Smith Chart (introduction)

  • Uploaded by: HariPriyan
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Smith Chart (introduction) as PDF for free.

More details

  • Words: 4,259
  • Pages: 38
Chapter 5 Impedance matching and tuning 5.1 Matching with lumped elements L-section matching networks using Smith chart 5.2 Single-stub tuning shunt stub, series stub 5.3 Double-stub tuning forbidden region 5.4 The quarter-wave transformer frequency response 5.5 The theory of small reflections single-section transformer, multi-section transformer 5.6 Binomial multisection matching transformers 5.7 Chebyshev multisection matching transformers 5.8 Taper lines exponential taper, triangular taper 5.9 The Bode-Fano criterion Γ-Bandwidth 微波電路講義 5-1

• Impedance matching concept given ZL, design a matching network to have Γin=0 or selected value

Zo

Γin

matching network

ΓL

ZL

ZL

Zin (=Zo)

Discussion 1. Matching network usually uses lossless components: L, C, transmission line and transformer. 2. There are ∞ possible solutions for the matching circuit. 3. Properly use Smith chart to find the optimal design. 4. Factors for selecting matching circuit are complexity, bandwidth, implementation and adjustability. 5-2

微波電路講義

5.1 Matching with lumped elements (2-element L-network) • Smith chart solution L constant G-circle

constant R-circle

C Z-plane CW → add series L (reduce series C) CCW → add series C (reduce series L)

Y-plane CW → add shunt C (reduce shunt L) CCW → add shunt L (reduce shunt C) 5-3

微波電路講義

(explanation)

constant R-circle → L or C in series

j1 j2

L

j0.5

L B

(1)CW A → B :1 + j 0.5 + jx = 1 + j 2 → jx = j1.5 = jωL : add an L in series (2)CCW B → A :1 + j 2 + jx = 1 + j 0.5 → jx = − j1.5 =

A

1 j ωC

: add a C in series, or reduce extra L

C C -j0.5

(3)CCW C → D :1 − j 0.5 + jx = 1 − j 2 → jx = − j1.5 =

D C -j1

-jj2

1 j ωC

: add a C in series (4)CW D → C :1 − j 2 + jx = 1 − j 0.5 → jx = j1.5 = jωL : add an L in series or reduce extra C

in Z-plane CW → add a series L (or reduce series C) CCW → add a series C (or reduce series L) 5-4

微波電路講義

constant G-circle → L or C in shunt -j1

(1)CW A → B :1 − j 2 + jb = 1 − j 0.5 → jb = j1.5 = jωC -j0.5 : add a C in shunt, or reduce shunt L

L -j2

L A

(2)CCW B → A :1 − j 0.5 + jb = 1 − j 2 → jb = − j1.5 =

B

1 j ωL

: add an L in shunt

D

C C j2

C j1

j0.5

(3)CCW C → D :1 + j 2 + jb = 1 + j 0.5 → jb = − j1.5 =

1 j ωL

: add an L in shunt, or reduce shunt C (4)CW D → C :1 + j 0.5 + jb = 1 + j 2 → jb = j1.5 = jωC : add a C in shunt

in Y-plane CW → add a shunt C (or reduce shunt L) CCW → add a shunt L (or reduce shunt C) 5-5

微波電路講義

Discussion 1. ZL inside 1+jx circle, two possible solutions Smith chart solution (shunt-series elements) 1+jb circle

1+jx circle

B

A: Zo

ZL

series-shunt elements? Zo “N” Z o = jX + analytical solution

ZL

A

B:

jB +

jX jB

1 1 R L + jX L

⇒ B > 0 → C ,B < 0 → L

ZL

X > 0 → L, X < 0 → C 5-6

微波電路講義

2. ZL outside 1+jx circle, two possible solutions Smith chart solution (series-shunt elements) 1+jb circle

B

A

1+jx circle

A Zo

ZL

B Zo

ZL shunt-series elements? “Y” analytical solution 1 1 = jB + Zo R L + j( X + X L ) jX ⇒ B > 0 → C ,B < 0 → L jB ZL X > 0 → L, X < 0 → C 5-7

微波電路講義

3. Ex. 5.1 ZL=200-j100, Zo=100Ω, f=500MHz

B

3 1 2

A

L C

A:

1. zL=2-j1, yL=0.4+j0.2 Solution A 2. y=0.4+j0.5 → jb=j0.3 → jB=jωC=jb/Zo C=b/Zoω =0.92pF z=1-j1.2 → jx=j1.2 → jX=j ωL=jxZo L=xZo/ω =38.8nH Solution B 3. y=0.4-j0.5 → jb=-j0.7→-jB=1/jωL=-jb/Zo L=-Zo/ωb=46.1nH z=1+j1.2 → jx=-j1.2 → jX=1/jωC=-jxZo C=-1/xZoω =2.61pF frequency response (p.227, Fig.5.3(c))

B:

C

L 5-8

微波電路講義

4. Possible 3-element L-network

1+jx circle

series ? “Y”

Zo

ZL

Zo

ZL

1+jb circle

5-9

微波電路講義

5. Possible 4-element L-network shorter paths for a wider operational bandwidth 1+jx circle Zo

ZL

Zo

ZL

1+jb circle

5-10

微波電路講義

6. Lumped elements (size<λ/10) capacitor: chip capacitor, MIM capacitor (<25pF), interdigital gap capacitor (<0.5pF), open stub(<0.1pF) inductor: chip inductor, loop inductor, spiral inductor (<10nH) resistor: chip resistor, planar resistor All these lumped elements inherently have parasitic elements in the microwave range. (p.228, “point of interest”) Size (mil)

B

C D

0402

0603

0805

1206

A

39

62

78

125

B

24

38

39

62

C

8

12

20

23

D

20

31

49

62

1mil=0.001in=25um=1/40mm A

5-11

微波電路講義

5.2 Single-stub tuning • equivalent microstrip elements a series C --a series L in series with a high impedance microstrip line a shunt C in shunt with an open microstrip line a shunt L in shunt with a short microstrip line an open-circuited microstrip line

Z in =

Zo 1 ≡ j tan β l jω C

a short-circuited microstrip line Z in = jZ o tan β l ≡ j ω L a high impedance microstrip line jZ o tan

βl 2

Z1 Zo, β



jZ o tan

βl

jZ o β l

2

Z2 Y3 j sin β l Zo

l 5-12

≈ 微波電路講義

(derivation of high impedance line) From p.185 Table 4.1

Zo, β

⎡A ⎢C ⎣

l jZ o tan

βl 2

Z1

jZ o tan

βl 2

Z2 Y3 j sin β l Zo

high Zo,Y3→0 β l <<

jZ o sin β l ⎤ cos β l ⎥⎦

Z1 Z 2 ⎤ ⎡ Z1 1 Z Z + + + 1 2 Z3 ⎥ ⎡ A B ⎤ ⎢⎢ Z 3 ⎥ ⎢C D ⎥ = ⎢ 1 Z2 ⎥ ⎣ ⎦ 1 + ⎢ Z ⎥ Z3 ⎣ 3 ⎦ Zo j sin β l 1 Z3 = , Y3 = = jYo sin β l j sin β l Zo 1+

jZ o β l

B ⎤ ⎡ cos β l =⎢ ⎥ D ⎦ ⎣ jYo sin β l

Z1 = cos β l , Z1 = (cos β l − 1) Z 3 Z3

= −2 sin 2

π 2 5-13

βl 2

× − jZ o

βl 1 = jZ o tan βl βl 2 2 sin cos 2 2

微波電路講義

Discussion 1. Shunt stub

Smith chart solution

yin = jb = jωC

d G Zo

Zo Zo

ZL

constant Γ-circle

y in = 1 − jb

l 1

y in = − jb =

jω L

Zo

Zo

Zo l

G

d

ZL

y in = 1 + jb 5-14

微波電路講義

2. Series stub

Smith chart solution

zin = 1 + jx d G

Zo l

ZL

Zo Zo

zin = − jx =

1 jωC

zin = 1 − jx

d

Zo ZL

Zo

l

G

Zo

zin = jx = jωL 5-15

微波電路講義

3. Ex. 5.2 ZL=60-j80, Zo=50Ω, f=2GHz, using a shunt short stub

3 G

1. zL=1.2-j1.6, yL=0.3+j0.4 Solution A 2. y=1+j1.47 → d1=0.11λ 3. y=-j1.47 → l1=0.095λ, short stub

