Skema Add Math P2 Trial Spm Zon A Kuching 2009

  • Uploaded by: Bid Hassan
  • 0
  • 0
  • June 2020
  • PDF

This document was uploaded by user and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this DMCA report form. Report DMCA


Overview

Download & View Skema Add Math P2 Trial Spm Zon A Kuching 2009 as PDF for free.

More details

  • Words: 1,784
  • Pages: 14
3472/2 Matematik Tambahan Kertas 2 2 ½ jam Sept 2009

SEKOLAH-SEKOLAH MENENGAH ZON A KUCHING

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2009

MATEMATIK TAMBAHAN Kertas 2 Dua jam tiga puluh minit

JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU

MARKING SCHEME

Skema Pemarkahan ini mengandungi 14 halaman bercetak

2

ADDITIONAL MATHEMATICS MARKING SCHEME TRIAL SBP 2009 – PAPER 2 QUESTION NO.

1

SOLUTION

x = 2y − 6

MARKS

P1

(2 y − 6)2 + (2 y − 6) y − 20 = 0

K1

3 y 2 − 15 y + 8 = 0

K1

y = 0.6070, y = 4.393

N1

@ x = −4.786, x = 2.786

N1

5 Eliminate x or y Solve the quadratic equation by using the factorization @ quadratic formula @ completing the square must be shown

Note : OW-1 if the working of solving quadratic equation is not shown.

5 2 (a)

OT = 17.3205 cm

K1 K1

sSTR = 17.3205 ×

sSTR = 18.1380 cm

π 3

π 3

N1

K1

Use the formula s = rθ

4

3

QUESTION NO.

(b)

SOLUTION

MARKS

1 o Area OPQ = × 20 × 20 × sin 60 @ 173.2051cm2 2 1 π Area OSTR = × 17.32052 × 2 3

@

N1

16.1256 cm2

Score (b)

Frequency, f

0-4 5-9 10-14 15-19 20-24 25-29 30-34

∑ Variance =

2 3 10 20 7 6 2 f = 50

17185  865  −  50  50 

= 44.41

N1

Midpoint, x 2 7 12 17 22 27 32

K1

fx 2

fx

4



2

3

Lower boundary OR  43 + w  − 15    2  (5) 20      

N1

P1

8 P1

 43 + w  − 15    (5) K1 17 = 14.5 +  2 20      

w=7

4

@ 157.0795 cm2 K1

1 1 π × 20 × 20 × sin 60o − × 17.32052 × 2 3 2 K1 173.2051 – 157.0795

3 (a)

K1

4 21 120 340 154 162 64 fx = 865



8 147 1440 5780 3388 4374 2048 fx 2 = 17185

OR P1

7

4

QUESTION NO. 4 ( a)

SOLUTION

δV = −0.6

OR

dV = 3x 2 dx

OR

δ x ≈ −0.008

( b)

3

K1

x=5

K1

−0.6 ≈ 3(5)2 × δ x

f ′( x) =

MARKS

N1

(3 − x 2 )(3) − (3 x + 4)(−2 x) (3 − x 2 )2

3

K1

3 − (2)2  (3) − [ (3(2) + 4)(−2(2))] f ′(2) = 2 3 − (2)2 

K1

N1

37

6 5 ( a)

 cos x    sin x 

2 sin2 x 

K1

2 = 2 sin x cos x N1

= sin 2x (b)

y=

2x

π

Sketch straight line correctly

P1

y y = 2 sin 2 x

2

y=

2x

π

Sine curve

P1

Period

P1

Amplitude

P1

Modulus

P1

6

1

O

Number of solutions = 4

π

x

N1

8

5

QUESTION NO.

6 (a)

SOLUTION

MARKS

K1

(i) T15 = 2 + 14(3)

3

N1

= 44 cm

(ii)Area of the fifteenth circle = 1936 π cm 2

N1

(b) 100, 50 , 25 , ……… a= 100 AND r =

T7 = 1.563

K1

1 2

3 K1

N1

6

6

log10 y

5 4

x+2

3

4

5

6

7

8

log 10 y

1.408

2.100

2.806

3.500

4.200

4.800

(a) Each set of values correct (log10 y must be at least 2 decimal places) N1, N1 Y = mX + c log 10 y = (x + 2) log 10 q + log 10 p K1 where Y = log 10 y, X = (x + 2), m = log 10 q and c = log 10 p (c) log 10 q = gradient 4.2 − (− 0.6 ) log 10 q = K1 7−0 q = 4.85 N1 log p = Y-intercept log p = −0.6 p = 0⋅251

Correct both axes (Uniform scale) K1 All points are plotted correctly N1 Line of best fit N1

× ×

K1 N1

10

3

× ×

×

2 × 1

0 −1 −2

1

2

3

4

5

6

7

8

x+1

7

QUESTION NO. 8 (a) (i)

(ii)

(b)

SOLUTION

uuur QR = 9 x − 9 y % %

N1

uuur 1 OS = 9 y + −9 y + 12 x % % 2 % 9 = 6x + y % 2%

(

)

uuur uuur OT = hOS 9 = 6hx + hy % 2 % OR uuur uuur QT = kQR = 9 kx − 9ky % % uuur uuur uuur QT = QO + OT

3

K1 N1

5 K1

9 = −9 y + 6hx + hy % 2 % % 9   = 6hx +  −9 + h  y %  2 % uuur Comparing QT , 2 9k = 6h ