Slab Design.xlsx

  • Uploaded by: kunjita dashore
  • 0
  • 0
  • December 2019
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Slab Design.xlsx as PDF for free.

More details

  • Words: 1,674
  • Pages: 12
SLAB DESIGN :-

Span 1 & 4

(One long edge continuous) (TWO WAY)

Short Span (Clear) Long Span (Clear) Live Load on the Slab (LL) Comp.stess of concrete M - 15 (fck) Tensile stress of steel (fy) Unit wt of concrete Unit wt of floor finish 50 mm Clear concrete cover Bearing of slab assume pt =

in ft. 12.11 19.082

3.68 m 5.80 m 0.75 KN / sqm 20.00 N / sqm 415.00 N / sqm 25.00 KN / cum 24.00 KN / sqm 15.00 mm 200.00 mm 0.22 % 1.50 23 106.67 mm 20.00 mm 125.00 mm 10.00 mm 10.00 mm 105.00 mm

From Modification curve, Modification factor = Basic value of span / effective depth ratio =

effective depth cover Provide Overall depth D Dia of bars for short direction Dia of bars for long direction Effective Depth d Loading on the slab

Dead Load of the slab (DL) Floor Finish Other Load Live Load on the slab Total Load on the slab (TL) Design Load = (Total Llx Effective Span lx ly Ratio ly/lx

3.13 KN / sqm 1.20 KN / sqm 0.00 KN / sqm 0.75 KN / sqm 5.08 KN / sqm 7.61 KN / sqm 3.79 m 5.91 m

1.560 From Table (30 of NBC Cl. D-1.1 & 23.4.1) BM Coefficients are as follows;

For negative moments (at top) For positive moments (at botto

1.5 0.084 0.064

ax 0.085683 0.065202

1.75 0.091 0.069

ay 0.000 0.043

Calculated BM per unit width of slab are as follows;

For negative moments (at top) For positive moments (at bottom)

Mx = ax w lx2 9.34 7.11

My = ay w lx2 0.00 KN-m/m 4.69 KN-m/m

Flexural strength consideration

Maximum BM = 9.34 KN-m/m BM = 0.36 x fck x 0.48 (1-0.42 x 0.48) x 1000 d 2 = BM x 106 N-mm/m or 0.36 x fck x 0.48 (1-0.42 x 0.48) x 1000 d 2 = 9344445 or d= 58 mm <105mm HENCE OK Tension R/F for the positive BM along the short span is BM = 7.11 KNM

Pt = (50(1-√(1-((4.6 * BM * 10^6)/(Fck * bd^2)))/fy/fck) Pt = 0.185899 Ast = 195.2 mm2 Ast min= 150.0 mm2 Ast provd. 195.1935 mm2 Spacing= 402.3691 mm provide spacing 300.00 mm provide 10mm Ø bar @ 300 mm c/c. Tension R/F for the positive BM along the long span is BM= 4.69 KNM Pt= (50(1-√(1-((4.6 * BM * 10^6)/(Fck * bd^2)))/fy/fck) Pt= 0.120902 Ast = 126.9469 mm2 Ast provd. 150 mm2 Spacing= 523.5988 mm provide spacing 300.00 mm provide 10mm Ø bar @ 300 mm c/c. Tension R/F for the negative BM along the short span is BM= 9.34 KNm Pt= (50(1-√(1-((4.6 * BM * 10^6)/(Fck * bd^2)))/fy/fck) Pt= 0.247588 % Ast = 259.9676 mm2 Ast provd. 259.9676 Spacing= 302.1139 provide spacing 300.00 mm provide 10mm Ø bar @ 300 mm c/c. Bendind Moments

Short Span For negative moments (at top) 9.34 KN-m/m For positive moments (at botto 7.11 KN-m/m

Long Span 0.00 KN-m/m 4.69 KN-m/m

Reinforcements

Short Span Long Span Top R/F (At support) 260.00 0.00 mm2/m Bottom R/F (At Mid Span) 260.00 260.00 mm2/m These R/F will be provided within the middle strips in the two directions. Adopting 8 or 10 mm dia bars for the R/F, the calculated spacing of bars will be as follows; Reinforcements Spacing

