Chapter 5 Impedance matching and tuning 5.1 Matching with lumped elements L-section matching networks using Smith chart 5.2 Single-stub tuning shunt stub, series stub 5.3 Double-stub tuning forbidden region 5.4 The quarter-wave transformer frequency response 5.5 The theory of small reflections single-section transformer, multi-section transformer 5.6 Binomial multisection matching transformers 5.7 Chebyshev multisection matching transformers 5.8 Taper lines exponential taper, triangular taper 5.9 The Bode-Fano criterion Γ-Bandwidth 微波電路講義 5-1
• Impedance matching concept given ZL, design a matching network to have Γin=0 or selected value
Zo
Γin
matching network
ΓL
ZL
ZL
Zin (=Zo)
Discussion 1. Matching network usually uses lossless components: L, C, transmission line and transformer. 2. There are ∞ possible solutions for the matching circuit. 3. Properly use Smith chart to find the optimal design. 4. Factors for selecting matching circuit are complexity, bandwidth, implementation and adjustability. 5-2
微波電路講義
5.1 Matching with lumped elements (2-element L-network) • Smith chart solution L constant G-circle
constant R-circle
C Z-plane CW → add series L (reduce series C) CCW → add series C (reduce series L)
Y-plane CW → add shunt C (reduce shunt L) CCW → add shunt L (reduce shunt C) 5-3
微波電路講義
(explanation)
constant R-circle → L or C in series
j1 j2
L
j0.5
L B
(1)CW A → B :1 + j 0.5 + jx = 1 + j 2 → jx = j1.5 = jωL : add an L in series (2)CCW B → A :1 + j 2 + jx = 1 + j 0.5 → jx = − j1.5 =
A
1 j ωC
: add a C in series, or reduce extra L
C C -j0.5
(3)CCW C → D :1 − j 0.5 + jx = 1 − j 2 → jx = − j1.5 =
D C -j1
-jj2
1 j ωC
: add a C in series (4)CW D → C :1 − j 2 + jx = 1 − j 0.5 → jx = j1.5 = jωL : add an L in series or reduce extra C
in Z-plane CW → add a series L (or reduce series C) CCW → add a series C (or reduce series L) 5-4
微波電路講義
constant G-circle → L or C in shunt -j1
(1)CW A → B :1 − j 2 + jb = 1 − j 0.5 → jb = j1.5 = jωC -j0.5 : add a C in shunt, or reduce shunt L
L -j2
L A
(2)CCW B → A :1 − j 0.5 + jb = 1 − j 2 → jb = − j1.5 =
B
1 j ωL
: add an L in shunt
D
C C j2
C j1
j0.5
(3)CCW C → D :1 + j 2 + jb = 1 + j 0.5 → jb = − j1.5 =
1 j ωL
: add an L in shunt, or reduce shunt C (4)CW D → C :1 + j 0.5 + jb = 1 + j 2 → jb = j1.5 = jωC : add a C in shunt
in Y-plane CW → add a shunt C (or reduce shunt L) CCW → add a shunt L (or reduce shunt C) 5-5
微波電路講義
Discussion 1. ZL inside 1+jx circle, two possible solutions Smith chart solution (shunt-series elements) 1+jb circle
1+jx circle
B
A: Zo
ZL
series-shunt elements? Zo “N” Z o = jX + analytical solution
ZL
A
B:
jB +
jX jB
1 1 R L + jX L
⇒ B > 0 → C ,B < 0 → L
ZL
X > 0 → L, X < 0 → C 5-6
微波電路講義
2. ZL outside 1+jx circle, two possible solutions Smith chart solution (series-shunt elements) 1+jb circle
