)z 2 (3A 2B D)z (B C D) 2A D 0
4A B C D 0 A 0, B 2, C 2, D 0 3A 2B D 4 BCD 0 sen x 2 2 dz dz 1 sen x dx [ 1 z 2 (z 1) 2 ] dz 2 1 z 2 2 (z 1) 2
sen x
2
x
1 sen x dx 2 arc tg z z 1 C 2 arc tg [ tg ( 2 ) ]
2 C x tg ( ) 1 2
144
sen x x 1 sen x dx 2 ( 2 )
2 2 C x C x x tg ( ) 1 tg ( ) 1 2 2
dx
Hacemos :
2
9.
dx
z2
1
z2 1 z 2 . dz dx 1 cos 2 x (2 z 2 ) (1 z 2 ) dz 1 1 z 2 1 1 z 2 sen x
A(2z) B
2 z2
z (2 z ) 2
1
2
1 cos 2 x dx
2
arc tg (
2 2 arc tg (
z
) dz 2
dz 2z
2
dz
1 z 2
2
u 4x du 4 dx
z
2
B z 2 z2
1
dx
) arc tg z C ) arc tg ( tg x ) C 2 arc tg (
A
dx
1
1
sen 2 4x tg 2 4x 8 tg 4x 8
2 tg x
2
1 dz 1 z 2 2 2 4 z z (2 z 2 ) z2 1 z 2 C(2z) D
sen 2 4x tg 2 4x 8 tg u 8
1 z 2
tg x
dx
)xC
1
sen 2 4x tg 2 4x 8 [ ctg 4x
2
dx
sen 2 4x tg 2 4x Hacemos :
z
B 2C 0 A D 0 A 1/2, B 0, C 0, D 1/2 2B 0 2A 1 dx 1 1/2 1/2 1 dz 1 dz sen 2 4x tg 2 4x 4 ( z 2 2 z 2 ) dz 8 z 2 8 2 z 2 dx 1 1 z sen 2 4x tg 2 4x 8z 8 2 arc tg ( 2 ) C
1 z 2
1 cos 2 x dx ( 2 z 2 1 z 2
sen 2 x
1 z 2
, sen u
1 (B 2C)z 3 (A D)z 2 2Bz 2A
C(2z) D
A(2z)(1 z 2 ) B(1 z 2 ) C(2z)(2 z 2 ) D(2 z 2 ) z 2 (2A 2C)z 3 (B D)z 2 (2A 4C)z (B 2D) 2A 2C 0 B D 1 A 0, B 2, C 0, D 1 2A 4C 0 B 2D 0
1 cos 2 x dx
1
1 A(2 z 2 ) Bz (2 z 2 ) C(2z)(z 2 ) Dz 2
z2
sen 2 x
1
sen 2 4x tg 2 4x 4
2
sen 2 x
du
dz
dz 1 z z tg x dx , cos x , sen x 2 2 1 z 1 z 1 z 2
(2 z 2 ) (1 z 2 )
1
1 z
sen x
z2
4 dx
dz tg u du , cos u 2
z
1 cos 2 x dx Hacemos :
10.
1
sen 2 4x tg 2 4x 4 sen 2 4x tg 2 4x 4 sen 2 u tg 2 u
11.
arc tg (
tg u
2
)C
2
1
arc tg (
tg 4x
2 1 2
)C
2 arc tg (
tg 4x
) ] C
2
dx
3 sen 2 x cos 2 x Hacemos :
z
dz tg x dx , cos x 2
1 z
1 1 z
2
, sen x
z 1 z 2
145
dz dx
3 sen 2 x cos 2 x dx
3 sen 2 x cos 2 x 12.
dz 1 dz 1 z 2 2 1 4 z 1 2 4z z2 3 2 1 z 2 1 z 2 2 2 arc tg ( 2 z) C arc tg ( 2 tg x ) C 4 4 2
sen 2x
sen 4 x cos 4 x dx sen 2x
3z 2
2 sen x cos x
sen 4 x cos 4 x dx sen 4 x cos 4 x dx dz 1 z Hacemos : z tg x dx , cos x , sen x 2 1 z 1 z 2 1 z 2 2z sen 2x dz 2z 2z 1 z 2 . 4 dz 2 2 dz sen 4 x cos 4 x dx z 4 2 1 1 z z 1 (z ) 1 2 2 2 2 (1 z ) (1 z ) sen 2x 2z 2 2 sen 4 x cos 4 x dx (z 2 ) 2 1 dz arc tg (z ) C arc tg ( tg x ) C
13.
3 sen x 2 cos x 3 tg x 2 3 sen x 2 cos x cos x 2 sen x 3 cos x dx 2 sen x 3 cos x dx 2 tg x 3 dx cos x dz 1 z Hacemos : z tg x dx , cos x , sen x 2 1 z 1 z 2 1 z 2 3 sen x 2 cos x 3z 2 dz 3z 2 2 sen x 3 cos x dx 2z 3 . 1 z 2 (2z 3) (1 z 2 ) dz
sen 2x
sen 4 x cos 4 x dx sen 2x
sen 2x 4 sen 2x dx dx 2 1 cos 2x 2 1 cos 2x 2 2 2 cos 2x ( ) ( ) 2 2 sen 2x 2 sen 2x 2 sen 2x sen 4 x cos 4 x dx 1 cos 2 2x dx 1 cos 2 2x dx Hacemos : u cos 2x
sen 4 x cos 4 x dx
du 2 sen 2x dx du sen 4 x cos 4 x dx 1 u 2 arc tg u C arc tg ( cos 2x ) C
(2z 3) (1 z ) 2
B(2z) C A 2z 3 1 z 2
3z 2 A(1 z 2 ) B(2z)(2z 3) C(2z 3) 3z 2 (A 4B)z 2 (6B 2C)z (A 3C) A 4B 0 6B 2C 3 A 10/13, B 5/26, C 12/13 A 3C 2 3 sen x 2 cos x 10/13 5/26 (2z) 12/13 ) dz 2 sen x 3 cos x dx ( 2z 3 1 z 2 3 sen x 2 cos x 10 dz 5 2z 12 dz 2 sen x 3 cos x dx 13 2z 3 26 1 z 2 dz 13 1 z 2 3 sen x 2 cos x 5 5 12 2 2 sen x 3 cos x dx 13 Ln 2z 3 26 Ln 1 z 13 arc tg z C 3 sen x 2 cos x 12 5 5 2 2 sen x 3 cos x dx 13 arc tg z 13 Ln 2z 3 13 Ln 1 z C
3 sen x 2 cos x
12
2z 3
5
2 sen x 3 cos x dx 13 arc tg z 13 Ln 3 sen x 2 cos x
12
1 z 2 5
2 sen x 3 cos x dx 13 arc tg ( tg x ) 13 Ln
sen 2x
2 sen x 3 cos x dx 13 x 13 Ln
3 sen x 2 cos x 14. dx 2 sen x 3 cos x
2 sen x 3 cos x dx 13 x 13 Ln
C
2 tg x 3 1 tg 2 x
3 sen x 2 cos x
12
5
2 tg x 3 C sec x
3 sen x 2 cos x
12
5
2 sen x 3 cos x C
C
146
1 tg x 1 z dz z 1 1 tg x dx 1 z . 1 z 2 (1 z) (1 z 2 ) dz
15. Calcular las constantes A y B en : a sen x b cos x
c sen x d cos x dx Ax B Ln
c sen x d cos x C
z 1
Derivando ambos miembros :
(1 z) (1 z ) 2
a sen x b cos x ( dx ) ' ( Ax B Ln c sen x d cos x C ) ' c sen x d cos x B ( c cos x d sen x ) a sen x b cos x A c sen x d cos x c sen x d cos x a sen x b cos x A ( c sen x d cos x ) B ( c cos x d sen x )
z 1 (A 2B)z 2 (2B C)z (A C) A 2B 0 2B C 1 A 1, B 1/2, C 0 A C 1 1 tg x 1/2 (2z) 1 dz 1 2z 1 tg x dx [ 1 z 1 z 2 ] dz 1 z 2 1 z 2 dz 1 tg x 1 2 2 1 tg x dx Ln 1 z 2 Ln 1 z C Ln 1 z Ln 1 z C
c A d B a ac bd bc ad , B A 2 2 d A c B b c d c2 d2 3 sen x 2 cos x
2 sen x 3 cos x dx Aplicando el método anterior: 3 sen x 2 cos x 2 sen x 3 cos x dx Ax B Ln 2 sen x 3 cos x C Derivando ambos miembros :
1 tg x
1 tg x dx Ln 1 tg x
1 tg x dx Ln
3 sen x 2 cos x ( dx ) ' ( Ax B Ln 2 sen x 3 cos x C ) ' 2 sen x 3 cos x B ( 2 cos x 3 sen x ) 3 sen x 2 cos x A 2 sen x 3 cos x 2 sen x 3 cos x 3 sen x 2 cos x A ( 2 sen x 3 cos x ) B ( 2 cos x 3 sen x )
18.
3 sen x 2 cos x ( 2A 3B ) sen x ( 3A 2B ) cos x
dz tg x dx , cos x 2
1 z
1 1 z 2
, sen x
1 tg x 1 tg 2 x
C Ln
1 tg x C sec x
cos x sen x C
dx
z
dz tg x dx , cos x 2 1 z
1 z 2
dx
sen 2 x 5 sen x cos x
z
2
1 1 z
2
, sen x
z 1 z 2
z 1 z 2
5z
dz 1/5 1/5 ( ) dz z (z 5) z z 5
1 z 1 z 2 dx 1 dz 1 dz 1 1 sen 2 x 5 sen x cos x 5 z 5 z 5 5 Ln z 5 Ln z 5 C tg x 5 dx 1 z 5 1 sen 2 x 5 sen x cos x 5 Ln z C 5 Ln tg x C dx 1 sen 2 x 5 sen x cos x 5 Ln 1 5 ctg x C 2
1 tg x
z
1 z 2
C Ln
dz
1 tg x dx Hacemos :
1 z
sen 2 x 5 sen x cos x Hacemos :
2A 3B 3 12 5 A , B 3A 2B 2 13 13 3 sen x 2 cos x 12 5 2 sen x 3 cos x dx 13 x 13 Ln 2 sen x 3 cos x C
17.
B(2z) C A 1 z 1 z 2
z 1 A(1 z 2 ) B(2z)(1 z) C(1 z)
a sen x b cos x ( c A d B ) sen x ( d A c B ) cos x
16.
147
19.
cos x
sen 2 x 6 sen x 5 dx
u z
Hacemos :
du dz dx
u sen x du cos x dx cos x du du 1/4 1/4 sen 2 x 6 sen x 5 dx u 2 6u 5 (u 5) (u 1) ( u 5 u 1 ) du cos x 1 du 1 du 1 1 sen 2 x 6 sen x 5 dx 4 u 5 4 u 1 4 Ln u 5 4 Ln u 1 C
Hacemos :
cos x
20.
sen 2 x 3 sen x cos x cos 2 x dx
dx
sen 2 x 3 sen x cos x cos 2 x
dx
3 sen 2 x 5 cos 2 x Hacemos :
z
dz tg x dx , cos x 2
1
1 z
1 z 2
, sen x
dx
sen 2 x 3 sen x cos x cos 2 x
z 1 z 2
dz dx
3 sen 2 x 5 cos 2 x dx
3 sen 2 x 5 cos 2 x 21.
1 z 2 3z 2
5
dz
1
3z 2 5
3
dx
sen 2 x 3 sen x cos x cos 2 x
dz z2
5 3
1 z 2 1 z 2 3 tg x 3 3z 1 arc tg ( )C arc tg ( )C 3 5 5 15 5
dx
sen 2 x 3 sen x cos x cos 2 x z
dz tg x dx , cos x 2
1 z
1 1 z 2
, sen x
z 1 z 2
dz dx
sen 2 x 3 sen x cos x cos 2 x
z
2
1 z dx
sen 2 x 3 sen x cos x cos 2 x
2
1 z
dz 3 2 13 (z ) 2 4
2
1 1 z
2
22.
1
Ln u
13
du 13 13 ) (u ) 2 2
(u
1 13 ) du 13 2 1 du 13
u
13 2
13 1 13 Ln u C 2 2 13
13 1 2 C 1 Ln 2u 13 C Ln 13 13 13 2u 13 u 2 u
dx
1
Ln
13
13
Ln
2z 3 13 2z 3 13
C
2 tg x 3 13 2 tg x 3 13
C
dx
cos 2 x 5 cos x 6
dz z 3z 1
13 13 u u 2 1 du 13 13 u 2
1
Hacemos :
1 z 2 3z
13 u2 4 1
sen 2 x 3 sen x cos x cos 2 x sen 2 x 3 sen x cos x cos 2 x
dx
Hacemos :
du
sen 2 x 3 sen x cos x cos 2 x (
u 5 1 sen x 5 C Ln C u 1 4 sen x 1
1
sen 2 x 6 sen x 5 dx 4 Ln
3 2
2
dx
x 2 1 z 2 2z z tg ( ) dx dz , cos x , sen x 2 2 2 1 z 1 z 1 z 2 2
1 z 2 dz 5 (1 z 2 ) 6 (1 z 2 ) 2 1 z 2
cos 2 x 5 cos x 6 (1 z 2 ) 2
148
2 (1 z ) 2
dx
dx
2 (z 2 1)
dx
z 2 1
cos 2 x 5 cos x 6 2z 4 10z 2 12 dz z 4 5z 2 6 dz dx
cos 2 x 5 cos x 6 z 1 2
(z 2) (z 3) 2
2
z 2 1 (z 2 2) (z 2 3)
A(2z) B z 2 2
dz
C(2z) D z2 3
24.
sen 2 x 2 cos 2 x 3 cos 2 x
Hacemos :
du u2
1 4
2
arc tg (2u) C arc tg (2z 1) C
z
dx
dz tg x dx , cos x 2 1 z
z2
sen x 2 cos x 2
2
3 cos x 2
sen 2 x 2 cos 2 x 3 cos 2 x z2 2
(2 3z ) (1 z )
dx
cos 2 x 2 sen x cos x 2 sen 2 x
2
1 z 2 . dz 1 1 z 2 1 z 2
dx
z2 2
(2 3z 2 ) (1 z 2 )
A(6z) B 2 3z
2
1 z
2
, sen x
z 1 z 2
2
dx 1 z 3
2
1
z2 2
.
dz
[ 3 (1 z ) 1 ] 1 z 2 2
dz
C(2z) D 1 z 2
z 2 2 A(6z)(1 z 2 ) B(1 z 2 ) C(2z)(2 3z 2 ) D(2 3z 2 )
dz tg x dx , cos x 2 1 z
1 1 z 2
, sen x
z 1 z 2
dz dx
cos 2 x 2 sen x cos x 2 sen 2 x
z2 z
dz 1 1 (z ) 2 2 4
dx
2
1
1 2
cos 2 x 2 sen x cos x 2 sen 2 x arc tg (2 tg x 1) C
2A 2C 0 B D 1 A 0, B 1, C 0, D 2 6A 4C 0 3B 2D 1 dx 1 2 dz dz cos 2 x 5 cos x 6 [ z 2 2 z 2 3 ] dz z 2 2 2 z 2 3 dx 1 z 2 z cos 2 x 5 cos x 6 2 arc tg ( 2 ) 3 arc tg ( 3 ) C x x tg ( ) tg ( ) dx 1 2 2 2 cos 2 x 5 cos x 6 2 arc tg [ 2 ] 3 arc tg [ 3 ] C
z
dz
1
cos 2 x 2 sen x cos x 2 sen 2 x 2
z 2 1 (2A 2C)z 3 (B D)z 2 (6A 4C)z (3B 2D)
Hacemos :
1 u z 2 du dz dx
Hacemos :
z 2 1 A(2z)(z 2 3) B(z 2 3) C(2z)(z 2 2) D(z 2 2)
23.
1
cos 2 x 2 sen x cos x 2 sen 2 x 2
cos 2 x 5 cos x 6 (1 z 2 ) 2 5 (1 z 2 ) (1 z 2 ) 6 (1 z 2 ) 2 dz
1 1 z
2
1 z 2 2z 1 z
2
2z
2
1 z
2
dz 2z 2z 1 2
z 2 2 (6A 6C)z 3 (B 3D)z 2 (6A 4C)z (B 2D) 6A 6C 0 B 3D 1 A 0, B 8, C 0, D 3 6A 4C 0 B 2D 2
sen 2 x 2 cos 2 x 3 cos x 2
dx (
8 2 3z
2
3 1 z
2
) dz
8 dz dz 3 3 2 1 z 2 z2 3
149
25.
sen x 2 cos x 2
2
3 cos 2 x sen x 2 cos x 2
2
3 cos x 2
sen 2 x 2 cos 2 x 3 cos x 2
8 3
dx
arc tg (
3z
3 2
2
dx 3 arc tg (tg x)
8
dx 3x
8
arc tg (
6
arc tg (
3 tg x
6
)C
2
3 tg x
1.
du u C
3.
u
5.
u a du
7. 9.
)C
2
sen 4 x cos 4 x
sen 2 x cos 2 x dx sen 4 x cos 4 x
sen 2 x cos 2 x dx
(
1 cos2x 2 1 cos2x 2 ) ( ) 1 2 2 cos 2 2x 2 2 dx dx 4 cos 2x cos 2 x sen 2 x
sen 4 x cos 4 x
1 1 cos 2 2x 1 1 sen 2 x cos 2 x dx 2 cos 2x dx 2 sec 2x dx 2 cos 2x dx sen x cos x 4
4
1
sen 2 x cos 2 x dx 4 Ln
sec 2x tg 2x
1 sen 2x C 4
1 tg x 26. dx 2 sen x cos x 1 tg x tg x dx dx 1 dx 2 sen x cos x dx 2 sen x cos x 2 sen x cos x dx sen 2x 2 cos 2 x 1 tg x 1 1 1 2 2 sen x cos x dx csc 2x dx 2 sec x dx 2 Ln csc 2x ctg 2x 2 tg x C
27.
FÓRMULAS ELEMENTALES DE INTEGRACIÓN
) 3 arc tg z C
sen x tg x
sen 3 x cos 3 x dx sen x tg x
sen 3 x cos 3 x Hacemos :
dx
tg 2 x sec 2 x tg 3 x 1
dx
tg x du sec 2 x dx
Ln u C
u n 1 C , n 1 n 1
4.
e
au C Ln a
6.
sen u du cos u C
cos u du sen u C
8.
tg u du Ln
ctg u du Ln
10.
sec u du Ln
12.
sec
14.
sec u tg u du sec u C
n
du
sen u C
u
du e u C
sec u C sec u tg u C
u du tg u C
11.
csc u du Ln
13.
csc
15.
csc u ctg u du csc u C
16.
senh u du cosh u C
17.
cosh u du senh u C
18.
tgh u du Ln
19.
ctgh u du Ln
20.
sech
21.
csch
22.
sech u tgh u du sech u C
23.
csch u ctgh u du csch u C
24.
du 1 u a 2 u 2 a arc tg ( a ) C , ( a 0 )
25.
du 1 u 2 a 2 2a Ln
26.
du 1 a 2 u 2 2a Ln
27.
28.
29.
u
1 3u 2 1 3 sen 3 x cos 3 x dx u 3 1 du 3 u 3 1 du 3 Ln u 1 C sen x tg x 1 3 sen 3 x cos 3 x dx 3 Ln tg x 1 C sen x tg x
du u
2.
u2
2
csc u ctg u C
u du ctg u C
2
senh u C
u du ctgh u C
du a u 2
2
du u u2 a2
u a C, (a 0) ua
u a
arc sen ( ) C , ( a 0 ) 1 a
arc sec
u a
C, (a 0)
2
2
u du tgh u C
du u a 2
cosh u C
2
ua C, (a 0) u a
Ln u u 2 a 2 C
150
dx
a 2 u 2 du
1 u [ u a 2 u 2 a 2 arc sen ( ) ] C , ( a 0 ) 2 a
31.
u 2 a 2 du
1 [ u u 2 a 2 a 2 Ln u u 2 a 2 ] C , ( a 0 ) 2
x 6 1 (1 x 2 ) (x 4 x 2 1) (1 x 2 ) (x 2
32.
u 2 a 2 du
1 [ u u 2 a 2 a 2 Ln u u 2 a 2 ] C , ( a 0 ) 2
(1 x ) (x 3x 1) (x 3x 1)
30.
2.
x 6 1 dx
dx
1 2
2
2
A(2x) B 1 x
2
dx 3x 1) (x 2 3x 1)
C(2x 3 ) D x 3x 1 2
E(2x 3 ) F x 2 3x 1
1 A(2x)(x 4 x 2 1) B(x 4 x 2 1) C(2x 3 )(1 x 2 )(x 2 3x 1) D(1 x 2 )(x 2 3x 1) E(2x 3 )(1 x 2 )(x 2 3x 1)
MAS PROBLEMAS RESUELTOS
1.
F(1 x 2 )(x 2 3x 1)
x 1 dx x 1
1 x 1 x
1 (2A 2C 2E)x 5 (B 3C D 3E F)x 4 (2A C 3D E 3F)x 3
x 1 x 1 dx dx dx dx 2 2 x 1 x x 1 x 1 x x 2 1 I1
I1
I1
x 2 1
x x 2 1 x 2 1 [ x x 2 1 ]
Hacemos :
u
du I1 u
dx
x x 2 1
du
I2
I2
dx
x x 2 1 x 2 1
1
B 3C D 3E F 0 2A C 3D E 3F 0 1 3 1 3 1 , D , E , F A 0, B , C B 2D 2F 0 3 12 12 12 12 2A C 3D E 3F 0 B 3C D 3E F 1
1 3 1 3 1 (2x 3 ) (2x 3 ) dx 3 12 12 12 12 [ ] dx x 6 1 1 x 2 x 2 3x 1 x 2 3x 1 dx
Ln u C1 Ln x x 1 C1 2
sec θ tg θ sec θ sec θ 1 2
dx
dθ
1
dx
3
2x 3
x 6 1 3 1 x 2 12 x 2
dx
sec θ tg θ dθ dθ θ C 2 arc sec x C 2 sec θ tg θ
1
x 1 dx Ln x x 2 1 arc sec x C x 1
3x 1
dx
1 dx 3 12 x 2 3x 1 12
2x 3
x2
3x 1
dx
1 dx 2 12 x 3x 1 3
x 6 1 3 arc tg x 12 Ln x
dx sec θ tg θ dθ
x
2A 2C 2E 0
dx
x x 2 1 Hacemos : x sec θ
I2
(B 2D 2F)x 2 (2A C 3D E 3F)x (B 3C D 3E F)
1 12
2
dx (x
3 2 1 ) 2 4
3x 1
3 1 Ln x 2 3x 1 12 12
dx (x
3 2 1 ) 2 4
151
dx
1
3
x 6 1 3 arc tg x 12 Ln 3.
( arc sen x ( arc sen x Hacemos :
( arc sen x 4.
x 2 3x 1
1 1 arc tg (2x 3 ) arc tg (2x 3 ) C 6 6
) dx arc sen x dx
1 x u arc sen x 2
x 1 x 2 x 1 x
2
dv dx
dx
v
1 x 2
2x x 4
1 x
2
dx
x x 1 x 2
dx
x
x2 dx . 2x 3 3x 2 11x 10
dx 2x x 4
1 x 2
2x 3 (3x 2 11x 10) x2
t[3(
2 2
3 2t 2 t2 2
1 t
2
z2
I1
I1
2z 2 Ln
I1
2 x 2 Ln
I2
x x4 dx dx x4 x4
z 4 2
. 2z dz 2 z2 C1 z2
I2
z2 z 4 2
dz 2 ( 1
( x 2) ( x 2)
C1
4 z 4 2
x 2
2 x 2 Ln
( x 2) 2
x 2
) dz 2z 8
dz z 4 2
C1
2 x 2 Ln
( x 2) 2 C1 x4
x4 dx x4 x 4 u 2
3 2t 2 t2 2 dt
. ) 10 ]
2t ( t 2 2) 2
dt
2 arc tg t C 2 arc tg
2x 3 C x2
u
2
I2
I2
2u 2 2 Ln
I2
2 x 4 2 2 Ln
I2
2 x 4 2 2 Ln
3 (3 2t 2 ) 2 11 (3 2t 2 ) ( t 2 2) 10 ( t 2 2) 2 dt
2
2x x 4 dx x4
x u2 4
dx 2u du
) 11 ( 2
( 2x x 4 ) ( 2x x 4 )
dx
x z2
Hacemos :
1
2x x 4
dx 2z dz
dx
x dx x4
dx
2x 3 3 2t 2 t2 x 2 x2 t 2 2t dx dt (t 2 2) 2
x2 dx . 2x 3 3x 2 11x 10
2x x 4
Hacemos :
) dx x arc sen x C
x2 dx . 2x 3 3x 2 11x 10
dx
I1
I1
) dx x arc sen x
x2 dx . 2x 3 3x 2 11x 10
Hacemos :
dx
x
x2 dx . 2x 3 3x 2 11x 10
5.