4

l1

B S.C.

A

1

Solution B 4. y=1-j1.47 → d2=0.26λ 5. y=j1.47 → l2=0.405λ, short stub

2 5

l2 d

l

frequency response (p.231, Fig.5.5(c)) Solution A has a wider bandwidth. ZL 5-16

微波電路講義

4. Ex. 5.3 ZL=100+j80, Zo=50Ω, f=2GHz, using series open stub 3 4

G

B

1

O.C.

A

l1

l2

2 5

1. zL=2+j1.6 Solution A 2. z=1-j1.33 → d1=0.12λ 3. z=j1.33 → l1=0.397λ, open stub Solution B 4. z=1+j1.33 → d2=0.463λ 5. z=-j1.33 → l2=0.103λ, open stub frequency response (p.234, Fig.5.6(c)) It can not be implemented in microstrip lines.

5-17

微波電路講義

5. Analytical solution for shunt stub Y in = − jB

d

ZL

Zo l ⎧⎪⎛ Z L + jZ o tan β d ⎞ −1 ⎫⎪ Yo = Re ⎨⎜ Z o ⎟ ⎬ Z jZ tan d + β o L ⎠ ⎪⎭ ⎩⎪⎝

Y in = Y o + jB

→ d

⎧ ⎛ Z o ⎞ −1 open stub ⎪ ⎧⎪⎛ Z L + jZ o tan β l ⎞ −1 ⎫⎪ ⎪ ⎝⎜ tan β l ⎠⎟ − B = − Im ⎨⎜ Z o → l ⎟ ⎬=⎨ −1 Z jZ tan l + β o L ⎠ ⎪⎭ ⎪⎛ ⎞ ⎪⎩⎝ 1 − ⎪⎜ Z o tan β l ⎟ short stub ⎠ ⎩⎝ 5-18

微波電路講義

6. Analytical solution for series stub Z in = Z o + jX

d ZL

Zo

Z in = − jX

l ⎧ Z L + jZ o tan β d ⎫ Z o = Re ⎨ Z o ⎬ + β Z jZ tan d o L ⎩ ⎭

→ d

Zo ⎧ open stub ⎧ Z L + jZ o tan β l ⎫ ⎪ − X = − Im ⎨ Z o ⎬ = ⎨ tan β l ⎩ Z o + jZ L tan β l ⎭ ⎪ Z o tan β l short stub ⎩ 5-19

→ l

微波電路講義

5.3 Double-stub tuning 4, 5 1±jb

2, 3

1

λ/8

G

Zo

1

5

ZL 2

l2

l1

4 forbidden region

3

Discussion 1. There exists a forbidden region for ZL. It can be tuned out by adding a certain length of line. 5-20

微波電路講義

2. Ex. 5.4 ZL=60-j80, Zo=50Ω, f=2GHz, using double-shuntopen-stubs 1. zL=1.2-j1.6, yL=0.3+j0.4 l1’ 7 Solution A G 6 2. y=0.3+j 0.286 → 6. b1’ = - 0.114 l2’ → l1’ = 0.482λ 5 4. y=1+j1.38 → 7. b2’ = - 1.38 → l2’ =0.35λ O.C. 2 B A Solution B 4 3. y=0.3+j1.714 → 8. b1 =1.314 1 3 → l1 =0.146λ 9 l1 5. y=1-j3.38 → 9. b2 = 3.38 l2 8 → l2 =0.204λ λ/8

l2

l1

frequency response (p.239, Fig.5.9(c)) ZL 5-21

微波電路講義

3. Analytical solution Y2 = Yo - jB2 Y1

d

Zo

ZL

Zo l2

l1

jB2

jB1

⎛ Z + jZ o tan β d Y1 = YL + jB1 , Y2 = Yo − jB 2 = ⎜⎜ Z o 1 Z o + jZ 1 tan β d ⎝ Re {Y2 } = Yo → B1 → l1