B
A
1+jx circle
A Zo
ZL
B Zo
ZL shunt-series elements? “Y” analytical solution 1 1 = jB + Zo R L + j( X + X L ) jX ⇒ B > 0 → C ,B < 0 → L jB ZL X > 0 → L, X < 0 → C 5-7
微波電路講義
3. Ex. 5.1 ZL=200-j100, Zo=100Ω, f=500MHz
B
3 1 2
A
L C
A:
1. zL=2-j1, yL=0.4+j0.2 Solution A 2. y=0.4+j0.5 → jb=j0.3 → jB=jωC=jb/Zo C=b/Zoω =0.92pF z=1-j1.2 → jx=j1.2 → jX=j ωL=jxZo L=xZo/ω =38.8nH Solution B 3. y=0.4-j0.5 → jb=-j0.7→-jB=1/jωL=-jb/Zo L=-Zo/ωb=46.1nH z=1+j1.2 → jx=-j1.2 → jX=1/jωC=-jxZo C=-1/xZoω =2.61pF frequency response (p.227, Fig.5.3(c))
B:
C
L 5-8
微波電路講義
4. Possible 3-element L-network
1+jx circle
series ? “Y”
Zo
ZL
Zo
ZL
1+jb circle
5-9
微波電路講義
5. Possible 4-element L-network shorter paths for a wider operational bandwidth 1+jx circle Zo
ZL
Zo
ZL
1+jb circle
5-10
微波電路講義
6. Lumped elements (size<λ/10) capacitor: chip capacitor, MIM capacitor (<25pF), interdigital gap capacitor (<0.5pF), open stub(<0.1pF) inductor: chip inductor, loop inductor, spiral inductor (<10nH) resistor: chip resistor, planar resistor All these lumped elements inherently have parasitic elements in the microwave range. (p.228, “point of interest”) Size (mil)
B
C D
0402
0603
0805
1206
A
39
62
78
125
B
24
38
39
62
C
8
12
20
23
D
20
31
49
62
1mil=0.001in=25um=1/40mm A
5-11
微波電路講義
5.2 Single-stub tuning • equivalent microstrip elements a series C --a series L in series with a high impedance microstrip line a shunt C in shunt with an open microstrip line a shunt L in shunt with a short microstrip line an open-circuited microstrip line
Z in =
Zo 1 ≡ j tan β l jω C
a short-circuited microstrip line Z in = jZ o tan β l ≡ j ω L a high impedance microstrip line jZ o tan
βl 2
Z1 Zo, β
≡
jZ o tan
βl
jZ o β l
2
Z2 Y3 j sin β l Zo
l 5-12
≈ 微波電路講義
(derivation of high impedance line) From p.185 Table 4.1
Zo, β
⎡A ⎢C ⎣
l jZ o tan
βl 2
Z1
jZ o tan
βl 2
Z2 Y3 j sin β l Zo
high Zo,Y3→0 β l <<
jZ o sin β l ⎤ cos β l ⎥⎦
Z1 Z 2 ⎤ ⎡ Z1 1 Z Z + + + 1 2 Z3 ⎥ ⎡ A B ⎤ ⎢⎢ Z 3 ⎥ ⎢C D ⎥ = ⎢ 1 Z2 ⎥ ⎣ ⎦ 1 + ⎢ Z ⎥ Z3 ⎣ 3 ⎦ Zo j sin β l 1 Z3 = , Y3 = = jYo sin β l j sin β l Zo 1+
jZ o β l
B ⎤ ⎡ cos β l =⎢ ⎥ D ⎦ ⎣ jYo sin β l
Z1 = cos β l , Z1 = (cos β l − 1) Z 3 Z3
= −2 sin 2
π 2 5-13
βl 2
× − jZ o
βl 1 = jZ o tan βl βl 2 2 sin cos 2 2
微波電路講義
Discussion 1. Shunt stub
Smith chart solution
yin = jb = jωC
d G Zo
Zo Zo
ZL
constant Γ-circle
y in = 1 − jb
l 1
y in = − jb =
jω L
Zo
Zo
Zo l
G
d
ZL
y in = 1 + jb 5-14
微波電路講義
2. Series stub
Smith chart solution
zin = 1 + jx d G
Zo l
ZL
Zo Zo
zin = − jx =
1 jωC
zin = 1 − jx
d
Zo ZL
Zo
l
G
Zo
zin = jx = jωL 5-15
微波電路講義
3. Ex. 5.2 ZL=60-j80, Zo=50Ω, f=2GHz, using a shunt short stub
3 G
1. zL=1.2-j1.6, yL=0.3+j0.4 Solution A 2. y=1+j1.47 → d1=0.11λ 3. y=-j1.47 → l1=0.095λ, short stub
4
l1
B S.C.