Dia of barsShort Span Top R/F (At support) 10.00 300 mm Bottom R/F (At Mid S 10.00 300 mm Maximum Spacing 300 mm

Dia of bars Long Span 10.00 #DIV/0! mm c/c 10.00 300 mm c/c 75 mm c/c

No. of bars in slab

Top R/F Bottom R/F

Short Span Long Span 13.00 Nos. of Length 3785 #DIV/0! Nos. of Length 5905 mm 20.00 Nos. of Length 3785 20.00 Nos. of Length 5905 mm

32709852 0.148344 0.922852 0.077148 3.857395 0.185899 195.1935

21571749 0.097831 0.949826 0.050174 2.508713 0.120902 126.9469

42984449 0.194941 0.897251 0.102749 5.137455 0.247588 259.9676

Short Span (Clear) Long Span (Clear) Live Load on the Slab (LL) Comp.stess of concrete M - 15 (fck) Tensile stress of steel (fy) Unit wt of concrete Unit wt of floor finish 50 mm Clear concrete cover Bearing of slab assume pt = From Modification curve, Modification factor = Basic value of span / effective depth ratio =

effective depth cover Provide Overall depth D Dia of bars for short direction Dia of bars for long direction Effective Depth d Loading on the slab

Dead Load of the slab (DL) Floor Finish Other Load Live Load on the slab Total Load on the slab (TL) Design Load = (Total Llx Effective Span lx ly

12.11 19.082

3.68 m 5.80 m 0.75 KN / sqm 20.00 N / sqm 415.00 N / sqm 25.00 KN / cum 24.00 KN / sqm 15.00 mm 200.00 mm 0.22 % 1.50 23 106.67 mm 20.00 mm 125.00 mm 10.00 mm 10.00 mm 105.00 mm 3.13 KN / sqm 1.20 KN / sqm 0.50 KN / sqm 0.75 KN / sqm 5.58 KN / sqm 8.36 KN / sqm 3.79 m 5.91 m

SLAB DESIGN :-

Span 2 & 3

(two short edge discontinuous) (TWO WAY)

Short Span (Clear) Long Span (Clear) Live Load on the Slab (LL) Comp.stess of concrete M - 15 (fck) Tensile stress of steel (fy) Unit wt of concrete Unit wt of floor finish 50 mm Clear concrete cover Bearing of slab assume pt =

in ft. 12.11 19.082

3.68 m 5.80 m 0.75 KN / sqm 20.00 N / sqm 415.00 N / sqm 25.00 KN / cum 24.00 KN / sqm 15.00 mm 200.00 mm 0.22 % 1.43 26 98.98 mm 20.00 mm 125.00 mm 10.00 mm 10.00 mm 105.00 mm

From Modification curve, Modification factor = Basic value of span / effective depth ratio =

effective depth cover Provide Overall depth D Dia of bars for short direction Dia of bars for long direction Effective Depth d Loading on the slab

Dead Load of the slab (DL) Floor Finish Other Load Live Load on the slab Total Load on the slab (TL) Design Load = (Total Llx Effective Span lx ly Ratio ly/lx

3.13 KN / sqm 1.20 KN / sqm 0.00 KN / sqm 0.75 KN / sqm 5.08 KN / sqm 7.61 KN / sqm 3.79 m 5.91 m

1.560 From Table (30 of NBC Cl. D-1.1 & 23.4.1) BM Coefficients are as follows;

For negative moments (at top) For positive moments (at botto

1.5 0.06 0.045

ax 0.061202 0.045962

1.75 0.065 0.049

ay 0.000 0.035

Calculated BM per unit width of slab are as follows;

For negative moments (at top) For positive moments (at bottom)