) dx
2
du
( arc sen x
x 1 x x
x 3x 1 2
u 44 2
. 2u du 2 u2 2 u2 2
u2 u 8 2
C2
du 2 ( 1
8 u 8 2
2 x 4 2 2 Ln
( x 4 2 2)2 ( x 4 2 2) ( x 4 2 2) ( x 4 2 2)2 C2 x4
) du 2u 16 x4 2 2 x4 2 2
C2
du u 8
C2
2
152
dx
6.
2x x 4 dx
2 2x 2 2 Ln
( x 2) x4
2
2 2x 2 x 4 2 2 Ln
2 x 4 2 2 Ln
( x 4 2 2) x4
( x 2) 2 ( x 4 2 2 ) 2
2x x 4
( x 2) ( x 4 2 2 ) 2 2x 2 x 4 4 2 Ln C x4 2x x 4
(x 4)
2
2
e
C
8.
C
( ctg x Ln sen x ) dx e x Ln sen x C
x7
(1 x 4 ) 2 dx u x4
Hacemos :
dx
dv
du 4x 3 dx
v
x4
x3
x3
x7
x 3 x (1 3 x ) 2
dx 6z 5 dz
x
3
x (1 x ) 3
2
dx
x 3 x (1 3 x ) Hacemos :
2
6
6z 5
x 3 x (1 3 x ) 2 dx
x 3 x (1 3 x ) 2
3
z 6 (1 z 6 ) 2
(1 z ) z 2
(1 z )
v
dz 1 z 2
(1 z )
2 2
3 arc tg z
dz 6
dz 6
z
dv
6
2
2 2
du dz
3
z6
u z
dx
dz 1 z
2
z5
dz 6
z (1 z ) 5
6
2 2
z
dz (1 z )
(1 z )
2 2
u e
du e dx x
x4
1
6 e 4x
1 e x
dz
6e
1 z 2
1 z 2
3
4x
1 e x 6 e 4x
dz 1 z 2
3
dz 1 z 2
C 3 arc tg 6 x
36 x 1 3 x
1 e x
3z 1 z 2 C
dv ctg x dx
Ln sen x
x x x x e ( ctg x Ln sen x ) dx e Ln sen x e Ln sen x dx e Ln sen x dx
u ex du e x dx
2 (1 z 2 )
3z
1 x 4 C
dx
Hacemos :
1
3z
v
2 2
6 e 4x
1 e x
dz
e ( ctg x Ln sen x ) dx x x x e ( ctg x Ln sen x ) dx e ctg x dx e Ln sen x dx x
9.
2
x
Hacemos :
4 (1 x 4 )
(1 x 4 ) 2 dx 4 (1 x 4 ) 1 x 4 dx 4 (1 x 4 ) 4 Ln
x z6
dx
dx
(1 x 4 ) 2 1
dx
Hacemos :
7.
x
10.
dx 6
e 3x e x 1 e x
dx 6
u3 1 du 6 ( u 2 u 1 ) du 1 u u 1
dx 2u 3 3u 2 6u 6 Ln u 1 C dx 2e 3x 3e 2x 6e x 6 Ln e x 1 C
ax a x
ax a x ax a x
Hacemos :
dx
dx
a x ( a x) ( a x)( a x)
dx a
dx ax
x ax
x a sen 2 θ dx 2a sen θ cos θ dθ
dx
a x ( a x) a x dx dx ax ax
dx 2 a a x
x ax
dx
153
ax
a x ax
a x ax
a x
a sen θ a a sen 2 θ
dx 2 a a x 2a
sen 2 θ cos θ 1 sen 2 θ
n
sen kx
dθ 2 a a x 2a
dx 2 a a x 2a sen 2 θ dθ 2 a a x 2a (
sen 2 θ cos θ dθ cos θ
1 cos 2θ ) dθ 2
a dx 2 a a x a θ sen 2θ C 2 a a x a θ a sen θ cos θ C 2 a x ax
a x ax
a x
dx 2 a a x a arc sen ( dx a arc sen (
x
x
)a (
a
x
)(
a
ax
)C
a
)2 a ax x ax C
a
n
sen kx
k 1 n
sen kx
k 1
n
sen kx
k 1 n
sen x sen 2x sen (nx)
k 1 n
( 2 sen x cos kx ) sen (n 1)x sen nx sen x
n
sen kx sen x sen 2x sen (nx) k 1 dx cos x cos 2x cos (nx) dx n cos kx
k 1
n
2 sen x n
Determinaremos las fórmulas de las sumatorias, para lo cual aplicaremos la siguiente propiedad de sumatoria: n
[ f (k 1) f (k 1) ] f (n 1) f (n) f (m) f (m 1)
k m n
[ cos (k 1)x cos (k 1)x ] cos (n 1)x cos nx cos x cos 0
k 1 n
( 2 sen x sen kx ) cos (n 1)x cos nx cos x 1
k 1
n
sen kx cos (n 1)x cos nx cos x 1
k 1 n
cos (n 1)x cos nx cos x 1
k 1
2 sen x
cos kx sen (n 1)x sen nx sen x
k 1
k 1
sen kx
k 1
2 sen (
[ sen (k 1)x sen (k 1)x ] sen (n 1)x sen nx sen x sen 0
cos x cos 2x cos (nx) dx
2 sen x
n 1 n 1 n 1 )x 2 sen ( )x sen ( )x 2 2 2 2 sen x n 1 n 1 n 1 sen ( )x [ sen ( )x sen ( )x ] 2 2 2 sen x n 1 n x n 1 n x 2 sen ( )x sen x cos 2 sen ( )x sen x cos 2 2 2 2 2 2 x x sen x 2 sen cos 2 2 n 1 n sen ( )x sen x 2 2 x sen 2 2
. 2a sen θ cos θ dθ
ax
11.
dx 2 a a x
2
1 cos (n 1)x cos nx cos x 2 sen x
cos kx
k 1
sen (n 1)x sen nx sen x
2 sen x n 1 n 1 n 1 n 1 2 sen ( )x cos ( )x 2 sen ( )x cos ( )x n 2 2 2 2 cos kx 2 sen x k 1 n 1 n 1 n 1 cos ( )x [ sen ( )x sen ( )x ] n 2 2 2 cos kx sen x k 1 n 1 n x n 1 n x 2 cos ( )x sen x cos 2 cos ( )x sen x cos n 2 2 2 2 2 2 cos kx x x sen x k 1 2 sen cos 2 2
154 n
cos kx
k 1
n 1 n cos ( )x sen x 2 2 x sen 2
n 1 n sen ( )x sen x 2 2 x n 1 sen sen ( )x sen x sen 2x sen (nx) 2 2 dx dx dx cos x cos 2x cos (nx) n 1 n n 1 cos ( )x sen x cos ( )x 2 2 2 x sen 2 sen x sen 2x sen (nx) 2 n 1 cos x cos 2x cos (nx) dx n 1 Ln cos ( 2 )x C
13.
3x 2 4 2 x (4 3x 2 ) 3x 2 x 4 3x 2 4 2 x (4 3x ) 3x x 4 2
3x 2 4 2 x (4 3x 2 ) 3x 2 x 4
4 e x dx
4 e x dx
3x 2 4 2 x (4 3x ) 3x x 4 2
2
3x 2 4 2 x (4 3x 2 ) 3x 2 x 4 3x 2 4 2 x (4 3x ) 3x x 4 2
2
3x 2 4 2 x (4 3x 2 ) 3x 2 x 4
Hacemos :
x 3x 2 4
dx
dx dx
dx
2 x (3x 4)
2 x (3x 2 4) (3x 2 4) x
3x 2 4 2 x (4 3x 2 ) 3x 2 x 4
dx
x
sec 2 θ
dx
1 tg 2 θ
3x 4 2
C
C
3x 2 4
. e x dx
4 u z2
u z2 4
3x 4
z2
z2 4 e x dx 2z 2 Ln C 2 4 u 2 Ln z2
4 e x dx 2 4 e x 2 Ln
z 4 2
. 2z dz 2
z2
x 2
z 4 2
dz 2 ( 1
4 ex 2 4 ex 2
4 z 4
3x 2 4
sec 2 θ dθ sec θ dθ sec θ
14.
x2
C
dx 3 3
x2
dx
1 x (1 x ) 3
3 3
1 3
3x 2
dx
1 x (1 x ) 3
3 3
) dz 2z 8
4u 2
1 x (1 x ) 3
2
4u 2
3x 2 x 4
dθ
3x 2 x 4 x
x
4 e x dx
3x 2 4
3x 2 4
dx sec 2 θ dθ
dx Ln
3x 4 2
du 2z dz
2
2 x (3x 2 4) 3/2 1
ex
3x 2 x 4
du e x dx 4u 4 e x dx du u
Hacemos : dx
2 x (3x 4) 3x 4 1 2
x 3/2
dx
3x 2 4
tg θ
3x 2 4 2
3x 2 4
4 ex
dx Ln
u ex
Hacemos : 12.
2
dx Ln sec θ tg θ C
C
dz z 4 2
155
u 1 x
Hacemos :
3
du 3x dx 2
x2
dx
1 x 3 (1 x 3 ) 3
1 1 1 m , n , p 2 2 2
15.
1 3
du
1
u u3
u 1/2 (1 u 1/2 ) 1/2 du 3
1 u 1/2 z 2 m 1 1 Z n du 4u 1/2 z dz
x2
1 4 dx u 1/2 (z 2 ) 1/2 . 4u 1/2 z dz u 1/2 z 1 . u 1/2 z dz 3 3 1 x 3 (1 x 3 ) 3 x2
dx
1 x (1 x ) 3
3 3
4 4 4 4 dz z C 1 u C 1 1 x 3 C 3 3 3 3
2 3x 11 dx 3x 2 7x 6 x 3 2 3
2 3x 11 sec θ tg θ 11 dx 3x 2 7x 6 dθ 3x 2 7x 6 sec θ dθ x 3 tg θ 2 3 2 3
2 3x 11 dx 3x 2 7x 6 Ln sec θ tg θ C1 x 3 2 3
2 3x 11 dx 3x 2 7x 6 Ln x 3 2 3
2 3x 11 7 7 dx 3x 2 7x 6 Ln x x 2 x 2 C x 3 6 3 2 3 x 1
2 3x dx x 3
1/2 (6x 7) 11/2 2 3x 2 3x 2 3x dx dx dx dx 2 x 3 x 3 2 3x 3x 7x 6 3x 2 7x 6
2 3x 1 6x 7 11 dx dx dx x 3 2 2 3x 2 7x 6 3x 2 7x 6
Hacemos :
2 3x 11 dx 3x 2 7x 6 x 3 2 3
2 3x 11 dx 3x 2 7x 6 x 3 2 3
Hacemos :
16.
7 11 sec θ 6 6 11 dx sec θ tg θ dθ 6 x
2 3x 11 dx 3x 2 7x 6 x 3 2 3
dx x2
7 x2 3 dx
7 121 (x ) 2 6 36 x2
7 x2 3
11 sec θ tg θ 6 dθ 121 121 2 sec θ 36 36
17.
