Soal 12 Nasab

  • April 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Soal 12 Nasab as PDF for free.

More details

  • Words: 1,854
  • Pages: 5
Soal 12 1 2 Menentukan basis solusi dari persamaan differensial ( x + 1) y ′′ − ( x − ) y ′ + y = 0 2 dengan Metode Frobenius Penyelesaian •

Ubah bentuk PD : 1 ( x + 1) 2 y ′′ − ( x − ) y ′ + y = 0 …(i) 2 1  x −  y 2 y ′′ −  y′ + =0 2 ( x + 1) ( x + 1) 2 (x+1) 3  ( x + 1) − 2  1 y ′′ − y′ + y=0 2 ( x + 1) ( x + 1) 2

…dikalikan

1 ( x + 1) 2

…manipulasi x dlm bentuk

…manipulasi agar menjadi bentuk b( x + 1) c( x + 1) y′ + y ( x + 1) ( x + 1) 2

3    ( x + 1) − 2 ( x + 1) −1   1  y = 0 y ′′ −  . y ′ +  2 −1  ( x + 1)   ( x + 1) 2   ( x + 1)   3   1−  1 2( x + 1)   y ′′ − y′ + y=0  ( x + 1)  ( x + 1) 2      2( x + 1) − 3   2( x + 1)  1 y ′′ −   y′ + y=0 …asumsikan ( x + 1) ≈ µ ( x + 1) 2  ( x + 1)     2µ − 3    1 2µ   y ′′ − y ′ + 2 y = 0 … (ii)  µ  µ     b( µ ) c( µ ) y ′ + 2 y = 0 … (iii) • Bila disesuaikan dengan bentuk y ′′ + µ µ  2µ − 3   Maka → b( µ ) =   − 2µ 

→ c( µ ) = 1 ~

y = ∑ am x m+ r m =0

= a0 x r + a1 x r +1 + a2 x r +2 + ... ~

y ′ = ∑ ( m + r )am x m+r −1 = r.a0 x r −1 + ( r + 1) a1 x r + ( r + 2 ) a2 x r +1 + ... m =0 ~

y ′′ = ∑ ( m + r )( m + r − 1) am x m+ r −2 = r ( r − 1) a0 x r −2 + ... m =0



[

Masukan ke persamaan (iii) b( µ ) c( µ ) y ′′ + y′ + 2 y = 0 µ µ  2µ − 3    1 − 2µ   y ′′ + y′ + 2 y = 0  µ  µ      2µ − 3  1 y ′′ +   y′ + 2 y = 0 2  µ  − 2µ 

3   y ′′ +  − µ −1 + µ −2  y ′ + µ 2 y = 0 …masukan ke deret y, y ′, y ′′ 2   r ( r − 1) a0 µ r −2 + ( r + 1).r.a0 µ r −1 + ( r + 2 )( r + 1) a2 µ r + ...

]

(

)

3   +  − µ −1 + µ −2 . r.a0 µ r −1 + ( r + 1) a1 µ r + ( r + 2) a2 µ r +1 + ... 2   −2 r + µ . a0 µ + a1µ r +1 + a2 µ r +2 + ... = 0

( )( •

)

Menentukan persamaan indikator dengan mengambil pangkat terkecil µ r −3 3  µ r −3  .r.a0  = 0 … 2  3 .r.a0 = 0 … karena µ r −3 ≠ 0 2 3 r=0 … karena a0 ≠ 0 2 r=0 Nilai r yang diharapkan adalah bukan tunggal, melainkan mempunyai 2 nilai r ,untuk dimasukan ke solusi r1 untuk y1 ( µ ) dan r2 untuk y 2 ( µ ) . Maka dengan mencari persamaan indicator baru dengan mengambil pangkat terkecil µ r −2 µ r −2 [ ( r ( r − 1) a0 + ( − r.a0 ) + a0 ) ]

r ( r − 1) a0 − r.a0 + a0 = 0 … a0 ( r ( r − 1) − r.a0 + a0 ) = 0

( r ( r − 1) − r + 1) = 0



karena µ r −2 ≠ 0 karena a0 ≠ 0

r − r − r +1 = 0 r 2 − 2r + 1 = 0 ( r − 1)( r − 1) = 0 , r1, 2 = 1 ⇒ r1 = r2 = r 2



Nilai r1 = r2 , r1 , r2 merupakan akar-akar kembar dari persamaan indikator sehingga solusi untuk PD termasuk dalam solusi pada kasus 2 yaitu y1 ( µ ) = µ r1 a0 + a1 µ + a2 µ 2 + ... …(iv)

(

(

)

)

y 2 ( µ ) = y1 ( µ ) ln ( µ ) + µ r2 A1 µ + A2 µ + A3 µ 3 + ...

