3472/2 Matematik Tambahan Kertas 2 2 ½ jam Sept 2009
SEKOLAH-SEKOLAH MENENGAH ZON A KUCHING
PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2009
MATEMATIK TAMBAHAN Kertas 2 Dua jam tiga puluh minit
JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU
MARKING SCHEME
Skema Pemarkahan ini mengandungi 14 halaman bercetak
2
ADDITIONAL MATHEMATICS MARKING SCHEME TRIAL SBP 2009 – PAPER 2 QUESTION NO.
1
SOLUTION
x = 2y − 6
MARKS
P1
(2 y − 6)2 + (2 y − 6) y − 20 = 0
K1
3 y 2 − 15 y + 8 = 0
K1
y = 0.6070, y = 4.393
N1
@ x = −4.786, x = 2.786
N1
5 Eliminate x or y Solve the quadratic equation by using the factorization @ quadratic formula @ completing the square must be shown
Note : OW-1 if the working of solving quadratic equation is not shown.
5 2 (a)
OT = 17.3205 cm
K1 K1
sSTR = 17.3205 ×
sSTR = 18.1380 cm
π 3
π 3
N1
K1
Use the formula s = rθ
4
3
QUESTION NO.
(b)
SOLUTION
MARKS
1 o Area OPQ = × 20 × 20 × sin 60 @ 173.2051cm2 2 1 π Area OSTR = × 17.32052 × 2 3
@
N1
16.1256 cm2
Score (b)
Frequency, f
0-4 5-9 10-14 15-19 20-24 25-29 30-34
∑ Variance =
2 3 10 20 7 6 2 f = 50
17185 865 − 50 50
= 44.41
N1
Midpoint, x 2 7 12 17 22 27 32
K1
fx 2
fx
4
∑
2
3
Lower boundary OR 43 + w − 15 2 (5) 20
N1
P1
8 P1
43 + w − 15 (5) K1 17 = 14.5 + 2 20
w=7
4
@ 157.0795 cm2 K1
1 1 π × 20 × 20 × sin 60o − × 17.32052 × 2 3 2 K1 173.2051 – 157.0795
3 (a)
K1
4 21 120 340 154 162 64 fx = 865
∑
8 147 1440 5780 3388 4374 2048 fx 2 = 17185
OR P1
7
4
QUESTION NO. 4 ( a)
SOLUTION
δV = −0.6
OR
dV = 3x 2 dx
OR
δ x ≈ −0.008
( b)
3
K1
x=5
K1
−0.6 ≈ 3(5)2 × δ x
f ′( x) =
MARKS
N1
(3 − x 2 )(3) − (3 x + 4)(−2 x) (3 − x 2 )2
3
K1
3 − (2)2 (3) − [ (3(2) + 4)(−2(2))] f ′(2) = 2 3 − (2)2
K1
N1
37
6 5 ( a)
cos x sin x
2 sin2 x
K1
2 = 2 sin x cos x N1
= sin 2x (b)
y=
2x
π
Sketch straight line correctly
P1
y y = 2 sin 2 x
2
y=
2x
π
Sine curve
P1
Period
P1
Amplitude
P1
Modulus
P1
6
1
O
Number of solutions = 4
π
x
N1
8
5
QUESTION NO.
6 (a)
SOLUTION
MARKS
K1
(i) T15 = 2 + 14(3)
3
N1
= 44 cm
(ii)Area of the fifteenth circle = 1936 π cm 2
N1
(b) 100, 50 , 25 , ……… a= 100 AND r =
T7 = 1.563
K1
1 2
3 K1
N1
6
6
log10 y
5 4
x+2
3
4
5
6
7
8
log 10 y
1.408
2.100
2.806
3.500
4.200
4.800
(a) Each set of values correct (log10 y must be at least 2 decimal places) N1, N1 Y = mX + c log 10 y = (x + 2) log 10 q + log 10 p K1 where Y = log 10 y, X = (x + 2), m = log 10 q and c = log 10 p (c) log 10 q = gradient 4.2 − (− 0.6 ) log 10 q = K1 7−0 q = 4.85 N1 log p = Y-intercept log p = −0.6 p = 0⋅251
Correct both axes (Uniform scale) K1 All points are plotted correctly N1 Line of best fit N1
× ×
K1 N1
10
3
× ×
×
2 × 1
0 −1 −2
1
2
3
4
5
6
7
8
x+1
7
QUESTION NO. 8 (a) (i)
(ii)
(b)
SOLUTION
uuur QR = 9 x − 9 y % %
N1
uuur 1 OS = 9 y + −9 y + 12 x % % 2 % 9 = 6x + y % 2%
(
)
uuur uuur OT = hOS 9 = 6hx + hy % 2 % OR uuur uuur QT = kQR = 9 kx − 9ky % % uuur uuur uuur QT = QO + OT
3
K1 N1
5 K1
9 = −9 y + 6hx + hy % 2 % % 9 = 6hx + −9 + h y % 2 % uuur Comparing QT , 2 9k = 6h ⇒ k = h --------------------------(1) 3 OR 9 1 −9k = −9 + h ⇒ k = 1 − h --------------(2) 2 2 (d)
Solving the simultaneous equations 6 4 h = ,k = 7 7
K1
K1
K1
N1
uuur PQ = −12 x + 9 y % % uuur 2 2 PQ = (12(3) ) + ( 9(5) )
= 57.63 units
MARKS
K1
2
N1
10
8
QUESTION NO.