7 x 6 11 6
(2x x ) 2x x 2 2
x 1 (2x x 2 ) 2x x 2
x 1 (2x x ) 2x x
1 4x 2x
1 4x
sec θ tg θ sec 2 θ 1
dθ
7 7 x2 x 2 3 6 C1 11 11 6 6
x
dx dx
1 2 2x dx 2 (2x x 2 ) 3/2
u 2x x 2 du (2 2x) dx
2
2x
2
dx
1 du 2 u 3/2
1 u
C
1 2x x 2
C
dx dx
1 2 x Ln 2 dx Ln 2 1 (2 x ) 2
u 2x
Hacemos :
du 2 x Ln 2 dx
2x
1 4x
dx
1 du 1 1 u 1 1 2x Ln C Ln C Ln 2 1 u 2 2 Ln 2 1 u Ln 4 1 2x
156
18. I
I
Hacemos :
x x2 3
dx
x 2 3 ( x 2) 2
dx 2 sec 2 θ dθ
x 3 x 2 (x 3 x 2 ) ( x 3 x 2 ) x 2 u 3
Hacemos :
dx
I x 5
dx
x u 3 2
I
3u
du
3
u3 2 u3 3u 2
(u 1) (u u 2) 2
3u 2 u3 u 2
du
3u 2 (u 1) (u 2 u 2)
du
B(2u 1) C A u 1 u2 u 2
3u 2 A(u 2 u 2) B(2u 1)(u 1) C(u 1) 3u 2 (A 2B)u 2 (A B C)u (2A B C) A 2B 3 A B C 0 A 3/4, B 9/8, C 3/8 2A B C 0 3/4 9/8 (2u 1) 3/8 ] du u 1 u2 u 2 3 du 9 2u 1 3 du I du 2 2 4 u 1 8 u u 2 8 u u2 3 9 3 du I Ln u 1 Ln u 2 u 2 1 7 4 8 8 (u ) 2 2 4 3 9 3 2u 1 I Ln u 1 Ln u 2 u 2 arc tg ( )C 4 8 4 7 7 I [
3 I Ln 4
19. I
3
9 x 2 1 Ln 8
(4 x 2 )1/2 5 (4 x 2 )1/2
I [1
3
(x 2) x 2 2 2
3
4 7
dx
5 5 (4 x )
2 1/2
] dx x 5
3
dx 5 (4 x 2 )1/2
2 sec 2 θ 5 (4 4 tg 2 θ)1/2
I x 5 Ln sec θ tg θ 25
arc tg (
2 sec 2 θ
dθ x 5
dθ x 5
2 sec 2 θ dθ 5 2 sec θ
5 2 (1 tg 2 θ)1/2 25 sec 2 θ 1 5 4 I x 10 dθ x 10 ( sec θ ) dθ 5 2 sec θ 2 4 5 2 sec θ 25 125 dθ I x 5 sec θ dθ dθ 2 2 5 2 sec θ 25 125 dθ I x 5 Ln sec θ tg θ θ 2 2 5 2 sec θ 25 125 cos θ I x 5 Ln sec θ tg θ θ dθ 2 2 5 cos θ 2 2 25 125 1 5 I x 5 Ln sec θ tg θ θ ( ) dθ 2 2 5 5 cos θ 2 25 25 dθ I x 5 Ln sec θ tg θ θ dθ 25 2 2 5 cos θ 2 25 25 dθ I x 5 Ln sec θ tg θ θ θ 25 2 2 5 cos θ 2 dθ I x 5 Ln sec θ tg θ 25 5 cos θ 2 θ 2 1 z 2 2z Hacemos : z tg ( ) dθ dz , cos θ , sen θ 2 2 2 1 z 1 z 1 z 2 2
x3 x2
dx 3u 2 du 2
x 2 tg θ
2 3 x 2 1 7
)C
1 z 2 5 (1 z 2 ) 1 z 2
I x 5 Ln sec θ tg θ 25
dz 2 2
dz 5 (1 z ) 2 (1 z 2 ) dz 50 dz I x 5 Ln sec θ tg θ 50 x 5 Ln sec θ tg θ 2 7 3 7 3z z2 3 2
157
7 I x 5 Ln sec θ tg θ
25
Ln
21
3 7
Hacemos :
z C1
1
25
Ln
21
7 3z 7 3z
C1
θ 7 3 tg ( ) 2 C I x 5 Ln sec θ tg θ Ln 1 θ 21 7 3 tg ( ) 2 1 x 7 3 tg [ arc tg ( ) ] x2 4 x 25 2 2 I x 5 Ln Ln C1 1 x 2 2 21 7 3 tg [ arc tg ( ) ] 2 2 1 x 7 3 tg [ arc tg ( ) ] 25 2 2 2 I x 5 Ln x 4 x Ln C 1 x 21 7 3 tg [ arc tg ( ) ] 2 2 25
20.
e
4x
dx
xu
Hacemos :
4
22.
21.
e
dx e u . 4u 3 du 4 u 3 e u du 4 e u (u 3 3u 2 6u 6) C
e
4x
dx e u (4u 3 12u 2 24u 24) C e
1
4x
(4 x 3/4 12 x1/2 24 x1/4 24) C
Hacemos :
z
1 x
dx
1
x
1 z
dz z2
1 dz sen ( ) dx z 3 sen z . 3 x x z2
z sen z dz
1
1
x dx x a
1/2 (2x a) a/2 x x x dx dx dx dx 2 x a x x a x ax x 2 ax
x 1 2x a a dx a dx dx dx x 2 ax 2 2 2 x a 2 2 2 x ax x ax x ax
x a dx x (x a) x a 2
Hacemos :
1
dx a a2 (x ) 2 2 4
x
a a sec θ 2 2 a dx sec θ tg θ dθ 2 x
x 2 ax
a 2
a 2
a sec θ tg θ 2
a sec θ tg θ dθ 2 sec 2 θ 1
x a dx x (x a) x a 2
x a sec θ tg θ a dx x (x a) dθ x (x a) sec θ dθ x a 2 tg θ 2
x a dx x (x a) Ln sec θ tg θ C1 x a 2
x a 2x a 2 x 2 ax dx x (x a) Ln C1 x a 2 a a
x a dx x (x a) Ln 2x a 2 x 2 ax C x a 2
x a dx x (x a) Ln ( x x a ) 2 C x a 2
1
x 3 sen ( x ) dx
1
dx 4u 3 du 4x
dv sen z dz v cos z
x 3 sen ( x ) dx z cos z cos z dz z cos z sen z C x cos ( x ) sen ( x ) C
z
3 I x 5 Ln sec θ tg θ
u z du dz
2
2
dθ x (x a)
a a sec 2 θ 4 4
158
x dx x (x a) a Ln x a
23. I
x 1 x 2x
I
1 x
I1 sec θ tg θ dθ 2
dx
2x
dx
Hacemos :
x x2 x 2 3x 2
(2 x 3) ( x 3x 2) 1
I
x 3x 2 2
2x 3 x 2 3x 2
dx
I1 sec θ tg θ sec θ dθ sec θ tg θ sec θ ( 1 tg 2 θ ) dθ I1 sec θ tg θ sec θ dθ sec θ tg 2 θ dθ
x 2 3x 2
dx
3 1 I 4x 2 12 x 8 (x ) 2 dx 2 4
I1 sec θ tg θ Ln sec θ tg θ sec θ tg 2 θ dθ
dx
I1 sec θ tg θ Ln sec θ tg θ I1
x 2 3x 2 dx
2I1 sec θ tg θ Ln sec θ tg θ
dx 3 1 (x ) 2 2 4
x x 2 3x 2
3 2
1 2
1 sec θ tg θ 1 1 1 2 I 4x 12 x 8 sec θ sec θ tg θ dθ 2 dθ 2 4 4 1 1 2 sec θ 4 4 sec θ tg θ 1 I 4x 2 12 x 8 sec 2 θ 1 sec θ tg θ dθ dθ 4 sec 2 θ 1 sec θ tg θ 1 sec θ tg 2 θ dθ dθ 4 tg θ 1 I 4x 2 12 x 8 sec θ tg 2 θ dθ sec θ dθ 4
1 1 sec θ tg θ Ln sec θ tg θ C1 2 2 1 1 2 I 4x 12x 8 Ln sec θ tg θ sec θ tg θ Ln sec θ tg θ C1 8 8 1 7 I 4x 2 12x 8 sec θ tg θ Ln sec θ tg θ C1 8 8 1 7 I 4x 2 12x 8 (2x 3) (2 x 2 3x 2 ) Ln 2x 3 2 x 2 3x 2 C 8 8 1 7 I 4x 2 12x 8 (2x 3) 4x 2 12x 8 Ln 2x 3 4x 2 12x 8 C 8 8
I1
x 2 3x 2
2
I 4x 2 12 x 8
v sec θ
3
dx
x 2 3x 2
3 1 sec θ 2 2 1 dx sec θ tg θ dθ 2
dv tg θ sec θ dθ
du sec θ dθ
dx
I 2 x 2 3x 2 x 2 3x 2 dx
x
u tg θ 2
2
Hacemos :
1 sec θ tg 2 θ dθ 4 I1
x (1 x)
I
I 4x 2 12x 8 Ln sec θ tg θ
x x a C
24. I I
dx x 1 5
dx [ x 1 ][ x2 α
Hacemos : I
(1 5) (1 5) x 1][ x2 x 1] 2 2 (1 5) (1 5) , β 2 2 dx
( x 1) ( x2 α x 1) ( x2 β x 1) 1
( x 1) ( x α x 1) ( x β x 1) 2
2
B(2x α) C D(2x β) E A x 1 x 2 α x 1 x 2 β x 1
159
1 A(x α x 1)(x β x 1) B(2x α)(x 1)(x β x 1) C(x 1)(x β x 1) 2
2
2
2
D(2x β)(x 1)(x 2 α x 1) E(x 1)(x 2 α x 1)
I
1 A(x 4 x 3 x 2 x 1) B(2x α)(x 1)(x 2 β x 1) C(x 1)(x 2 β x 1)
D(2x β)(x 1)(x α x 1) E(x 1)(x α x 1) 2
I
(A β B α C α D β E)x (A α B C β D E) A2B2D 0
A β B α Cα D β E 0 A β B α C α D β E 0 A α B Cβ D E 1 A α BCβ D E 0
I
5 1 4 5
I
5 1 5 1 (2x β) 20 4 5 x 2 β x 1
4 5
Donde :
x 2 α x 1
α
(1 5) 2
,
4 5
β
dx
x 2 β x 1 (1 5) 2
dx (1 5 ) x2 x 1 2
dx x2
(1 5 ) x 1 2
5 1 4 5
dx x2
(1 5 ) x 1 2
dx x2
(1 5 ) x 1 2
5 1 4 5
dx x2
(1 5 ) x 1 2
I
(x 1) 5 2x 2 (1 5 ) x 2 1 5 Ln Ln 20 20 x 5 1 2x 2 (1 5 ) x 2
5 1 4 5
1 5 x 2 α x 1 1 Ln x 1 Ln Ln ( x 2 α x 1 ) ( x 2 β x 1 ) 2 5 20 20 x β x 1 5 1
5 1 4 5
(x 1) 5 2x 2 (1 5 ) x 2 1 5 5 1 dx Ln Ln 5 2 20 20 4 5 (1 5 ) x 1 2x (1 5 ) x 2 x2 x 1 2 5 1 dx 4 5 (1 5 ) x2 x 1 2
dx
dx
I
x 2 β x 1
1 5 1 5 1 Ln x 1 Ln x 2 α x 1 Ln x 2 β x 1 5 20 20 5 1 dx 5 1 dx 2 2 4 5 x α x 1 4 5 x β x 1
5 1
5 1 4 5
] dx
dx (1 5 ) x2 x 1 2
(x 1) 4 2x 2 (1 5 ) x 2 1 5 Ln Ln 20 20 x 4 x 3 x 2 x 1 2x 2 (1 5 ) x 2
2x β 1 dx 5 1 2x α 5 1 dx 5 1 dx dx 2 2 5 x 1 20 x 2 α x 1 20 4 5 x α x 1 x β x 1
I
5 1 5 1 (2x α) 20 4 5 x 2 α x 1
5 1 4 5
I
2x 2 (1 5 ) x 2 1 5 1 Ln (x 1) 4 Ln Ln x 4 x 3 x 2 x 1 2 20 20 2x (1 5 ) x 2 20
1 5 1 5 1 5 1 5 1 , B , C , D , E 5 20 20 4 5 4 5
1 I [ 5 x 1
5 1 4 5
2
1 (A 2 B 2 D)x 4 (A α B C β D E)x 3 (A β B α C α D β E)x 2
A
2x 2 (1 5 ) x 2 1 5 1 Ln x 1 Ln Ln x 4 x 3 x 2 x 1 2 5 20 2x (1 5 ) x 2 20
I
dx [ x
(1 5 ) 2 10 2 5 ] 4 16
5 1 4 5
dx [ x
(1 5 ) 2 10 2 5 ] 4 16
(x 1) 5 2x 2 (1 5 )x 2 4x (1 5 ) 10 2 5 1 5 Ln Ln arc tg [ ] 5 2 20 20 10 x 1 2x (1 5 )x 2 10 2 5
4x (1 5 ) 10 2 5 arc tg [ ] C 10 10 2 5
160
25.
e
2x
e
2 x
e 2x e 2x e 2x e 2x
e 2x e 2x e
2x
e
2x
e 2x e 2x
e 2x e 2x
e 2x e 2x e
2x
e
2x
e 2x e 2x
e 2x e 2x
e 2x e 2x
e 2x e 2x
e 2x e 2x
e 2x e 2x
e 2x e 2x e
2x
e
2x
e 2x e 2x 26.