A
1
Solution B 4. y=1-j1.47 → d2=0.26λ 5. y=j1.47 → l2=0.405λ, short stub
2 5
l2 d
l
frequency response (p.231, Fig.5.5(c)) Solution A has a wider bandwidth. ZL 5-16
微波電路講義
4. Ex. 5.3 ZL=100+j80, Zo=50Ω, f=2GHz, using series open stub 3 4
G
B
1
O.C.
A
l1
l2
2 5
1. zL=2+j1.6 Solution A 2. z=1-j1.33 → d1=0.12λ 3. z=j1.33 → l1=0.397λ, open stub Solution B 4. z=1+j1.33 → d2=0.463λ 5. z=-j1.33 → l2=0.103λ, open stub frequency response (p.234, Fig.5.6(c)) It can not be implemented in microstrip lines.
5-17
微波電路講義
5. Analytical solution for shunt stub Y in = − jB
d
ZL
Zo l ⎧⎪⎛ Z L + jZ o tan β d ⎞ −1 ⎫⎪ Yo = Re ⎨⎜ Z o ⎟ ⎬ Z jZ tan d + β o L ⎠ ⎪⎭ ⎩⎪⎝
Y in = Y o + jB
→ d
⎧ ⎛ Z o ⎞ −1 open stub ⎪ ⎧⎪⎛ Z L + jZ o tan β l ⎞ −1 ⎫⎪ ⎪ ⎝⎜ tan β l ⎠⎟ − B = − Im ⎨⎜ Z o → l ⎟ ⎬=⎨ −1 Z jZ tan l + β o L ⎠ ⎪⎭ ⎪⎛ ⎞ ⎪⎩⎝ 1 − ⎪⎜ Z o tan β l ⎟ short stub ⎠ ⎩⎝ 5-18
微波電路講義
6. Analytical solution for series stub Z in = Z o + jX
d ZL
Zo
Z in = − jX
l ⎧ Z L + jZ o tan β d ⎫ Z o = Re ⎨ Z o ⎬ + β Z jZ tan d o L ⎩ ⎭
→ d
Zo ⎧ open stub ⎧ Z L + jZ o tan β l ⎫ ⎪ − X = − Im ⎨ Z o ⎬ = ⎨ tan β l ⎩ Z o + jZ L tan β l ⎭ ⎪ Z o tan β l short stub ⎩ 5-19
→ l
微波電路講義
5.3 Double-stub tuning 4, 5 1±jb
2, 3
1
λ/8
G
Zo
1
5
ZL 2
l2
l1
4 forbidden region
3
Discussion 1. There exists a forbidden region for ZL. It can be tuned out by adding a certain length of line. 5-20
微波電路講義
2. Ex. 5.4 ZL=60-j80, Zo=50Ω, f=2GHz, using double-shuntopen-stubs 1. zL=1.2-j1.6, yL=0.3+j0.4 l1’ 7 Solution A G 6 2. y=0.3+j 0.286 → 6. b1’ = - 0.114 l2’ → l1’ = 0.482λ 5 4. y=1+j1.38 → 7. b2’ = - 1.38 → l2’ =0.35λ O.C. 2 B A Solution B 4 3. y=0.3+j1.714 → 8. b1 =1.314 1 3 → l1 =0.146λ 9 l1 5. y=1-j3.38 → 9. b2 = 3.38 l2 8 → l2 =0.204λ λ/8
l2
l1
frequency response (p.239, Fig.5.9(c)) ZL 5-21