⎞ ⎟⎟ ⎠

−1

Y1 → Im {Y2 } = − B 2 → l 2

5-22

微波電路講義

5.4 The quarter-wave transformer • frequency response

|Γ|

ZL/ Z0=10 Δθ

| Γm |

l

ZL/ Z0=2 Zo

Z1 =

Γ

Z1

ZL (real) θm θo π-θm θ Γm: max. tolerated Γover the bandwidth

ZoZL

Γ (θ ) ≈

ZL − Zo 2 ZoZ L

cos θ , for θ near θ o =

π , θ = βl 2

2 ZoZ L Γm 4 Δf ), Z L → Z o , Δ f increases = 2 − cos − 1 ( 2 fo π 1− Γm ZL − Zo 5-23

微波電路講義

(derivation of Γ (θ) ≈

Γ (θ ) =

Z 12 = Z o Z L

=

θ→ θo =



π 2

Z in ( θ ) − Z o Z in ( θ ) + Z o

ZL + Z1 + = Z + Z1 L Z1 + Z1

cos θ )

2 ZoZL

jZ 1 tan θ − Zo Z 1 Z L + jZ 12 tan θ − Z o Z 1 − jZ L Z o tan θ jZ L tan θ = jZ 1 tan θ Z 1 Z L + jZ 12 tan θ + Z o Z 1 + jZ L Z o tan θ + Zo jZ L tan θ

Z1 (Z L − Z o ) ZL − Zo 1 = = Z 1 ( Z L + Z o ) + j 2 Z 12 tan θ Z L + Z o + j 2 Z o Z L tan θ j2 ZoZ L ZL + Zo + tan θ ZL − Zo ZL − Zo ZL − Zo j2 ZoZ L

cos θ

(derivation of Γ (θ ) =

ZL − Zo

2 ZoZL Γm Δf 4 = 2 − cos − 1 ( )) 2 fo π 1− Γm ZL − Zo 1

2 ZoZL Z + Zo 2 [( L ) +( tan θ ) 2 ]1 / 2 ZL − Zo ZL − Zo

1 + tan 2 θ = sec 2 θ

=

1 (Z L − Z o )2 + 4Z L Z o 4ZoZ L [ tan 2 θ ]1 / 2 + 2 2 (Z L − Z o ) (Z L − Z o )

1

=

[1 +

4ZoZ L sec 2 θ ]1 / 2 2 (Z L − Z o )

5-24

微波電路講義

1

Γ (θ ) = [1 + Γ 2m =

4ZoZ L sec 2 θ ]1 / 2 2 (Z L − Z o )

2 ZoZ L 2 1 1 1 ) → 2 −1 = ( cos 2 θ m ZL − Zo Γm 2 ZoZ L 1 2 1+ ( ) Z L − Z o cos θ m

→ cos θ m =

Γm

1 − Γ 2m Z L − Z o

T E M line: θ = β l = f fo

=

2 ZoZL πf m 2θ m f πf 2 πf λ o 2 πf v p ( fo ) = = → θm = → m = π 2 fo 2 fo vp ( f ) 4 v p ( f ) 4 fo fo

2( f o − f m ) 2 fm 4 = 2− = 2 − cos − 1 π fo fo

5-25

Γm

2 ZoZ L

1 − Γ m2 Z L − Z o

微波電路講義

5.5 The theory of small reflections • single-section transformer

Z1

Γ1

Γ2

T12

e

Γ3 Γ in

Γ1 e − jθ

Γ2

Z2

Γ3

ZL (real)