27.
dx dx dx
e 2x e
2x
e e
2x
2x
e
2x
e 2x (e 2x e 2x ) e 4x e
4x
1
e 2x
dx
dx
e
2x
e
dx
e 4x 1 e
4x
2x
du
dx
e 2x e 2x e 2x (e 2x e 2x )
dx
dx
1 cos x dx 1 cos x dx 1 cos x
arc sen 2x
arc sen 2x
1 2x 1 2x
dx
v
1 2x
2x
2 x 1 dx ( 2
dx
1 1 e 4x 1 Ln e 4x 1 Ln C 4 4 e 4x
2 x 1 dx Ln 2 x Ln 2 2 x (2 x 1) dx
dx
1 1 1 Ln e 4x 1 Ln e 4x 1 Ln e 4x C 4 4 4
Hacemos :
dx
1 1 1 Ln e 4x 1 (4x) C Ln e 4x 1 x C 2 4 2
dx
1
dx
dx 2x
dx 2x (arc sen 2x ) ( 1 2x ) C
1 1 Ln e 4x 1 Ln 1 e 4x C 4 4
1 2x
dx (arc sen 2x ) ( 1 2x )
dx
28.
dx
1 2x
1 4e 1 4e 4x dx dx 4 e 4x 1 4 1 e 4x
arc sen 2x 1 2x
dv
dx
4x
4 x 1
2 x 1 dx 4x 1 4x 1
x
1
2x
2 2x 1
) dx
2
2x dx x2 x Ln 2 2 1
2 x Ln 2
u 2x du ( 2 x Ln 2 ) dx
dx 1 cos x dx
u arc sen 2x
Hacemos :
dx
1
x sec ( ) dx 2 2
x 2 cos ( x ) 2 cos 2 ( ) 2 2 2 x dx 2 x x sec ( ) . Ln sec ( ) tg ( ) C 2 2 2 2 2 2 x x 2 Ln sec ( ) tg ( ) C 2 2
4 x 1
2 x 1
dx
2x 2 du x Ln 2 Ln 2 u (u 1)
4 x 1
2 x 1
dx
2x 2 du 2 du x Ln 2 Ln 2 u Ln 2 u 1
4 x 1
2 x 1
dx
2x 2 2 x Ln u Ln u 1 C Ln 2 Ln 2 Ln 2
4 x 1
2 x 1
dx
2x 2 2 x Ln 2 x Ln 2 x 1 C Ln 2 Ln 2 Ln 2
4 x 1
2 x 1
dx
2x 2 2 x (x Ln 2 ) Ln 2 x 1 C Ln 2 Ln 2 Ln 2
4 x 1
dx
2x 2 2x 2 x 2x Ln 2 x 1 C x Ln 2 x 1 C Ln 2 Ln 2 Ln 2 Ln 2
2 x 1
dx
29.
mx dx x
2x 2 1 1 x ( ) du Ln 2 Ln 2 u u 1
161
1/2 (m 2x) m/2 mx mx mx mx dx dx dx dx 2 x mx x mx x mx x 2
mx 1 m 2x m dx m dx dx dx mx x 2 x 2 2 2 mx x 2 mx x 2 mx x 2
mx m dx mx x 2 x 2
Hacemos :
30.
m m x sec θ 2 2 m dx sec θ tg θ dθ 2
mx m dx mx x 2 x 2
mx x
m sec θ tg θ 2 m2 m2 sec 2 θ 4 4
m x 2
2
m 2
dθ
mx m sec θ tg θ m sec θ tg θ dx mx x 2 dθ mx x 2 dθ 2 x 2 2 tg θ sec θ 1
mx m m dx mx x 2 sec θ dθ mx x 2 Ln sec θ tg θ C1 x 2 2
mx m m 2x 2 mx x 2 dx mx x 2 Ln C1 x 2 m m
mx m m 2x 2 mx x 2 dx mx x 2 Ln C1 x 2 m
mx m dx mx x 2 Ln m 2x 2 mx x 2 C x 2
mx m dx mx x 2 Ln ( x m x ) 2 C x 2
mx dx mx x 2 m Ln x
1 x 2 x4
arc sen x dx
x mx C
31.
1 x 2 x4 1 x 2 x
4
1 x x
4
1 x 2
(1 x 2 ) 3/2 3x 3
arc sen x dx
(1 x 2 ) 3/2 arc sen x
arc sen x dx
(1 x 2 ) 3/2 arc sen x
arc sen x dx
(1 x )
3x 3
2 3/2
3x
dx
x4
v
3x 2
1 x 2
dv
dx
du
dx m m2 ( x) 2 2 4
u arc sen x
Hacemos :
3
arc sen x 3
1 x 2 3x 3
dx
1 dx 1 dx 3 x3 3 x 1
1 Ln x C 3 6x 2
sen 2 x
a b cos 2 x dx Hacemos :
z
dz tg x dx , cos x 2 1 z
1 1 z 2
, sen x
z 1 z 2
z2 2
1 z 2 . dz a b cos 2 x dx b 1 z 2 a 2 1 z sen x
sen 2 x
z2 [ a (1 z 2 ) b ] (1 z 2 )
dz
z2
a b cos 2 x dx [ az 2 (a b) ] (1 z 2 ) dz z2 [ az (a b) ] (1 z ) 2
2
A(2az) B az (a b) 2
C(2z) D 1 z 2
A(2az)(1 z 2 ) B(1 z 2 ) C(2z)[ az 2 (a b) ] D[ az 2 (a b) ] z 2 (2a A 2a C)z 3 (B a D)z 2 [ 2a A 2(a b) C ]z [ B (a b) D ] 2a A 2a C 0 B a D 1 ab 1 , C 0, D A 0, B 2a A 2(a b) C 0 b b B (a b) D 0 z2
162
ab 1 sen 2 x ab dz 1 dz b b a b cos 2 x dx [ az 2 (a b) 1 z 2 ] dz b az 2 (a b) b 1 z 2 2
sen x
a b cos 2 x
dx
sen 2 x
a b cos 2 x dx
ab dz 1 dz ab 2 a b b 1 z 2 z ( ) a ab a az 1 . arc tg ( ) arc tg z C ab b ab ab
2a x ax
ax cos θ dx a 2 x 2 2a dθ ax (1 sen θ) cos θ
2a x ax
ax dθ dx a 2 x 2 2a ax 1 sen θ
2a x ax
ax 1 sen θ dx a 2 x 2 2a dθ ax cos 2 θ
2a x ax
ax dx a 2 x 2 2a ( sec 2 θ sec θ tg θ ) dθ ax
2a x ax
ax dx a 2 x 2 2a tg θ 2a sec θ C ax
sen 2 x
a tg x 1 a b 1/2 arc tg ( ) arc tg (tg x) C b ab
a b cos 2 x dx ( ab 2 )
sen 2 x
a tg x x a b 1/2 arc tg ( ) C b ab
2a x ax
2a x ax
a b cos 2 x dx ( ab 2 )
32.
2a x ax
2a x ax
2a x ax 2a x ax
Hacemos :
ax dx ax
(2a x) (a x) ax 2a 2 ax x 2 dx dx dx ax (a x) a 2 x 2 (a x) a 2 x 2
33.
1/2 (a x) (2x) 2a 2 ax dx dx ax (a x) a 2 x 2
ax 1 2x dx dx dx 2a 2 2 2 ax 2 a x (a x) a 2 x 2
ax dx dx a 2 x 2 2a 2 ax (a x) a 2 x 2
x a sen θ dx a cos θ dθ
a x
2a x ax
ax a cos θ dx a 2 x 2 2a 2 dθ ax (a a sen θ) a 2 a 2 sen 2 θ
2a x ax
ax cos θ dx a 2 x 2 2a dθ ax (1 sen θ) 1 sen 2 θ
a2 x2
2a x ax
1 sen θ 1 sen 2 θ
dθ
ax 2ax 2a 2 dx a 2 x 2 C ax a2 x2 a2 x2 2a (a x) ax dx a 2 x 2 C a 2 x 2 2a 2 2 ax a x
x2 x x 1 x 2 1
x2 x x 1 x 2 1 x2 x x 1 x 2 1 x2 x x 1 x 2 1 x2 x x 1 x 1 2
x2 x x 1 x 2 1
Hacemos :
a 2 x 2 2a
ax C ax
dx
dx
(x 2 x) ( x 1 x 2 1) ( x 1 x 2 1) ( x 1 x 2 1)
dx
(x 2 x) ( x 1 x 2 1)
dx
(x 2 x) ( x 1 x 2 1)
x 1 x 2 1
dx
x x2
dx
dx
(x 2 x) ( x 1 x 2 1) x2 x
dx ( x 1 x 2 1) dx
dx x 1 dx x 2 1 dx
x tg θ dx sec 2 θ dθ
x 2 1
x
1
dx
2 (x 1) 3/2 x 2 1 dx 3
163
x x 2
x 1 x 2 1
x x 2
x 1 x 1 2
dx
dx
2 (x 1) 3/2 tg 2 θ 1 sec 2 θ dθ 3
2 (x 1) 3/2 sec 3 θ dθ 3
x 2 1 x 1 3x 2 x 4 x 2 1 x 1 3x 2 x 4
dx Ln
x 2 1 1 3x 2 x 4 C x x2
dx Ln
x 2 1 1 3x 2 x 4 C x
I1
I1 sec 3θ dθ 1 1 Ln sec θ tg θ sec θ tg θ C1 (Idem Prob. 5 - Int. por partes) 2 2 2 x x 2 1 1 dx (x 1) 3/2 Ln sec θ tg θ sec θ tg θ C 2 3 2 2 x 1 x 1
I1
34.
x x 2
x 1 x 1 2
dx
x 1 x 1 3x 2 x 4 x 1 2
x 1 3x 2 x 4 x 2 1 x 1 3x 2 x 4
u
dx ( x 1)
x 1 2
x 1 3x 2 x 4
3
1 3x 3x 2 x 3 x 3 dx
( x 1 ) 3 (x 1) 3 x 3
u
du x 1 2
dx x
1 3x 2 x 4
2
x
2
x 1 x
2
1 x 2 2 ( ) 1 x
dx
1 (x ) 2 1 x
1 x
x 2 1 2
dx
dx
I
du 3
1 u
3
dx
x 3 ( x 1)2 3 1 ( ) x 1
x x 1 dx ( x 1)2
2
dx
x2 x 2 1
dx
x
I
3
( x 1 ) 1 3x 3x 2
dx
x
du
x 2 1
I
dx
Hacemos :
2
Hacemos :
2 1 1 (x 1) 3/2 Ln x x 2 1 x x 2 1 C 3 2 2
35. I
(1 u 3 ) 1/3 du 1 3
m 0, n 3, p
1 u 3 z 3 u 3 m 1 p 0 Z u 3 1 z 3 n du u 4 z 2 dz
I (z 3 u 3 ) 1/3 . u 4 z 2 dz z 1u 1 . u 4 z 2 dz I u 3 z dz
dx
du u 2 1
Ln u u 2 1 C
1 1 dx Ln x (x ) 2 1 C 2 4 x x x 1 3x x
z (z 1) (z z 1) 2
z z 1
3
dz
z (z 1) (z 2 z 1)
B(2z 1) C A z 1 z 2 z 1
z A(z 2 z 1) B(2z 1)(z 1) C(z 1) z (A 2B)z 2 (A B C)z (A B C)
dz
164
A 2B 0 A B C 1 A 1/3, B 1/6, C 1/2 ABC 0
Hacemos :
du
1/3 1/6 (2z 1) 1/2 ) dz z 1 z 2 z 1 1 dz 1 2z 1 1 dz I dz 2 2 3 z 1 6 z z 1 2 z z 1 1 1 1 dz I Ln z 1 Ln z 2 z 1 1 3 3 6 2 (z ) 2 2 4 1 1 1 2z 1 I Ln z 1 Ln z 2 z 1 arc tg ( )C 3 6 3 3 I (
I
1 Ln 3
3
3
1 u 3 1 1 Ln u 6
(1 u 3 ) 2 u2
3
1 u 3 1 2 1 arc tg ( u 3
37. 3
1 u 3 u 3u
)C
x 3 x 2 3 1 ( ) 1 x 1 x 1 arc tg [ ] C x 3 3( ) x 1 3 (1 3x 3x 2 ) 2/3 3 1 3x 3x 2 1 x 1 3x 3x 2 1 I Ln Ln 1 3 x 6 x x2
1
arc tg (
2
3
36.
x a3 x3 x a3 x3
1 3x 3x x 2
)C
3x
a 3/2 3 x
x a3 x3
dx
2 x 3/2 arc sen ( )C 3 a 3/2
sec x sec 2x dx dx
cos x
cos x
sec x sec 2x dx cos x cos 2x cos 2 x cos 2x dx (1 sen 2 x) (1 2sen 2 x) dx u sen x du cos x dx du
2
sec x sec 2x dx (1 u 2 ) (1 2u 2 ) ( 1 2u 2
1 1 u 2 du
2
sec x sec 2x dx
1
sec x sec 2x dx
1
Ln
2
2
Ln
1 2u 1 2u
u
1 1 u Ln C 2 1 u
1 2 sen x 1 2 sen x
1 1 sen x Ln C 2 1 sen x
38. I x 2 x 2 2 x 3 x 2 x 1 dx
Sabemos que:
x a 3/2 1 (
x 3/2 2 ) a 3/2
dx
) du
du du du sec x sec 2x dx 2 1 2u 2 1 u 2 1 2 1 u 2
I (x 1) (x 2 1) 2 (x 1) (x 2 1) dx
dx dx
x 3/2
dx 2a 3/2 x 2 3 x 2 du 2 dx dx arc sen u C 3 3 3 a3 x3 x 3/2 2 1 u 2 2a 3/2 1 ( ) a 3/2
Hacemos : x 3 x 3 2 3 x 3 3 1 ( 3 [1 ( ) ) ] 1 ( ) 1 1 x 1 x 1 x 1 I Ln 1 Ln 1 x x 2 x 3 6 ( ) x 1 x 1 x 1
3
u
A B 2 AB A B
I ( x 1 x 2 1 ) dx x 1 dx x 2 1 dx
I
2 (x 1) 3/2 x 2 1 dx 3
165
Hacemos :
x tg θ
x 2 1
x
dx sec θ dθ 2
1
I
2 2 (x 1) 3/2 tg 2 θ 1 sec 2 θ dθ (x 1) 3/2 sec 3θ dθ 3 3
I1
I1 sec θ dθ 3
1 1 Ln sec θ tg θ sec θ tg θ C1 (Idem Prob. 5 - Int. por partes) 2 2 2 1 1 I (x 1) 3/2 Ln sec θ tg θ sec θ tg θ C 3 2 2 2 1 1 I (x 1) 3/2 Ln x x 2 1 x x 2 1 C 3 2 2
I1
39.