微波電路講義
3. Analytical solution Y2 = Yo - jB2 Y1
d
Zo
ZL
Zo l2
l1
jB2
jB1
⎛ Z + jZ o tan β d Y1 = YL + jB1 , Y2 = Yo − jB 2 = ⎜⎜ Z o 1 Z o + jZ 1 tan β d ⎝ Re {Y2 } = Yo → B1 → l1
⎞ ⎟⎟ ⎠
−1
Y1 → Im {Y2 } = − B 2 → l 2
5-22
微波電路講義
5.4 The quarter-wave transformer • frequency response
|Γ|
ZL/ Z0=10 Δθ
| Γm |
l
ZL/ Z0=2 Zo
Z1 =
Γ
Z1
ZL (real) θm θo π-θm θ Γm: max. tolerated Γover the bandwidth
ZoZL
Γ (θ ) ≈
ZL − Zo 2 ZoZ L
cos θ , for θ near θ o =
π , θ = βl 2
2 ZoZ L Γm 4 Δf ), Z L → Z o , Δ f increases = 2 − cos − 1 ( 2 fo π 1− Γm ZL − Zo 5-23
微波電路講義
(derivation of Γ (θ) ≈
Γ (θ ) =
Z 12 = Z o Z L
=
θ→ θo =
≈
π 2
Z in ( θ ) − Z o Z in ( θ ) + Z o
ZL + Z1 + = Z + Z1 L Z1 + Z1
cos θ )
2 ZoZL
jZ 1 tan θ − Zo Z 1 Z L + jZ 12 tan θ − Z o Z 1 − jZ L Z o tan θ jZ L tan θ = jZ 1 tan θ Z 1 Z L + jZ 12 tan θ + Z o Z 1 + jZ L Z o tan θ + Zo jZ L tan θ
Z1 (Z L − Z o ) ZL − Zo 1 = = Z 1 ( Z L + Z o ) + j 2 Z 12 tan θ Z L + Z o + j 2 Z o Z L tan θ j2 ZoZ L ZL + Zo + tan θ ZL − Zo ZL − Zo ZL − Zo j2 ZoZ L
cos θ
(derivation of Γ (θ ) =
ZL − Zo
2 ZoZL Γm Δf 4 = 2 − cos − 1 ( )) 2 fo π 1− Γm ZL − Zo 1
2 ZoZL Z + Zo 2 [( L ) +( tan θ ) 2 ]1 / 2 ZL − Zo ZL − Zo
1 + tan 2 θ = sec 2 θ
=
1 (Z L − Z o )2 + 4Z L Z o 4ZoZ L [ tan 2 θ ]1 / 2 + 2 2 (Z L − Z o ) (Z L − Z o )
1
=
[1 +
4ZoZ L sec 2 θ ]1 / 2 2 (Z L − Z o )
5-24
微波電路講義
1
Γ (θ ) = [1 + Γ 2m =
4ZoZ L sec 2 θ ]1 / 2 2 (Z L − Z o )
2 ZoZ L 2 1 1 1 ) → 2 −1 = ( cos 2 θ m ZL − Zo Γm 2 ZoZ L 1 2 1+ ( ) Z L − Z o cos θ m
→ cos θ m =
Γm
1 − Γ 2m Z L − Z o
T E M line: θ = β l = f fo
=
2 ZoZL πf m 2θ m f πf 2 πf λ o 2 πf v p ( fo ) = = → θm = → m = π 2 fo 2 fo vp ( f ) 4 v p ( f ) 4 fo fo
2( f o − f m ) 2 fm 4 = 2− = 2 − cos − 1 π fo fo
5-25
Γm
2 ZoZ L
1 − Γ m2 Z L − Z o
