QUESTION 1 a) i) Triaxial Test It is used for the determination of shear characteristics of all types of soils under different drainage conditions. In the first stage of the test, the specimen is subjected to an all-around confining pressure on the sides, top and bottom. This stage is known as the consolidation stage. In the second stage of the test called shearing stage, an additional axial stress and deviator stress is applied on the top of the specimen through a ram. Thus the total stress in the axial direction at the time of shearing is equal to the confining stress plus the deviator stress.
ii) Shear Box Test A test to determine the shear strength parameters for both cohesive as well as noncohesive soils. In principle, this test is to determine the failure strength on a surface that has been set. This apparatus contains a copper box, horizontally in the middle of the soil samples. This test is quick and inexpensive.
iii) Unconfined Compression Test A simple laboratory testing method to assess the mechanical properties of rocks and fine-grained soils. It provides a measures of the undrained strength and the stress-strain characteristics of the rock or soil.
b) Shear box test is the most suitable shear strength test to be conducted because shear box test is suitable for both cohesive and non-cohesive soil. Other than that, it is easy to test sands and gravel using shear box test. Furthermore, using a reversible shear box, large displacement can be achieved thus enabling measurement of residual strength.
Question 2 ECG243/SEPT – JAN 2019
Table 1.0 Shear Box Area = 60mm x 60mm Axial Load = 6kg DEFORMATION
PROVINGRING
SHEAR STRESS
ΔV(mm) x 0.01 HORIZONTAL
ΔL(mm) x
VERTICAL
Expansion
DIAL
0.01
DIAL
(-)
LOAD, DIAL
P=
P/A
DIAL x 2.05x10-3
Settlement (+) (kN)
(kN/m2)
(kN)
(kN/m²)
0
0.0
0
0.00
0
0
0
50
0.5
5
0.05
9
0.01845
5.125
100
1.0
10
0.10
14
0.0287
7.972
150
1.5
-35
-0.35
18
0.0369
10.250
200
2.0
-42
-0.42
21
0.04305
11.958
250
2.5
-43
-0.43
25
0.05125
14.236
300
3.0
-48
-0.48
28
0.0574
15.944
350
3.5
-49
-0.49
31
0.06355
17.653
400
4.0
-57
-0.57
31
0.06355
17.653
450
4.5
-62
-0.62
32
0.0656
18.222
500
5.0
-68
-0.68
35
0.07175
19.931
550
5.5
-68
-0.68
37
0.07585
21.069
600
6.0
-70
-0.70
39
0.07995
22.208
650
6.5
-74
-0.74
41
0.08405
23.347
700
7.0
-76
-0.76
42
0.0861
23.917
750
7.5
-78
-0.78
45
0.09225
25.625
800
8.0
-79
-0.79
46
0.0943
26.194
850
8.5
-80
-0.80
47
0.09635
26.764
900
9.0
-80
-0.80
48
0.0984
27.333
950
9.5
-83
-0.83
48
0.0984
27.333
1000
10.0
-83
-0.83
49
0.10045