4x dx 2x
4x 4x 4x 4x 4x dx dx dx dx 2 2x 2 x 4x 8 2x x 9 (1 x) 2
Hacemos :
40.
u 1 x du dx
4x 3 u du 1 2u dx du 3 du 2 2 2x 2 9u 9u 9u2
4x u 1 x dx 3 arc cos ( ) 9 u 2 C 3 arc cos ( ) 9 (1 x) 2 C 2x 3 3
4x 1 x dx 3 arc cos ( ) 8 2x x 2 C 2x 3
ex (1 e x ) e x 1
Hacemos :
dx
u 2 e x 1 2u du e x dx
(1 e ) e 1 x
x
ex (1 e x ) e x 1 ex (1 e x ) e x 1
dx
2u (1 u 1) u 2
2
du 2
dx 2 arc tg (
u
dx 2 arc tg
e x 1 C 2
2
u (u 2) u 2
) C 2 arc tg (
du 2
e x 1
du u 2 2
)C
2
sec x sec 2x dx arc sen (tg x)
Hacemos :
u arc sen (tg x) du sec x sec 2x dx
42.
41.
ex
sec x sec 2x du dx arc sen (tg x) u
Ln u C Ln arc sen (tg x) C
1 cos x dx , 0 a x cos a cos x
1 cos x 1 cos x dx dx cos a cos x cos a cos x
1 cos x dx cos a cos x
Hacemos :
x 2 sen 2 ( ) 2
dx a 2 x 2 cos ( ) 1 2 cos ( ) 1 2 2 x x sen ( ) sen ( ) 2 2 dx dx a x x 2 2 cos ( ) cos ( ) cos ( ) a 2 2 2 ]2 cos ( ) 1 [ a 2 cos ( ) 2
x cos ( ) 2 u a cos ( ) 2 x sen ( ) 2 dx du a 2 cos ( ) 2
2
166
43.
x sen ( ) 2
1 cos x dx 2 cos a cos x
1 cos x dx 2 arc sen u C 2 arc sen [ cos a cos x
3
e 2x
x cos ( ) a 2 ]2 2 cos ( ) 1 [ a 2 cos ( ) 2
dx 2
1 (A B D)u 3 (3A 5B C 2D)u 2 (8B D)u (4A 4B C 2D)
du
ABD 0
3A 5B C 2D 0 A 1/2, B 1/18, C 1/3, D 4/9 8B D 0 4A 4B C 2D 1 1/2 1/18 1/3 4/9 I [ ] du 1 u 1 u (2 u) 2 2 u
1 u 2
x cos ( ) 2 ] C a cos ( ) 2
1 du 1 du 1 du 4 du 2 1 u 18 1 u 3 (2 u) 2 9 2 u 1 1 1 4 I Ln 1 u Ln 1 u Ln 2 u C 2 18 3 (2 u) 9 1 I Ln (1 u)1/2 Ln (1 u) 1/18 Ln (2 u) 4/9 C 6 3u 1 I Ln (1 u)1/2 (1 u) 1/18 (2 u) 4/9 C 6 3u 1 I Ln (1 sen x)1/2 (1 sen x) 1/18 (2 sen x) 4/9 C 6 3 sen x I
dx
1 e x
u 3 1 e x
Hacemos :
e x u 3 1
3u 2 du e x dx
3 3
e 2x 1 e x e 2x 1 e x
44. I
dx dx
ex ex 3
1 e x
dx 3
(u 3 1) u 2 3 3 du 3 (u 4 u) du u 5 u 2 C u 5 2
3 3 3 (1 e x ) 5/3 (1 e x ) 2/3 C (2e x 3) (1 e x ) 2/3 C 5 2 10 dx
45.
tg x
(sec 999 x 1) 2 dx u sec 999 x
Hacemos :
( cos x 4 sen x 5 ) cos x 2
dx
I
du 999 sec 998 x sec x tg x dx dx
( 1 sen 2 x 4 sen x 5 ) cos x ( sen 2 x 4 sen x 4 ) cos x dx cos x cos x I 2 dx dx 2 2 2 cos x (2 sen x) cos x (2 sen x) (1 sen x) (2 sen x) 2 Hacemos : u sen x du cos x dx du du I 2 2 (1 u ) (2 u ) (1 u ) (1 u ) (2 u ) 2 1 (1 u) (1 u) (2 u)
2
A B C D 1 u 1 u (2 u) 2 2 u
1 A(1 u)(2 u) 2 B(1 u)(2 u) 2 C(1 u)(1 u) D(1 u)(1 u)(2 u)
tg x
(sec 999 x 1) 2 1 u (u 1)
2
dx
999 sec 998 x sec x tg x 1 1 du dx 999 999 2 999 sec x (sec x 1) 999 u (u 1) 2
A B C 2 u (u 1) u 1
1 A(u 1) 2 B(u) C(u)(u 1) 1 (A C)u 2 (2A B C)u A AC 0 2A B C 0 A 1, B 1, C 1 A 1
167
1 1 1 1 (sec 999 x 1) 2 dx 999 [ u (u 1) 2 u 1 ] du tg x 1 du 1 du 1 du (sec 999 x 1) 2 dx 999 u 999 (u 1) 2 999 u 1
1 A(2x a )(x 2 ax a 2 ) B(x 2 ax a 2 ) C(2x a )(x 2 ax a 2 )
tg x
D(x 2 ax a 2 ) 1 (2A 2C)x 3 (a A B a C D)x 2 (a 2 A a B a 2 C a D)x
tg x
1 1 1 (sec 999 x 1) 2 dx 999 Ln u 999 (u 1) 999 Ln u 1 C tg x 1 1 1 999 999 (sec 999 x 1) 2 dx 999 Ln sec x 999 (sec 999 x 1) 999 Ln sec x 1 C tg x
(sec 999 x 1) 2 dx Ln 46.
sec x
1 1 Ln sec 999 x 1 C 999 999 (sec 999 x 1)
2 sen x dx
cos x
2 sen x
Hacemos :
cos x 2 sen x
cos 2 x
cos x
dx
(1 sen 2 x)
2 sen x
2u
I
du 2
1 (u 2 2) 2 dx 1/2 1/2 cos x 2 sen x 2 (3 u 2 ) (u 2 1) 2 ( 3 u 2 u 2 1 ) du
cos x cos x
dx
47. I I
2 sen x 2 sen x
[ 1 (u 2 2) 2 ] u du
I
du
du 3 u2 1
du u 2 1
3
Ln
3
2 3
1
Ln
2 3
2 sen x
3u 3 u
1 Ln 2 2 sen x
I
1 u 1 Ln C 2 u 1
2 sen x 1 2 sen x 1
C
I
3
2 2
1
2
2
2
(x ax a ) (x ax a ) 2
2
2
4a 3 1
4a 3 1 4a 3 1 4a 3
1 4a
A(2x a ) B x ax a 2
2
C(2x a ) D x 2 ax a 2
4a
(2x a)
3
1 4a 2 ] dx
x 2 ax a 2
2x a
1
Ln x 2 ax a 2
Ln
Ln
Ln
x 2 ax a 2 x 2 ax a 2 x 2 ax a 2 x 2 ax a 2 x 2 ax a 2 x 2 ax a 2
u
4
(x ax a ) (x ax a ) 2
1 2
2x 2 2a 2
1
dx dx dx 4a 3 x 2 ax a 2 4a 3 x 2 ax a 2 4a 2 x 4 a 2 x 2 a 4
Hacemos :
I
1
2x a
1
du
x a x x dx 4
(2x a)
4a 4a 2 2 x ax a
dx
1 2
1
dx
2
2 sen x
dx
a ABa CD 0 1 1 1 1 A 3 , B 2 , C 3 , D 2 a 2A a B a 2C a D 0 4a 4a 4a 4a 3 2 3 2 a A a B a C a D 1
I
2 sen x u 2 sen x 2u du cos x dx u
2
dx
cos x
2A 2C 0
I [
dx
cos x
(a 3 A a 2 B a 3 C a 2 D)
3
Ln
4a 3
Ln x 2 ax a 2
2a 2 2a 2 1 2a 2
x 4 a 2 x 2 a 4 dx 3a 2 x 2 (a 2 x 2 ) 2 dx
3a 2 (
1 x a2 x2
x a x2 (a 2 x 2 ) 2
x ax a
2
dx
1 2a
2a 2
x2 a2
x 4 a 2 x 2 a 4 dx
x2 a2
1
x2 a2
1
x2 a2
1
2
x 2 ax a 2 2
1
du
2
3a 2 u 2 1
.
x2 a2
2 2 2 ) 2 1 (a x )
dx
168
I
1 4a 3 1
I
4a
3
1
I
4a
x ax a 2
3
Ln
2
x 2 ax a 2 x 2 ax a 2
Ln
x ax a 2
2
x 2 ax a 2
Ln
x ax a 2
2
1 6a 4
du u
1
2a
3
2a
3
tgh (Ln x) dx e Ln x e Ln x dx
1 3a 2
3
a 3x a2 x2
)C
51.
48. Determinar un polinomio cuadrático P(x) tal que P(0) 1, P' (0) 0 de modo P(x)
Sea P(x) ax 2 bx c P' (x) 2ax b P(0) a (0) 2 b (0) c 1 c 1 P' (0) 2a (0) b 0 b0 Si
ax 2 bx c x 3 (1 x) 2
es una función racional por el teorema del resto para x 1
a (1) 2 b (1) c 0
52.
17
2
Hacemos :
u Ln x
53.
50.
