DIMENSI TIGA 1. Pada limas beraturan T.ABCD, panjang rusuk tegaknya 25 cm dan panjang rusuk alasnya 7√2 cm.
Jarak titik T ke bidang ABCD sama dengan … Pembahasan
AE = ½AC = 7 cm
2. Pada kubus ABCD.EFGH dengan panjang rusuk 12 cm, titik P adalah tepat ditengah CG, tentukan
jarak titik C ke garis AP! Pembahasan Posisi titik C dan garis AP pada kubus sebagai berikut:
Cari panjang AP terlebih dahulu,
dilanjutkan menentukan jarak C ke AP,
3. Panjang rusuk kubus ABCD . EFGH adalah 6 cm. Jika S adalah titik potong EG dan FH, maka jarak DH
ke AS adalah ... Pembahasan :
4. Pada kubus ABCDEFGH, titik P pada AD dan titik Q pada EH sehingga AP=EQ = 12 cm. Jika panjang
rusuk 12√3 cm maka jarak A ke BPQF sama dengan … Pembahasan
BP2 = BA2 + AP2 = 432 + 144 = 576 BP = 24
t = 30o ====> sin t = ½
5. Kubus ABCD.EFGH dengan panjang sisi 12 cm. Titik P adalah perpotongan diagonal bidang ABCD.
Tentukan jarak titik P ke titik G Pembahasan Gambar sebagai berikut
AC panjangnya 12√2, sementara PC adalah setengah dari AC. Sehingga PC = 6√2 cm. CG = 12 cm.
6.
Perhatikan gambar kubus ABCD.EFGH. Jarak titik C dan bidang AFH= …. H
G
E
F 6 cm
D
A
C B
Jarak titik C terhadap bidang AFH adalah CQ CQ = AC sin ∝ sin ∝ =
𝑃𝑇 𝐴𝑇
𝐴𝐶 = √62 + 62 = 6√2 PT = tinggi = rusuk = 6 cm 𝐴𝑇 = √𝐴𝑃2 + 𝑃𝑇 2
1 1 𝐴𝑃 = 𝐴𝐶 = . 6√2 = 3√2 2 2 2
𝐴𝑇 = √(3√2) + 62 = √18 + 36 = √54 = 3√6 6
CQ = AC sin ∝ = 6√2. 3√6 = 12 7.
√2 √6
.
√6 √6
=
12 6
√12 = 2.2√3 = 4√3
Bidang empat ABCD, pada gambar dengan AD tegak lurus alas. Sudut antara bidang BCD dan BCA adalah ∝, maka tan ∝ = ….
4 cm
A
C 2 cm
D
B
2 cm
AD tegak lurus alas, berarti AD ⊥AC dan AD ⊥DB Dari gambar terlihat ∠𝐵𝐷𝐶 = siku-siku tan ∝ =
𝐴𝐷 ; 𝐴𝐷 = 4 𝑐𝑚 𝐷𝐸
900 1 𝐷𝐸 = 𝐷𝐵 cos = 𝐷𝐵 cos 450 = 2. √2 = √2 𝑐𝑚 2 2 tan ∝= 8.
4
4 = √2 = 2√2 𝑐𝑚 √2 2
Perhatikan gambar di bawah! T 5 cm 5 cm
A 5 cm
C
B
AT, AB dan AC saling tegak lurus di A. Jarak titik A ke bidang TBC adalah ….
AE = jarak (A,TBC) 𝐵𝐶 = √52 + 52 = 5√2 𝑇𝐶 = √52 + 52 = 5√2 1 𝐶𝐷 = 𝑇𝐶 = 5√2 2 𝐵𝐷 = √𝐵𝐶 2 − 𝐶𝐷 2 2 5 25 75 = √(5√2) − ( √2)2 = √50 − =√ 2 2 2 2
2 75 50 25 5 𝐴𝐸 = √𝐴𝐵 2 − 𝐵𝐸 2 = √52 − ( √ ) = √25 − = √ = √3 3 2 3 3 3 9.
Pada kubus ABCD. EFGH, ∝ adalah sudut antara bidang ADHE dan ACH. Nilai cos ∝ = …. ∝= ∠(𝐴𝐷𝐻𝐸, 𝐴𝐶𝐻) = ∠𝐶𝑃𝐷 Misal: rusuk kubus = a 1 1 𝑃𝐷 = 𝐸𝐷 = 𝑎√2 2 2 2 1 1 3 1 2 2 2 √ √ 𝐶𝑃 = 𝐶𝐷 + 𝑃𝐷 = 𝑎 + ( 𝑎√2) = √𝑎2 + 𝑎2 = √ 𝑎2 = 𝑎√6 2 2 2 2
1 𝑃𝐷 2 𝑎√2 √2 1 1 𝑐𝑜𝑠 ∝= = = = √ = √3 𝐶𝑃 1 𝑎√6 √6 3 3 2 10.
Diketahui kubus ABCD. EFGH, titik P,Q,R di pertengahan rusuk AD, BC, dan CG. Irisan bidang yang melalui P, Q dan R dengan kubus berbentuk …. Pada kubus ABCD.EFGH, titik P, Q, dan R terletak di pertengahan rusuk AD, BC, dan CG.
Y
X
H G F
E S
R
D
C
P A
Q B
Langkah- langkah melukisnya adalah:
Hubungkan titik P dan Q, karena keduanya terletak pada bidang ABCD. PQ adalah sumbu afinitas.
Hubungkan titik Q dan R, karena keduanya terletak pada bidang BCGF.
Perpanjang garis QR dan FG sehingga berpotongan di titik X.
Perpanjang garis EH.
Dari titik X buatlah garis yang sejajar HG sehingga memotong perpanjangan garis EH di titik Y.
Hubungkan titik P dan Y sehingga memotong sisi DCGH di titik S.
Diperolehlah persegi panjang PQRS. Jadi, irisan bidangnya berbentuk persegi panjang.