T12T21 Γ 3 e − j 2 θ = Γ1 + 1 − Γ 2 Γ 3e − j 2θ

Γ 1 + Γ 12 Γ 3 e − j 2 θ + (1 − Γ 1 )(1 + Γ 1 ) Γ 3 e − j 2 θ = 1 + Γ1 Γ 3e − j 2θ

− jθ

e − jθ

≈ Γin

T21 T12

Γ 2 = −Γ1 , T21 = 1 + Γ1 , T12 = 1 + Γ 2

e − jθ

T 21 Γin

Γ1

θ

Γ3

Γ1 + Γ 3e − j 2θ = 1 + Γ1 Γ 3e − j 2θ ≈ Γ 1 + Γ 3 e − j 2 θ if Z 1 ≈ Z 2 ≈ Z L 5-26

微波電路講義

• multisection transformer

Zo

Γ

Γo

θ

θ

θ

Z1

Z2

ZN

Γ1

Γ2

ΓN

ZL (real)

Γ (θ ) = Γ o + Γ1e− j 2θ + Γ 2e− j 4θ + ......Γ N e− j 2 Nθ , if Γ o = Γ N , Γ1 = Γ N −1...... ⎧ e− jNθ [ Γ o (e jNθ + e− jNθ ) + Γ1 (e j ( N −2)θ + e− j ( N −2)θ ) + ......Γ ( N −1) / 2 (e jθ + e− jθ )] N odd = ⎨ − jNθ jNθ − jNθ j ( N − 2) θ + e− j ( N −2)θ ) + ......Γ N / 2 ] N even ⎩e [ Γ o (e + e ) + Γ1 (e 1 ⎧ − jNθ θ θ θ + − + − + 2 e [ Γ cos N Γ cos( N 2) .... Γ cos( N 2 n ) .... Γ( N −1) / 2 cosθ ] N odd o n 1 ⎪⎪ 2 =⎨ ⎪2e− jNθ [ Γ cos Nθ + Γ cos( N − 2)θ + ....Γ cos( N − 2n)θ + .... 1 Γ ] N even o n N /2 1 ⎪⎩ 2 given Γ (θ ), design Z1 , Z 2 ,....Z n 5-27

微波電路講義

5.6 Binomial multisection matching transformer • maximal flatness response for Γ (θ) Γ (θ) = A(1 + e

N

) = A∑ CnN e − j 2 nθ = Γ o + Γ1e − j 2θ + Γ 2 e − j 4θ + ......Γ N e − j 2 Nθ

− j 2θ N

n =0

⇒ Γ n = ACnN

Discussion 1. Maximal flatness response,

d N −1 Γ(θ ) dθ N −1

2. Γ (0) = A 2 N = Z L − Z o → A = 2− N Z L − Z o Z L + Zo

3. Γ n = → ln

Z n +1 − Z n 1 Z n +1 ≈ ln Z n +1 + Z n 2 Zn

=0 θ=

π 2

or l =

λ 4

Z L + Zo

(ln x ≈ 2

x −1 ) x +1

Z n +1 Z − Zo N Z ≈ 2 Γ n = 2 ACnN = 2 × 2− N L Cn ≈ 2− N CnN ln L Zn Z L + Zo Zo

(p.249, Table 5.1 for Zn values) 5-28

微波電路講義

Γ m N1 4 Δf −1 1 = 2 − cos [ ( ) ], N ↑ , Δ f ↑ , Γ m = 2 N A con N θ m fo π 2 A

4.