微波電路講義
5.5 The theory of small reflections • single-section transformer
Z1
Γ1
Γ2
T12
e
Γ3 Γ in
Γ1 e − jθ
Γ2
Z2
Γ3
ZL (real)
T12T21 Γ 3 e − j 2 θ = Γ1 + 1 − Γ 2 Γ 3e − j 2θ
Γ 1 + Γ 12 Γ 3 e − j 2 θ + (1 − Γ 1 )(1 + Γ 1 ) Γ 3 e − j 2 θ = 1 + Γ1 Γ 3e − j 2θ
− jθ
e − jθ
≈ Γin
T21 T12
Γ 2 = −Γ1 , T21 = 1 + Γ1 , T12 = 1 + Γ 2
e − jθ
T 21 Γin
Γ1
θ
Γ3
Γ1 + Γ 3e − j 2θ = 1 + Γ1 Γ 3e − j 2θ ≈ Γ 1 + Γ 3 e − j 2 θ if Z 1 ≈ Z 2 ≈ Z L 5-26
微波電路講義
• multisection transformer
Zo
Γ
Γo
θ
θ
θ
Z1
Z2
ZN
Γ1
Γ2
ΓN
ZL (real)
Γ (θ ) = Γ o + Γ1e− j 2θ + Γ 2e− j 4θ + ......Γ N e− j 2 Nθ , if Γ o = Γ N , Γ1 = Γ N −1...... ⎧ e− jNθ [ Γ o (e jNθ + e− jNθ ) + Γ1 (e j ( N −2)θ + e− j ( N −2)θ ) + ......Γ ( N −1) / 2 (e jθ + e− jθ )] N odd = ⎨ − jNθ jNθ − jNθ j ( N − 2) θ + e− j ( N −2)θ ) + ......Γ N / 2 ] N even ⎩e [ Γ o (e + e ) + Γ1 (e 1 ⎧ − jNθ θ θ θ + − + − + 2 e [ Γ cos N Γ cos( N 2) .... Γ cos( N 2 n ) .... Γ( N −1) / 2 cosθ ] N odd o n 1 ⎪⎪ 2 =⎨ ⎪2e− jNθ [ Γ cos Nθ + Γ cos( N − 2)θ + ....Γ cos( N − 2n)θ + .... 1 Γ ] N even o n N /2 1 ⎪⎩ 2 given Γ (θ ), design Z1 , Z 2 ,....Z n 5-27
微波電路講義
5.6 Binomial multisection matching transformer • maximal flatness response for Γ (θ) Γ (θ) = A(1 + e
N
) = A∑ CnN e − j 2 nθ = Γ o + Γ1e − j 2θ + Γ 2 e − j 4θ + ......Γ N e − j 2 Nθ
− j 2θ N
n =0
⇒ Γ n = ACnN
Discussion 1. Maximal flatness response,
d N −1 Γ(θ ) dθ N −1
2. Γ (0) = A 2 N = Z L − Z o → A = 2− N Z L − Z o Z L + Zo
3. Γ n = → ln
Z n +1 − Z n 1 Z n +1 ≈ ln Z n +1 + Z n 2 Zn
=0 θ=
π 2
or l =
λ 4
Z L + Zo
(ln x ≈ 2
x −1 ) x +1
Z n +1 Z − Zo N Z ≈ 2 Γ n = 2 ACnN = 2 × 2− N L Cn ≈ 2− N CnN ln L Zn Z L + Zo Zo
(p.249, Table 5.1 for Zn values) 5-28
微波電路講義
Γ m N1 4 Δf −1 1 = 2 − cos [ ( ) ], N ↑ , Δ f ↑ , Γ m = 2 N A con N θ m fo π 2 A
4.