…(v)



Mencari koefisien a0 , a1 , a2 ,... , A1 , A2 , A3 ,... Persamaan … (i) ( x + 1) 2 y ′′ −  x − 1  y′ + y = 0 2  ( x + 1) 2 y ′′ +  − x − 1  y ′ + y = 0 2  ( x + 1) 2 y ′′ −  − ( x + 1) + 3  y′ + y = 0 …konversi ( x + 1) ≈ µ 2  3  µ 2 y ′′ −  − µ +  y ′ + y = 0 …masukan ∑ y, ∑ y ′, ∑ y ′′ 2  ~ ~ ~ 3 ~ µ 2 .∑ ( m + r ).( m + r − 1) am µ m+ r −2 − µ ∑ ( m + r ) µ m+ r −1 + ∑ ( m + r ) µ m+r −1 + ∑ am µ m+r = 0 2 m =0 m =0 m =0 m =0 ~ ~ ~ ~ 3 ( m + r ).( m + r − 1) am µ m+r − ∑ ( m + r ) am µ m+r + ∑ ( m + r ) µ m+r −1 + ∑ am µ m+r = 0 ∑ 2 m =0 m=0 m =0 m =0 m + r = s + r Untuk m=s Dan Untuk m + r − 1 = s + r m = s +1 •

Buat persamaan dengan mengambil µ s+ r 3   µ s + r ( m + r ).( m + r − 1) am − ( m + r ) am + ( m + r ) am + am  = 0 2   m s Ganti dalam 3   µ s + r ( s + r ).( s + r − 1) a s − ( s + r ) a s + ( s + r ) a s + a s  = 0 2  

3   s+ r ( s + r ).( s + r − 1) a s − ( s + r ) a s + 2 ( s + r + 1) as +1 + a s  = 0 …karena µ ≠ 0 3 a s [ ( s + r ).( s + r − 1 − 1) + 1] + a s +1 ( s + r + 1) = 0 2 3 a s [ ( s + r ).( s + r − 2 ) + 1] + a s +1 ( s + r + 1) = 0 2 3 as +1 ( s + r + 1) = −a s [ ( s + r ).( s + r − 2 ) + 1] 2 − a s ( ( s + r ).( s + r − 2 ) + 1) 2 a s +1 = . ( s + r + 1) 3 − 2a s ( ( s + r ).( s + r − 2 ) + 1) a s +1 = … substitusi r = 1 3( s + r + 1) − 2a s ( ( s + 1).( s − 1) + 1) a s +1 = 3( s + 2) − 2a s s 2 − 1 + 1 = 3( s + 2 ) − 2a s .s 2 = 3( s + 2 ) − 2a0 .0 2 =0 Untuk s ⇒ a1 = 3( 2 ) Jadi s mulai dari s = 1 − 2a1.12 − 2a1 − 2 a2 = = 2 = a1 3.3 3 9 − 2a2 .2 2 − 2.4.a2 − 2.4.( − 2 ) a1 16a1 4a1 a3 = = = = 3 = 3.4 3.4 3.3.3.4 3 .4 27 2 − 2a3 .3 − 2.9.a3 − 2.9.4.a1 − 8a1 − 8a1 a4 = = = = = 3.5 3.5 34.5 9.5 45 2 2 − 2a4 .4 − 2.16.(−8)a1 8 .2a1 128a1 a5 = = = = 3.6 3.6 3.4.5 135 135 . . . Dst

((



) )

Karena nilai r kembar maka a s +1 ≈ As +1 , maka − 2 As s 2 As +1 = 3( s + 2 ) 2 A2 = − a1 9

4 a1 27 −8 A4 = a1 45 128 As = a1 135 A3 =



… dst

Masukan a s ke persamaan (iv) y1 ( µ ) = µ r1 a0 + a1 µ + a2 µ 2 + ...

(

)

2 4 r  2 ( x + 1) 3 − 8 ( x + 1) 4 + 128 ( x + a ) 5 − ... + ... y1 ( x + 1) = ( x + 1) 1  − ( x + 1) + 27 45 135  9  •

Masukan As ke persamaan (v) y 2 ( µ ) = y1 ( µ ) ln ( µ ) + µ r2 A1 µ + A2 µ + A3 µ 3 + ...

(

)

4  2 ( x + 1) 2 − 8 ( x + 1) 3 + ... y 2 ( x + 1) = y1 ( x + 1). ln ( x + 1) + ( x + 1). − ( x + 1) + 27 45  9 

Related Documents

Soal 12 Nasab
April 2020 6
Soal Aplikasi Nasab
May 2020 3
Nasab
June 2020 18
Nasab
May 2020 17
Nasab
June 2020 17
Nasab
April 2020 19