17
x
17
dx ( 1
2 x 2 1
) dx
1 cos x dx
1 cos x 1 cos x
dx
1 cos 2 x
dx
sen x 1 cos x
dx
ea
1 x 2 da
senh
da
1
ea 1 x 2
C
x ( ) dx a
x u senh 1 ( ) dv dx a dx du v x x2 a2 x 1 2x 1 x 1 x 1 x senh ( a ) dx x senh ( a ) 2 2 dx x senh ( a ) 2 2 2 dx x a x a x x 1 1 2 2 senh ( a ) dx x senh ( a ) x a C
dv x 17 dx
dx 1 v x 18 x 18 1 1 1 1 18 Ln (x 2 ) dx 2 ( x 18 Ln x x 17 dx ) 2 ( x 18 Ln x x )C 18 18 18 324 1 1 1 1 Ln (x 2 ) dx 2x 18 ( Ln x ) C x 18 ( Ln x )C 18 324 9 162
tgh (Ln x) dx
Hacemos :
du
x
1 cos x dx
1 x 2
P(x) x 1
x Ln (x ) dx 17 2 17 x Ln (x ) dx 2 x Ln x dx
ea
a 1
2
49.
x 1 2
1 cos x 1 cos x sen x 1 cos x dx 1 cos x dx Hacemos : u 1 cos x du sen x dx du 1 cos x dx u 2 u C 2 1 cos x C
x 3 (1 x) 2 dx es una función racional
que
x 2 1
dx
3 arc tg (
1 x dx 1 x x x
tgh (Ln x) dx dx 2 x 2 1 x 2 arc tg x C
arc tg ( a 3 u ) C
1
2
e Ln x e Ln x
54.
tgh
1
x ( ) dx a
169
x Hacemos : u tgh 1 ( ) dv dx a a du dx v x 2 a x2 x a 2x 1 x 1 x 1 x tgh ( a ) dx x tgh ( a ) a a 2 x 2 dx x tgh ( a ) 2 a 2 x 2 dx a 1 x 1 x 2 2 tgh ( a ) dx x tgh ( a ) 2 Ln a x C
55.
x e ax
(1 ax) 2
u xe
xe
ax
xe
ax
1
(1 ax) 2 dx a (1 ax) a e (1 ax) 2 dx 56.
x
2
(1 ax ) 2 1 v a (1 ax )
ax e
ax
e
ax
ax
ax e
a 2 (1 ax)
u1
x a
arc cos ( )
du 1
dx ax
ax
xe 1 ax e C a (1 ax) a 2
C
e
ax
a 2 (1 ax)
C
dx a2 x2
dv1
x 2 dx
v1
x3
1 3
x 1 x 1 x3 arc cos ( ) dx x 3 arc cos ( ) dx a 3 a 3 a2 x2 x Hacemos : u 2 x2 dv 2 dx a2 x2
x
2
du 2
x
2
2
x
2
x
2
x arc tg ( ) dx a
2x dx
v2
x u arc tg ( ) a a du dx a2 x2
dv x 2 dx v
1 3
x3
x 1 3 x a x3 2 x arc tg ( ) dx x arc tg ( ) dx a 3 a 3 a2 x2
x arc cos ( ) dx a
Hacemos :
x
x 1 x 1 2 arc cos ( ) dx x 3 arc cos ( ) x 2 a 2 x 2 (a 2 x 2 ) 3/2 C a 3 a 3 9 x 1 3 x 1 2 2 arc cos ( ) dx x arc cos ( ) [ 3x 2 (a x 2 ) ] a 2 x 2 C a 3 a 9 x 1 x 1 arc cos ( ) dx x 3 arc cos ( ) ( x 2 2a 2 ) a 2 x 2 C a 3 a 9
dx
dv
ax
du (1 ax) e ax dx
xe
2
Hacemos :
dx
Hacemos :
ax
57.
x
a2 x2
x 1 x 1 1 arc cos ( ) dx x 3 arc cos ( ) x 2 a 2 x 2 2x a 2 x 2 dx a 3 a 3 3
x 1 3 x a a 2x 2 x arc tg ( ) dx x arc tg ( ) ( x ) dx a 3 a 3 a2 x2 x 1 3 x a a3 2 x arc tg ( ) dx x arc tg ( ) x dx a 3 a 3 3 x 1 3 x a 2 a3 2 x arc tg ( ) dx x arc tg ( ) x a 3 a 6 6
x
a 2 x 2 dx 2x
a 2 x 2 dx
x 1 3 x a 2 a3 2 x arc tg ( ) dx x arc tg ( ) x Ln ( a 2 x 2 ) C a 3 a 6 6
x arc ctg ( ) a dx 58. 2 x Hacemos :
x u arc ctg ( ) a a du dx a2 x2
dv
dx
x2 1 v x
x arc ctg ( ) 1 x dx a x 2 dx x arc ctg ( a ) a x (a 2 x 2 )
170
A B(2x ) C 2 2 2 2 x (a x ) x a x 1
1 A(a 2 x 2 ) Bx (2x) Cx 1 (A 2B)x 2 Cx a 2 A A 2B 0 1 1 C0 A 2 , B 2 , C0 a 2a a 2A 1 1 1 x (2x) arc ctg ( ) 2 1 x a dx arc ctg ( ) a [ a 2a 2 x2 x a 2 x 2 ] dx x a x arc ctg ( ) 1 x 1 dx 1 2x a x 2 dx x arc ctg ( a ) a x 2a a 2 x 2 dx x arc ctg ( ) 1 x 1 1 a 2 2 x 2 dx x arc ctg ( a ) a Ln x 2a Ln (a x ) C x arc ctg ( ) 1 x 1 1 a 2 2 2 x 2 dx x arc ctg ( a ) 2a Ln (x ) 2a Ln (a x ) C x arc ctg ( ) 1 x 1 a2 x2 a x 2 dx x arc ctg ( a ) 2a Ln ( x 2 ) C 59.
ctgh
1
x ( ) dx a
x u ctgh 1 ( ) dv dx a a du dx v x 2 a x2 x a 2x 1 x 1 x 1 x ctgh ( a ) dx x ctgh ( a ) a a 2 x 2 dx x ctgh ( a ) 2 x 2 a 2 dx a 1 x 1 x 2 2 ctgh ( a ) dx x ctgh ( a ) 2 Ln x a C Hacemos :
x arc cos ( ) a dx 60. x2 Hacemos :
x u arc cos ( ) a dx du 2 a x2
dv
dx
x2 1 v x
x arc cos ( ) 1 x dx a x 2 dx x arc cos ( a ) x a2 x2
Hacemos :
x a sen θ dx a cos θ dθ
a x
a x2 2
x arc cos ( ) 1 x a cos θ a dθ x 2 dx x arc cos ( a ) a sen θ a 2 a 2 sen 2 θ x arc cos ( ) 1 x 1 cos θ a dθ x 2 dx x arc cos ( a ) a sen θ 1 sen 2 θ x arc cos ( ) 1 x 1 cos θ 1 x 1 dθ a x 2 dx x arc cos ( a ) a sen θ cos θ dθ x arc cos ( a ) a sen θ x arc cos ( ) 1 x 1 a x 2 dx x arc cos ( a ) a csc θ dθ x arc cos ( ) 1 x 1 a x 2 dx x arc cos ( a ) a Ln csc θ ctg θ C x arc cos ( ) 2 2 a dx 1 arc cos ( x ) 1 Ln a a x C x2 x a a x x x arc cos ( ) 1 x 1 a a2 x2 a C x 2 dx x arc cos ( a ) a Ln x
171
61.
( x
u x x 2 1 dx
u 2 1 2u 2
x 2 1 )10 dx
2 10 ( x x 1 ) dx
x
u 1 2u
I
du du
cos x sen x 62. dx 5 sen 2x cos x sen x cos x sen x cos x sen x 5 sen 2x dx 4 1 2 sen x cos x dx 4 sen 2 x cos 2 x 2 sen x cos x dx cos x sen x cos x sen x 5 sen 2x dx 4 ( sen x cos x ) 2 dx
Hacemos :
u sen x cos x du ( cos x sen x) dx
cos x sen x du dx 5 sen 2x 4 u2
63. I
I
1 2
u 2
1 2
arc tg ( ) C arc tg (
sen x cos x )C 2
I
sec 2 θ
1 3
cos 1
3
1
I
3
.
.
cos a
sech
5
1
dθ
1
u u cos a 2
2
C
1
x cos a sen a
.
3
( x cos a sen a ) 2 cos 2 a
cos a
x cos a sen a x 2 cos 2 a x sen 2a 1
C
x dx
Hacemos :
u sech 3 x
dv sech 2 x dx
du 3 sech 3 x tgh x dx
v tgh x
sech x dx sech x tgh x 3 sech x tgh x dx 5 3 3 2 sech x dx sech x tgh x 3 sech x (1 sech x) dx 5 3 3 5 sech x dx sech x tgh x 3 sech x dx 3 sech x dx 4 sech 5 x dx sech 3 x tgh x 3 sech 3 x dx 5
sech
5
3
x dx
3
2
1 3 sech 3 x tgh x sech 3 x dx 4 4
dx
I1
(x cos a x sen 2a 1) 3/2 2
1
dθ cos θ dθ cos 3 a sen θ C a sec 3 θ cos 3 a sec θ cos 3 a
cos a
64.
cos a
1 cos a sec 2 θ 1 sec 2 θ dθ dθ cos a ( cos 2 a tg 2 θ cos 2 a ) 3/2 cos 3 a ( tg 2 θ 1 ) 3/2
I
u 10 ( u 2 1)
u 2 cos 2 a
u
du cos a sec 2 θ dθ
2
1 ( u 10 u 8 ) du 2 2 2u 1 1 11 1 9 1 11 1 9 [ u u ] C u u C 2 11 9 22 18 1 1 ( x x 2 1 )11 ( x x 2 1 ) 9 C 22 18
2 10 ( x x 1 ) dx
( x
1 cos a ( u 2 cos 2 a ) 3/2 Hacemos : u cos a tg θ
I
x 2 1 )10 dx
Hacemos :
u x cos a sen a du cos a dx du
Hacemos :
x arc cos ( ) 2 2 a dx 1 arc cos ( x ) 1 Ln a a x C x2 x a a x
2
dx
( x 2 cos 2 a 2x sen a cos a sen 2 a cos 2 a ) 3/2 dx 1 cos a I dx 2 2 3/2 cos a [ ( x cos a sen a ) 2 cos 2 a ]3/2 [ ( x cos a sen a ) cos a ]
I1 sech x dx 3
Hacemos :
u sech x du sech x tgh x dx
I1 sech x tgh x sech x tgh 2 x dx I1 sech x tgh x sech x (1 sech 2 x) dx
dv sech 2 x dx v tgh x
C
172
I1
sech x tgh x sech x dx sech x dx
I1
sech x tgh x sech x dx I1
3
20
sech x tgh x sech x dx
( tg x sec x )
20
sec 2 x dx
1
1
( tg x sec x )
20
sec 2 x dx
[ sech x tgh x 1 tgh 2 x dx ]
( tg x sec x )
20
sec 2 x dx
( tg x sec x )
20
sec 2 x dx
2 I1 I1
sech x tgh x sech x dx 2 2
1 2 Hacemos : I1
sen θ sech x dx cos θ dθ (1 tgh 2 x) dx cos θ dθ tghx 2
dx
cos θ
1 tgh x dx sec θ dθ 2
dθ
cos θ 1 sen θ 2
66. dθ
65.
[ sech x tgh x 1 sen 2 θ sec θ dθ ] [ sech x tgh x cos θ sec θ dθ ]
( tg x sec x )
20
sec 2 x dx
( tg x sec x )
20
sec 2 x dx ( tg x tg 2 x 1 ) 20 sec 2 x dx
Hacemos :
4
tg x du sec 2 x dx 20
2
z u u 2 1 u du
z 2 1 2z
2
dz
(x 1) 3 (x 2) 5
u x 1 du dx
dx (x 1) (x 2) 3
5
x u 1
du 4
u (u 1 2) 3
5
du 4
u (u 3) 3
5
u 3/4 (u 3) 5/4 du
dx
4
4
4 1
4
1
z 2 dz z 1 C . C . C 3 5 3 3 3 z 3 u 3 (x 1) (x 2) 4 u
sec x dx ( u u 1 ) 2
dz
4 u 3 z u 3 5 m 1 m , n 1, p p 1 Z 1 3u 1 z 4 4 4 n 4 du u 2 z 3 dz 3 dx 4 4 u 3/4 (z 4 u) 5/4 . u 2 z 3 dz u 3/4 z 5 u 5/4 . u 2 z 3 dz 4 3 5 3 3 (x 1) (x 2)
u
( tg x sec x ) Hacemos :
4
2
dx
Hacemos :
1 1 2 2 1 1 I1 [ sech x tgh x dθ ] [ sech x tgh x θ ] C 2 2 1 I1 [ sech x tgh x arc sen ( tgh x ) ] C 2 1 3 5 3 sech x dx 4 sech x tgh x 8 [ sech x tgh x arc sen ( tgh x ) ] C I1
4
z 20 ( z 2 1 )
1 ( z 20 z18 ) dz 2 2z 1 1 21 1 19 1 21 1 19 ( z z )C z z C 2 21 19 42 38 1 1 ( u u 2 1 ) 21 ( u u 2 1 )19 C 42 38 1 1 ( tg x tg 2 x 1 ) 21 ( tg x tg 2 x 1 )19 C 42 38 1 1 ( tg x sec x ) 21 ( tg x sec x )19 C 42 38
sec 2 x dx
( tg x sec x )
20
du
4
z 2 1 2z
67.
dx (x 1) (x 2) 3
5
cos 2x 3 cos 4 x 4 ctg 2 x
44 u 4 x 1 C 4 C 3 u3 3 x2
dx
173
cos 2x 3 cos 4 x 4 ctg 2 x cos 2x 3 cos x 4 ctg x 4
2
cos 2x 3
dx
1 2 sen x 3 2
cos 4 x 4
2 sen x 2 2
dx
1
cos 4 x
tg 2 x
dx 2
tg x ( tg 2 x sec 2 x ) sec 2 x
dx 2
tg x ( 2 tg 2 x 1 ) sec 2 x
cos 4 x 4 ctg 2 x Hacemos : z tg x
4 tg x 1 2
4 tg 2 x 1
4 tg 2 x 1
cos 4 x 4 ctg 2 x
dx 2
u 2z 1 du 4z dz
dx
dx
z ( 2z 2 1 ) 4z 2 1 dv v
z 4z 2 1
1 4z 2 1 4
1 1 dx (2z 2 1) 4z 2 1 8z 4z 2 1 dz 4 2 4 cos x 4 ctg 2 x
cos 4 x 4 ctg 2 x cos 2x 3 cos 4 x 4 ctg 2 x
dz
cos 2x 3
1 dx (2z 2 1) 4z 2 1 2 z 4z 2 1 dz 4 2 2 cos x 4 ctg x
dx
68.