∵ Γ (θ) = A(1 + e − j 2θ ) N → Γ (θ) = A 2 N cos N θ 1 Δf 4 4 −1 1 Γ m N = 2 − θm = 2 − cos [ ( ) ] fo π π 2 A
5. Ex.5.6 ZL=50Ω, Zo=100Ω, N=3, Γm=0.05 N = 3, A = 2 − N
Z L − Zo Z 1 = N +1 ln L = − 0.0433, 2 Z L + Zo Zo
Δf = 70% fo
ln
Z n +1 Z Z Z = 2 − N C nN ln L ⇒ ln 1 = 2 −3 C 03 ln L → Z1 = 91.7 Ω Zn Zo Zo Zo
ln
Z Z2 Z Z = 2 −3 C13 ln L → Z 2 = 70.7 Ω , ln 3 = 2 −3 C 23 ln L → Z 3 = 54.5Ω Z1 Zo Z2 Zo
(p.250, Fig.5.15 for frequency response of |Γ|) 5-29
微波電路講義
5.7 Chebyshev multisection matching transformers • Equal ripple response for Γ (θ): optimal design Γ (θ ) = 2 e − jNθ [ Γ o cos N θ + Γ 1 cos( N − 2)θ + .... Γ n cos( N − 2 n )θ + ....] = Ae − jNθ TN (sec θ m cos θ )
⇒ Γ n (p.254, Table 5.2)
T1 ( x ) = x , T2 ( x ) = 2 x 2 − 1,
T3 ( x ) = 4 x 3 − 3 x ,
Tn ( x ) = 2 xTn -1 ( x ) − Tn- 2 ( x ), x ≡
T4 ( x ) = 8 x 4 − 8 x 2 + 1,
cos θ , x ≤1 cos θ m
-1
1
π-θm
θm
x
Discussion 1. Γ(0) = ATN (sec θm ) = Z L − Z o → Γ m = A = Z L − Z o Z L + Zo
2. TN (sec θm ) = 1 Z L − Z o
Γm Z L + Zo
→ θm
1 Z L + Z o TN (sec θm ) 4θ Δf (5.63) → = 2− m fo π
3. Optimal design: given Γm, maximal Δf given Δf , minimal Γm. 5-30
微波電路講義
4. Ex.5.7 ZL=100Ω, Zo=50Ω, N=3, Γm=0.05 N = 3, Γ (θ ) = 2 e − j 3θ ( Γ o cos 3θ + Γ1 cos θ ) = Ae − j 3θ T3 (sec θ m cos θ ) = Ae − j 3θ (4 sec 3 θ m cos 3 θ − 3 sec θ m cos θ ) = Ae − j 3θ [sec 3 θ m (cos 3θ + 3 cos θ ) − 3 sec θ m cos θ ] A=
Z L − Zo 1 Δf = Γ m → sec θ m =1.408 → θ m = 44.7 o → = 101% Z L + Z o T3 (sec θ m ) fo
⇒ 2 Γ o = A sec 3 θ m → Γ o = 0.0 698 = Γ 3 2 Γ1 = A(3sec 3 θ m − 3sec θ m ) → Γ1 = 0.1037 = Γ 2 Γo =
Z1 − Z o Z1 + Z o
→ Z1 = 57.5Ω
Γ1 =
Z 2 − Z1 Z 2 + Z1
→ Z 2 = 70.7 Ω
Γo =
Z3 − Z2 Z3 + Z2
→ Z 3 = 87 Ω
frequency response (p.255, Fig.5.17) 5-31
微波電路講義
5.8 Tapered lines • Frequency response
Z+ΔZ Z(z) ZL ΔΓ
Γ
Zo
0
z z+Δz
L
z
Z + ΔZ − Z ΔZ ≈ Z + ΔZ + Z 2Z 1 dZ 1 d ln Z Z o → dΓ = = dz dz 2 Z 2 d Z 1 L → Γ (θ) = ∫ e − j 2βz (ln ) dz 0 dz Zo 2 ΔΓ =
5-32
微波電路講義
Discussion 1. Exponential taper Z ( z ) = Z o e az
0< z< L
Z ( L ) = Z L = Z o e aL → a = → Γ (θ ) =
1 2
∫
L 0
e− j2β z
Z 1 ln L L Zo