∵ Γ (θ) = A(1 + e − j 2θ ) N → Γ (θ) = A 2 N cos N θ 1 Δf 4 4 −1 1 Γ m N = 2 − θm = 2 − cos [ ( ) ] fo π π 2 A

5. Ex.5.6 ZL=50Ω, Zo=100Ω, N=3, Γm=0.05 N = 3, A = 2 − N

Z L − Zo Z 1 = N +1 ln L = − 0.0433, 2 Z L + Zo Zo

Δf = 70% fo

ln

Z n +1 Z Z Z = 2 − N C nN ln L ⇒ ln 1 = 2 −3 C 03 ln L → Z1 = 91.7 Ω Zn Zo Zo Zo

ln

Z Z2 Z Z = 2 −3 C13 ln L → Z 2 = 70.7 Ω , ln 3 = 2 −3 C 23 ln L → Z 3 = 54.5Ω Z1 Zo Z2 Zo

(p.250, Fig.5.15 for frequency response of |Γ|) 5-29

微波電路講義

5.7 Chebyshev multisection matching transformers • Equal ripple response for Γ (θ): optimal design Γ (θ ) = 2 e − jNθ [ Γ o cos N θ + Γ 1 cos( N − 2)θ + .... Γ n cos( N − 2 n )θ + ....] = Ae − jNθ TN (sec θ m cos θ )

⇒ Γ n (p.254, Table 5.2)

T1 ( x ) = x , T2 ( x ) = 2 x 2 − 1,

T3 ( x ) = 4 x 3 − 3 x ,

Tn ( x ) = 2 xTn -1 ( x ) − Tn- 2 ( x ), x ≡

T4 ( x ) = 8 x 4 − 8 x 2 + 1,

cos θ , x ≤1 cos θ m

-1

1

π-θm

θm

x

Discussion 1. Γ(0) = ATN (sec θm ) = Z L − Z o → Γ m = A = Z L − Z o Z L + Zo

2. TN (sec θm ) = 1 Z L − Z o

Γm Z L + Zo

→ θm

1 Z L + Z o TN (sec θm ) 4θ Δf (5.63) → = 2− m fo π

3. Optimal design: given Γm, maximal Δf given Δf , minimal Γm. 5-30

微波電路講義

4. Ex.5.7 ZL=100Ω, Zo=50Ω, N=3, Γm=0.05 N = 3, Γ (θ ) = 2 e − j 3θ ( Γ o cos 3θ + Γ1 cos θ ) = Ae − j 3θ T3 (sec θ m cos θ ) = Ae − j 3θ (4 sec 3 θ m cos 3 θ − 3 sec θ m cos θ ) = Ae − j 3θ [sec 3 θ m (cos 3θ + 3 cos θ ) − 3 sec θ m cos θ ] A=

Z L − Zo 1 Δf = Γ m → sec θ m =1.408 → θ m = 44.7 o → = 101% Z L + Z o T3 (sec θ m ) fo

⇒ 2 Γ o = A sec 3 θ m → Γ o = 0.0 698 = Γ 3 2 Γ1 = A(3sec 3 θ m − 3sec θ m ) → Γ1 = 0.1037 = Γ 2 Γo =

Z1 − Z o Z1 + Z o

→ Z1 = 57.5Ω

Γ1 =

Z 2 − Z1 Z 2 + Z1

→ Z 2 = 70.7 Ω

Γo =

Z3 − Z2 Z3 + Z2

→ Z 3 = 87 Ω

frequency response (p.255, Fig.5.17) 5-31

微波電路講義

5.8 Tapered lines • Frequency response

Z+ΔZ Z(z) ZL ΔΓ

Γ

Zo

0

z z+Δz

L

z

Z + ΔZ − Z ΔZ ≈ Z + ΔZ + Z 2Z 1 dZ 1 d ln Z Z o → dΓ = = dz dz 2 Z 2 d Z 1 L → Γ (θ) = ∫ e − j 2βz (ln ) dz 0 dz Zo 2 ΔΓ =

5-32

微波電路講義

Discussion 1. Exponential taper Z ( z ) = Z o e az

0< z< L

Z ( L ) = Z L = Z o e aL → a = → Γ (θ ) =

1 2



L 0

e− j2β z

Z 1 ln L L Zo

Z 1 sin β L d (ln e az ) dz = ln L e − j β L βL dz 2 Zo

L ↑ , Γ (θ ) ↓ (p. 257, Fig.5.19)