1 1 (2z 2 1) 4z 2 1 (4z 2 1) 3/2 C 2 6
dx z [
1 1 1 (2z 2 1) (4z 2 1) ] 4 C 2 6 z2
cos 2x 3
6z 2 3 4z 2 1 1 dx z ( ) 4 C 4 2 6 z2 cos x 4 ctg x
cos 2x 3
1 1 dx z ( 2 z 2 ) 4 C 4 2 3 z2 cos x 4 ctg x cos 2x 3
(1 x 2 ) 5 x6 (1 x 2 ) 5 x
6
dx dx x 6 (1 x 2 ) 5/2 dx 5 2
dz
cos 2x 3
cos 2x 3
1 dx tg x ( 2 tg 2 x ) 4 ctg 2 x C 3 cos 4 x 4 ctg 2 x
m 6, n 2, p
2
Hacemos :
cos 2x 3
tg 2 x
dz sec 2 x dx
cos 2x 3
dx
1 1 dx tg x ( 2 tg 2 x ) 4 C 4 3 tg 2 x cos x 4 ctg 2 x
(1 x 2 ) 5 x6 (1 x 2 ) 5 x
6
(1 x 2 ) 5 x
6
(1 x 2 ) 5 x
6
(1 x 2 ) 5 x
6
(1 x 2 ) 5 x
6
(1 x 2 ) 5 x
6
(1 x )
2 5
x
6
1 x 2 z 2 x 2 m 1 p 0 Z x 2 1 z 2 n 3 dx x z dz
dx x 6 (z 2 x 2 ) 5/2 . x3 z dz x 6 . z 5 x 5 . x3 z dz x 2 z 6 dz dx
z6 z 1 2
dz ( z 4 z 2 1
1 z 1 2
) dz
1 1 dz dx z 5 z 3 z 2 5 3 z 1 1 1 1/2 1/2 dx z 5 z 3 z ( ) dz 5 3 z 1 z 1 1 1 1 dz 1 dz dx z 5 z 3 z 5 3 2 z 1 2 z 1 1 1 1 1 dx z 5 z 3 z Ln z 1 Ln z 1 C 5 3 2 2 dx
dx
1 z 1 1 5 1 3 Ln z z zC 2 z 1 5 3 1 Ln 2
1 x 2 1 (1 x 2 ) 5 (1 x 2 ) 3 1 x 2 x C x 5x 5 3x 3 1 x 2 1 x
174
(1 x )
2 5
x6 (1 x 2 ) 5 x6
dx
1 Ln 2
1 x x 2
1 x 2 x
dx Ln x 1 x
2
(1 x )
2 5
5x 5
(1 x 2 ) 5 5x 5
(1 x )
2 3
3x 3
(1 x 2 ) 3 3x 3
1 x x
2
C
71.
1 x 2 C x
3
3
sen 2 x cos 14 x sen 2 x cos 14 x
dx dx
sen 2/3 x cos 14/3 x
sen 2 x
69.
3
sen (2x ) sen 5 x 3
sen (2x) 5
sen x sen 3 (2x) 5
sen x Hacemos :
3 cos 14 x dx tg
dx
sen 2 x
dx
3
3
8 sen x cos x 5
sen x
dx 2 2
sen
3/2
x cos
3/2
5
x
3 cos 14 x dx ( tg
dx
Hacemos :
sen x
dx 2 2 ctg 3/2 x csc 2 x dx 2 2 ctg 3/2 x csc 2 x dx
sen (2x) 5
sen x
sen 2 x
dx 2 2 u 3/2 du
4 2 5/2 4 2 u C 5 5
1 x8
ctg 5 x C
x 13 1 x8 x 13
dx dx x 13 (1 x 8 )1/2 dx
1 m 13, n 8, p 2
1 x8 x
13
1 x8 x 13
8 2 8 1 x z x m 1 p 1 Z x 8 1 z 2 n 1 dx x 9 z dz 4
dx
1 1 x 13 (z 2 x 8 )1/2 . x9 z dz x 13 . z x 4 . x9 z dz 4 4
dx
(1 x 8 ) 3/2 1 2 1 z dz z 3 C C 4 12 12x 12
dx tg 2/3 x sec 4 x dx
x sec 2 x sec 2 x dx tg 2/3 x ( tg 2 x 1 ) sec 2 x dx
8/3
x tg 2/3 x ) sec 2 x dx
8/3
u 2/3 ) du
3 11/3 3 5/3 3 5/3 u u C u ( 5u 2 11 ) C 11 5 55
3 3 5 tg x ( 5 tg 2 x 11 ) C
3 cos 14 x dx 55 72.
70.
cos 4 x
tg x du sec 2 x dx
sen 2 x
ctg x du csc 2 x dx
tg 2/3 x
u
3 cos 14 x dx ( u
u
3
2/3
dx
cos 3 x
cos 3 x
dx
sen 2x dx sen 2x
cos 3 x
dx
cos 3 x
dx
cos 3 x
1
1
1
1
dx
2 sen 1/2 x cos 7/2 x 2
2 sen 2x Hacemos : u tg x
sec 2 x sec 2 x tg1/2 x
( tg
3/2
dx
dx
2
cos x 2 sen x cos x
sen 2x
sen 2x dx
dx 3
cos 3 x sen 1/2 x cos 1/2 x
1
dx
2 tg1/2 x cos 4 x
1 2
( tg 2 x 1 ) sec 2 x tg1/2 x
1
dx
x tg 1/2 x ) sec 2 x dx
du sec 2 x dx dx 1 2 5/2 2 1/2 3/2 1/2 cos 3 x sen 2x 2 ( u u ) du 5 2 u 2 u C
cos 3 x
dx sen 2x
sec 4 x
dx 2 tg1/2 x
2 2 ( u 2 5 ) u 1/2 C ( tg 2 x 5 ) tg x C 5 5
175
73.
1 sen 2 x
2 cos 2 x
I1 2 x 1 Ln
dx
sen x
1 sen x 2
2 cos 2 x
sen x
1 sen x 2
2 cos 2 x
sen x
dx
sec x tg x
dx
2 sec x 1
u
Hacemos :
du
2
2
2 sen x 2
2 sen x
dx
dx
1
sec x sec x 1 2
2
dx
2 sen x 2
sec x
dx
sen x
1 dx 2 sen x
dv sec x dx 2
sen x cos x 3
1 sen 2 x 1 sen x
dx
sen x
1 sen x 2
2 cos 2 x
1 sen x
2 cos 2 x
I
cos x sen x
sen x 1 dx 1 dx cos x 2 sen x 2 sen x
dx
sen x C cos x
sen x
x 1 3 x 1 dx x2 3 x 1 x 1 dx dx x2 x2 I2
x 1 dx x2
Hacemos : x 1 t 2 dx 2t dt I1
2
t
2
t 1 2
dt 2 ( 1
1 t 1 2
) dt 2t
dt t 1 2
3
u3 dx 3u 2 du
I2 3
u3 u 1 3
2t Ln
du 3 ( 1
1 u 1 3
) du 3u 3
du u 1 3
du
1 A(u 2 u 1) B(2u 1)(u 1) C(u 1)
1 cos x sen x 1 dx dx 2 cos x sen 3 x 2 sen x
dx
I1
I1
1 cos x tg x 1 dx dx 2 sen 3 x 2 sen x
sen x
sen x 2
sen x
sen x 2
2 cos 2 x
74. I
tg x
dx
(u 1) (u 2 u 1) B(2u 1) C 1 A 2 (u 1) (u u 1) u 1 u 2 u 1
2 sen x
2 cos 2 x
C1
x 1 1
x 1 dx x2 Hacemos : x 1 I2
I 2 3u 3
v tg x
dx
x 1 1
t 1 C1 t 1
1 (A 2B)u 2 (A B C)u (A B C) A 2B 0 A B C 0 A 1/3, B 1/6, C 1/2 A B C 1 1/3 1/6 (2u 1) 1/2 I 2 3u 3 [ ] du u 1 u 2 u 1 du 1 2u 1 3 du I 2 3u du 2 2 u 1 2 u u 1 2 u u 1 1 3 du I 2 3u Ln u 1 Ln u 2 u 1 1 3 2 2 (u ) 2 2 4 1 2u 1 I 2 3u Ln u 1 Ln u 2 u 1 3 arc tg ( ) C2 2 3 3 1 1 2u 1 I 2 3u Ln u 1 Ln u 1 Ln u 2 u 1 3 arc tg ( ) C2 2 2 2 3 3 1 2u 1 I 2 3u Ln u 1 Ln u 3 1 3 arc tg ( ) C2 2 2 3 I 2 3 3 x 1
3 1 2 3 x 1 1 Ln 3 x 1 1 Ln x 2 3 arc tg ( ) C2 2 2 3
176
x 1 1
I 2 x 1 Ln 3 arc tg (
x 1 1
2 x 1 1 3
3 3 x 1
3 1 Ln 3 x 1 1 Ln x 2 2 2
I e senx csc x dx e senx ( tg x ctg x )
I e senx csc x dx e senx ( tg x ctg x ) e senx csc x dx
)C
I e senx ( tg x ctg x ) C
3
75.
e x (x 2 8) (x 2) 2 e x (x 2 8) (x 2)
2
e x (x 2 8) (x 2)
2
e (x 8) x
2
(x 2)
2
Hacemos :
e x (x 2 8) (x 2) 2 e x (x 2 8) (x 2) 2
dx
77.
dx
e x [ (x 2) 2 4 (x 2) 4 ] (x 2)
dx e x dx 4 dx e x 4
e
2
dx
x 2
1 u x2 dx du (x 2) 2
dx 4
x
e dx x2
dv e x dx v
ex
ex ( x 2 4 ) ex ( x 2 ) C C x2 x2
76. I e senx ( sec 2 x csc 2 x csc x ) dx I e senx csc x dx e senx ( sec 2 x csc 2 x ) dx Hacemos :
u e sen x
dv ( sec 2 x csc 2 x ) dx
du cos x e sen x dx I e
senx
csc x dx e
senx
(1 x 2 ) 3/2 1 e senh x ( x 1 x 2 1 )
(1 x 2 ) 3/2 1 e senh x ( x 1 x 2 1 )
(1 x 2 ) 3/2 u du
4 ex ex 4 ex dx e 4 dx 4 dx e x C x2 x2 (x 2) 2 (x 2) 2 dx
1 e senh x ( x 1 x 2 1 )
Hacemos :
ex
x
ex ex dx 4 dx x2 (x 2) 2
(x 2)
e senx dx sen x
v tg x ctg x
( tg x ctg x ) e senx cos x ( tg x ctg x ) dx
I e senx csc x dx e senx ( tg x ctg x ) e senx cos x (
sen x cos x ) dx cos x sen x
I e senx csc x dx e senx ( tg x ctg x ) e senx cos x (
sen 2 x cos 2 x ) dx sen x cos x
dx dx x
1 e senh x ( x 1 x 2 1 )
2 3/2
dx dx
1 e senh x
(1 x 2 ) 3/2
(1 x 2 )1/2 (1 x 2 )1/2
(1 x 2 )1/2
(1 x 2 ) 3/2
dx
dx
1
dx
C
dx
1 x e senh x
1 e senh x
1 e senh x
(1 x 2 )1/2
(1 x 2 ) 3/2
dx
e senh
1 x e senh x
1 e senh x
dx
1 x 2
v
(1 x )
(1 x 2 ) 3/2
1 x e senh x
dv
(1 x 2 )1/2 dx
1 e senh x ( x 1 x 2 1 )
(1 x 2 ) 3/2
dx
x 1 x e senh x
(1 x 2 )1/2
1 e senh x
(1 x 2 ) 3/2
dx