Z 1 sin β L d (ln e az ) dz = ln L e − j β L βL dz 2 Zo
L ↑ , Γ (θ ) ↓ (p. 257, Fig.5.19)
2. Triangular taper ⎧⎪ Z o e 2 (z/L ) ln Z L Z o 0< z< L 2 Z (z) = ⎨ ( 4 z/L − 2 z 2 /L2 − 1 ) 2 ln Z L Z o Z e L 2< z< L ⎪⎩ o Z L − j β L sin( β L 2) 2 1 Γ (θ ) = ln e [ ] Zo βL 2 2 2
first null at 2 π (p. 258, Fig.5.20) 5-33
微波電路講義
3. Klopfenstein taper Z ( z ) (5.74), (5.75), Γ ( θ ) (5.76), optimal taper
4. Ex.5.8 ZL=100Ω, Zo=50Ω, Γm=0.02 exponential taper: Z ( z ) = Z o eaz , a =
1 ZL = 0.693 L ln L Zo
1 Z sin β L Γ (θ ) = ln L 2 Zo β L 1 Z sin β L 2 2 triangular taper: Γ (θ ) = ln L [ ] 2 Zo β L 2 cos ( β L)2 − A2 Klopfenstein taper: Γ (θ ) = Γ o , A = 3.543, Γ o = 0.346 cosh A frequency response (p. 260, Fig.5.21) 5-34
微波電路講義
5.9 The Bode-Fano criterion
Γ(ω)
Zo
lossless matching network
C
Discussion 1. |Γ | 1 Γm
R
∫
∞ 0
ln
1 π dω ≤ RC Γ (ω)
ln1/ |Γ | ln1/Γm Δω
ω
5-35
Δω
ω
微波電路講義
∫
∞
0
ln
1 dω = Γ ( ω)
= Δω ln
∫
Δω
ln
1 dω Γm
π 1 ≤ : constant Γ m RC
(1) given RC → Δω↑ → Γm↑ (2) Γm≠ 0, unless Δω=0 i.e., Γm=0 only at a finite number of frequencies (3) R and/or C ↑ → Δω ↓ and/or Γm↑ ⇒ high Q load is harder to match
Zo
Γ(ω)
lossless matching network
C
R
parallel resonator Q= ωoRC 5-36
微波電路講義
Solved problems: Prob.5.7 find Z1 and l Zo=40Ω
Z1, l
zL
1.95+j0.98 4+j2
200+j100
zin 2.05 r’max 5.25
r’min 0.8 40 = Z1
200 + j100 + jZ1 tan β l Z1 + j (200 + j100) tan β l
(Z1)
→ 40 Z1 + j8000 tan βl − 4000 tan β l = 200 Z1 + j100 Z1 + jZ12 tan β l → → →
40 Z1 − 4000 tan β l = 200 Z1 → Z1 = −25 tan β l j8000 tan β l = j100 Z1 + jZ12 tan β l j8000 = − j 2500 + j 625 tan 2 βl → tan β l = −4.1 Z1 = 102.5
k=
Z1 kr 'min = 0.8 , 50 kr 'max = 5.25
→ k r 'min r 'max 2
r 'min r 'max =1
=
k 2 = 4.2
→ k = 2.05 Z1 = 50 × 2.05 = 102.5
l = 0.288λ 5-37
微波電路講義
Prob.5.25 find the best RL over operating range of 3.1~10.6GHz 0.6pF Zo
∫
∞ 0
ln
Γ(ω)
UWB network
75Ω
1 π dω ≤ Γ (ω) RC
→ ln
1 π ≤ Γm 2 π (10.6 − 3.1) × 10 9 × 75 × 0.6 × 10 − 12
→ ln
1 ≤ 1.48 → Γ m ≥ 0.228, RL ≤ 6.4 dB Γm
Suggested homework (due 2 weeks): 5, 11, 13, 22 ADS examples: Ch5_prj 5-38
微波電路講義