2. Triangular taper ⎧⎪ Z o e 2 (z/L ) ln Z L Z o 0< z< L 2 Z (z) = ⎨ ( 4 z/L − 2 z 2 /L2 − 1 ) 2 ln Z L Z o Z e L 2< z< L ⎪⎩ o Z L − j β L sin( β L 2) 2 1 Γ (θ ) = ln e [ ] Zo βL 2 2 2

first null at 2 π (p. 258, Fig.5.20) 5-33

微波電路講義

3. Klopfenstein taper Z ( z ) (5.74), (5.75), Γ ( θ ) (5.76), optimal taper

4. Ex.5.8 ZL=100Ω, Zo=50Ω, Γm=0.02 exponential taper: Z ( z ) = Z o eaz , a =

1 ZL = 0.693 L ln L Zo

1 Z sin β L Γ (θ ) = ln L 2 Zo β L 1 Z sin β L 2 2 triangular taper: Γ (θ ) = ln L [ ] 2 Zo β L 2 cos ( β L)2 − A2 Klopfenstein taper: Γ (θ ) = Γ o , A = 3.543, Γ o = 0.346 cosh A frequency response (p. 260, Fig.5.21) 5-34

微波電路講義

5.9 The Bode-Fano criterion

Γ(ω)

Zo

lossless matching network

C

Discussion 1. |Γ | 1 Γm

R



∞ 0

ln

1 π dω ≤ RC Γ (ω)

ln1/ |Γ | ln1/Γm Δω

ω

5-35

Δω

ω

微波電路講義





0

ln

1 dω = Γ ( ω)

= Δω ln



Δω

ln

1 dω Γm

π 1 ≤ : constant Γ m RC

(1) given RC → Δω↑ → Γm↑ (2) Γm≠ 0, unless Δω=0 i.e., Γm=0 only at a finite number of frequencies (3) R and/or C ↑ → Δω ↓ and/or Γm↑ ⇒ high Q load is harder to match

Zo

Γ(ω)

lossless matching network

C

R

parallel resonator Q= ωoRC 5-36

微波電路講義

Solved problems: Prob.5.7 find Z1 and l Zo=40Ω

Z1, l

zL

1.95+j0.98 4+j2

200+j100

zin 2.05 r’max 5.25

r’min 0.8 40 = Z1

200 + j100 + jZ1 tan β l Z1 + j (200 + j100) tan β l

(Z1)

→ 40 Z1 + j8000 tan βl − 4000 tan β l = 200 Z1 + j100 Z1 + jZ12 tan β l → → →

40 Z1 − 4000 tan β l = 200 Z1 → Z1 = −25 tan β l j8000 tan β l = j100 Z1 + jZ12 tan β l j8000 = − j 2500 + j 625 tan 2 βl → tan β l = −4.1 Z1 = 102.5

k=

Z1 kr 'min = 0.8 , 50 kr 'max = 5.25

→ k r 'min r 'max 2

r 'min r 'max =1

=

k 2 = 4.2

→ k = 2.05 Z1 = 50 × 2.05 = 102.5

l = 0.288λ 5-37

微波電路講義

Prob.5.25 find the best RL over operating range of 3.1~10.6GHz 0.6pF Zo



∞ 0

ln

Γ(ω)

UWB network

75Ω

1 π dω ≤ Γ (ω) RC

→ ln

1 π ≤ Γm 2 π (10.6 − 3.1) × 10 9 × 75 × 0.6 × 10 − 12

→ ln

1 ≤ 1.48 → Γ m ≥ 0.228, RL ≤ 6.4 dB Γm

Suggested homework (due 2 weeks): 5, 11, 13, 22 ADS examples: Ch5_prj 5-38

微波電路講義

Related Documents

Smith Chart
November 2019 14
Smith Chart
November 2019 8
Smith Chart Part 2
November 2019 5
Smith Chart Tutorial
June 2020 8
Smith Chart Basics
December 2019 3

More Documents from ""