Mx = ax w lx2 9.34 5.01

My = ay w lx2 0.00 KN-m/m 3.82 KN-m/m

Flexural strength consideration

BM = or

Maximum BM = 9.34 KN-m/m 0.36 x fck x 0.48 (1-0.42 x 0.48) x 1000 d 2 = BM x 106 N-mm/m 0.36 x fck x 0.48 (1-0.42 x 0.48) x 1000 d 2 = 9344445

or d= 58 mm <105mm HENCE OK Tension R/F for the positive BM along the short span is BM = 5.01 KNM Pt = (50(1-√(1-((4.6 * BM * 10^6)/(Fck * bd^2)))/fy/fck) Pt = 0.129465 Ast = 135.9 mm2 Ast min= 150.0 mm2 Ast provd. 150 mm2 Spacing= 523.5988 mm provide spacing 300.00 mm provide 10mm Ø bar @ 300 mm c/c. Tension R/F for the positive BM along the long span is BM= 3.82 KNM Pt= (50(1-√(1-((4.6 * BM * 10^6)/(Fck * bd^2)))/fy/fck) Pt= 0.09793 Ast = 102.8261 mm2 Ast provd. 150 mm2 Spacing= 523.5988 mm provide spacing 300.00 mm provide 10mm Ø bar @ 300 mm c/c. Tension R/F for the negative BM along the short span is BM= 9.34 KNm Pt= (50(1-√(1-((4.6 * BM * 10^6)/(Fck * bd^2)))/fy/fck) Pt= 0.247588 % Ast = 259.9676 mm2 Ast provd. 259.9676 Spacing= 302.1139 provide spacing 300.00 mm provide 10mm Ø bar @ 300 mm c/c. Bendind Moments

For negative moments (at top) For positive moments (at botto

Short Span 9.34 KN-m/m 5.01 KN-m/m

Long Span 0.00 KN-m/m 3.82 KN-m/m

Reinforcements

Short Span Long Span Top R/F (At support) 260.00 0.00 mm2/m Bottom R/F (At Mid Span) 260.00 260.00 mm2/m These R/F will be provided within the middle strips in the two directions. Adopting 8 or 10 mm dia bars for the R/F, the calculated spacing of bars will be as follows; Reinforcements Spacing

Dia of barsShort Span Top R/F (At support) 10.00 300 mm Bottom R/F (At Mid S 10.00 300 mm Maximum Spacing 300 mm

Dia of bars Long Span 10.00 #DIV/0! mm c/c 10.00 300 mm c/c 75 mm c/c

No. of bars in slab

Top R/F Bottom R/F

Short Span Long Span 13.00 Nos. of Length 3785 #DIV/0! Nos. of Length 5905 mm 20.00 Nos. of Length 3785 20.00 Nos. of Length 5905 mm

23057536 0.104569 0.946272 0.053728 2.686401 0.129465 135.9383

17558400

0.07963 0.959359 0.040641 2.03204

0.09793 102.8261

42984449 0.194941 0.897251 0.102749 5.137455 0.247588 259.9676

Short Span (Clear) Long Span (Clear) Live Load on the Slab (LL) Comp.stess of concrete M - 15 (fck) Tensile stress of steel (fy) Unit wt of concrete Unit wt of floor finish 50 mm Clear concrete cover Bearing of slab assume pt = From Modification curve, Modification factor = Basic value of span / effective depth ratio =

effective depth cover Provide Overall depth D Dia of bars for short direction Dia of bars for long direction Effective Depth d

12.11 19.082

3.68 m 5.80 m 0.75 KN / sqm 20.00 N / sqm 415.00 N / sqm 25.00 KN / cum 24.00 KN / sqm 15.00 mm 200.00 mm 0.22 % 1.43 26 98.98 mm 20.00 mm 125.00 mm 10.00 mm 10.00 mm 105.00 mm

Loading on the slab

Dead Load of the slab (DL) Floor Finish Other Load Live Load on the slab Total Load on the slab (TL) Design Load = (Total Llx Effective Span lx ly

3.13 KN / sqm 1.20 KN / sqm 0.00 KN / sqm 0.75 KN / sqm 5.08 KN / sqm 7.61 KN / sqm 3.79 m 5.91 m

Related Documents

Slab Design.pdf
December 2019 27
Slab Designation.docx
May 2020 21
Slab Design.xlsx
December 2019 41
It Slab
December 2019 35
Slab Design
May 2020 24
Slab Rates.pdf
June 2020 19

More Documents from "Saira Khalil"

Slab Design.xlsx
December 2019 41