9 (a) (i)
SOLUTION
K1
p = 0.3, q = 0.7, n = 8 1 − (0.7)8 − 8C1(0.3)(0.7)7
(b) (i)
N1
K1
n(0.3)(0.7) =315
n = 1500
N1
36.5 − 33.5 150 30 − 33.5
5
P
K1
OR (ii)
5
K1
= 0.7447
(ii)
MARKS
P [ −0.7 < Z < 0.6] =
150 n
1 − P[Z > 0.7] − P[Z > 0.6] = 1 − 0.2420 − 0.2743 =
150 n
n = 310.11
150 n
K1
K1 K1
Total number = 310
N1
10
9
QUESTION NO.
10 (a)
SOLUTION
3
Get m = −1
K1
y − 4 = −1( x − 1)
K1 N1
y + x−5 = 0
(b)
( x − 1) + ( y − 4 )
( 4 − 2 ) + (1 − 3) x 2 − 2 x + 1 + y 2 − 8 y + 16 = 4 ( 8 ) 2
2
=2
2
x 2 + y 2 − 2 x − 8 y − 15 = 0
(c)
( x − 5)( x + 3) = 0
K1
2
3
K1
Y / Z = ( 5, 0 ) and Z / Y = ( −3, 0 ) (d)
K1
2
N1
x 2 − 2 x − 15 = 0 x = 5, x = −3 Get both
MARKS
Get T = ( 2, 3 ) ,
K1
x − intercept = −1
N1
N1
2 10
10
QUESTION NO. 11 ( a)
SOLUTION px 2 + x = −2
3
K1 K1
p(2)2 + 2 = −2 p = −1, q = 2
(b) (i)
MARKS
N1
Area of the shaded region 1
∫ (x = ∫ (x =
2
0
1
2
0
− 6 x + 9)dx −
7 1
∫ (2 x + 2)dx
K1
0
− 8 x + 7)dx 1
x3 8 x 2 = − + 7x 2 3 0 1 8 = − + 7 − 0 3 2 1 = 3 unit 2 . 3
(ii)
K1 K1 N1
Volume of revolution 2
= π ∫ y 2 dx 0 2
= π ∫ ( x − 3)4 dx
K1
0
2
5 = π ( x − 3) 5 0
(1 − 3)5
= π
5
K1
(0 − 3)5 − 5 2 5
= 48 π unit 3 .
N1
10
11
QUESTION NO. 12 ( a)
( b)
SOLUTION
v = 5 ms−1
P1
a = 2t − 6 and
a = 0 or
t=3
( d)
dv =0 dt
K1
2
N1
t3 s= − 3t 2 + 5t 3 | s1 − s0 | + | s5 − s1 | 7 25 7 −0 + − − 3 3 3
OR
3
K1
N1
(t − 1)(t − 5) < 0 1
1
K1
vmin = −4 ms−1
( c)
MARKS
K1
OR
1
∫0
v dt +
4 5
∫1 v dt
K1
K1
13 13 53 − 3(1)2 + 5(1) − 0 + − 3(5)2 + 5(5) − − 3(1)2 + 5(1) 3 3 3
13 m
N1
10
12
QUESTION NO.
SOLUTION
K1 5 2 + 8 2 − 12 2 2(5)(8) ∠AMB = 133.43˚ @ 133˚26'
13 (a) (i)
cos ∠AMB =
(ii)
sin ∠ACM sin 46.57° = 5 4 ∠ACM = 65.20˚ @ 65˚24'
MARKS
2 N1
5
K1 K1
∠MAC = 180˚ – 46.57˚ - 65.20˚ = 68.23˚ Area of ∆AMB Area of ∆ACM 1 = (5)(8)sin 133.43˚ 1 = (5)(4)sin 68.23˚ OR 2 2 = 14.52 cm2 = 9.287 cm2 Area of ∆ABC = 14.52 + 9.287 K1 = 23.807 cm2
(b)
Get ∠B 'M 'M = 46.57˚ @ ∠B 'MM ' = 46.57˚ @ ∠M 'B 'M = 86.86˚
K1
N1
3 K1
MM ' 8 K1 = sin 86.86° sin 46.57° MM ' = 10.999 cm @ 11 cm A'M '= 5 + 10.999 = 15.999 cm @ 16 cm
N1
10
13
Answer for question 14
(a)
I.
2 x + 3 y ≤ 48 N1
II.
5 x + 8 y ≥ 48 N1
III.
2y≥ x
N1
Refer to the graph,
(b)
K1
1 or 2 graph(s) correct 3 graphs correct
Correct area
(c) i)
16
N1
N1 N1
6
N1
ii) max point (12, 8)
k = 18x + 20y Maximum Profit = RM 18(12) + RM 20(8)
14
= RM 376
K1
N1
10
12
10
8
6
4
2
R
(12, 8)
14
QUESTION NO. 15 (a) (i)
SOLUTION 140 =
RM 50.40 ×100 Q97
Q97 = RM 36
(ii)
I 00,97 =
125 =
I 00,94 I 97,94
I 00,94
120
I00, 94 = 150
(b) (i)
MARKS
5
K1
N1
×100 K1
×100
K1 N1
125 × 20 + 140 ×10 + 30 x + 110 × 40 = 122 100 30x + 8300 = 12200
K1
5
K1 N1
x = 130
(ii) 122 =
RM 288 ×100 Q1997
Q1997 = RM 236.07
K1
N1
10