27.903
1050
10.5
-83
-0.83
49
0.10045
27.903
1100
11.0
-83
-0.83
49
0.10045
27.903
1150
11.5
-83
-0.83
49
0.10045
27.903
1200
12.0
-83
-0.83
49
0.10045
27.903
Normal Stress =
𝑓𝑜𝑟𝑐𝑒 𝑎𝑟𝑒𝑎 6(9.81)
= 3.6∗10ˉ³ = 16 350 N = 16.35 kN
ECG243/SEPT – JAN 2019 Shear Box Area = 60mm x 60mm Axial Load = 12kg
DEFORMATION
HORIZONTAL
ΔL(mm) x
DIAL
0.01
VERTICA L DIAL
PROVING
SHEAR
DATA
STRESS
ΔV(mm) x 0.01 Expansion (-)
LOAD, DIAL
(kN/m2)
0
0.0
0
0.00
50
0.5
10
100
1.0
150
P/A
DIAL x 2.05x10-3
Settlement (+)
(kN)
P=
(kN)
(kN/m²)
0
0
0
0.10
5
0.01025
2.847
-20
-0.20
13
0.02665
7.403
1.5
-25
-0.25
15
0.03075
8.542
200
2.0
-36
-0.36
16
0.0328
9.111
250
2.5
-38
-0.38
23
0.04715
13.097
300
3.0
-43
-0.43
28
0.0574
15.944
350
3.5
-45
-0.45
33
0.06765
18.792
400
4.0
-61
-0.61
37
0.07585
21.069
450
4.5
-62
-0.62
40
0.082
22.778
500
5.0
-63
-0.63
43
0.08815
24.486
550
5.5
-63
-0.63
46
0.0943
26.194
600
6.0
-65
-0.65
48
0.0984
27.333
650
6.5
-65
-0.65
50
0.1025
28.472
700
7.0
-66
-0.66
52
0.1066
29.611
750
7.5
-68
-0.68
54
0.1107
30.750
800
8.0
-69
-0.69
55
0.11275
31.319
850
8.5
-69
-0.69
56
0.1148
31.889
900
9.0
-69
-0.69
57
0.11685
32.458
950
9.5
-69
-0.69
58
0.1189
33.028
1000
10.0
-69
-0.69
58
0.1189
33.028
1050
10.5
Normal Stress = =
𝑓𝑜𝑟𝑐𝑒 𝑎𝑟𝑒𝑎 12(9.81) 3.6∗10ˉ³
= 32 700 N = 32.7 kN
-69
-0.69
58
0.1189
33.028
ECG243/SEPT – JAN 2019 Shear Box Area = 60mm x 60mm Axial Load = 18kg
DEFORMATION
PROVING
SHEAR
DATA
STRESS
ΔV(mm) x HORIZONTAL DIAL
ΔL(mm) x 0.01
VERTICAL DIAL
LOAD,
0.01 Expansion (-) DIAL Settlement
(kN/m2)
0
0.0
0
0.00
50
0.5
-2
100
1.0
150
DIAL x
P/A
2.05x10-3
(+) (kN)
P=
(kN)
(kN/ m²)
0
0
0
0.02
8
0.0164
4.556
-3
0.03
12
0.0246
6.833
1.5
-4
-0.04
18
0.0369
10.2
200
2.0
-9
-0.09
25
0.0513
14.25
250
2.5
-12
-0.12
31
0.0636
17.66
300
3.0
-14
-0.14
36
0.0738
20.5
350
3.5
-18
-0.18
41
0.0841
23.361
400
4.0
-20
-0.20
46
0.0923
26.194
450
4.5
-24
-0.24
50
0.1025
28.472
500
5.0
-26
-0.26
54
0.1107
30.75
550
5.5
-32
-0.32
58
0.1189
33.028
600
6.0
-33
-0.33
60
0.1230
34.167
650
6.5
-34
-0.34
65
0.1333
37.028
700
7.0
-34
-0.34
67
0.1374
38.167
750
7.5
-35
-0.35
69
0.1415
39.306
800
8.0
-36
-0.36
71
0.1456
40.444
850
8.5
-37
-0.37
72
0.1476
41.0
900
9.0
-37
-0.37
75
0.1538
42.722
950
9.5
-37
-0.37
76
0.1558
43.278
1000
10.0
-37
-0.37
78
0.1599
44.417
1050
10.5
-37
-0.37
78
0.1599
44.417
1100
11.0
-37
-0.37
79
0.1620
45.0
1150
11.5
-37
-0.37
80
0.164
45.556
1200
12.0
-37
-0.37
80
0.164
45.556
1250
12.5
-37
-0.37
80
0.164
45.556
Normal Stress = =
𝑓𝑜𝑟𝑐𝑒 𝑎𝑟𝑒𝑎 18(9.81) 3.6∗10ˉ³
= 49 050 N = 49.05 kN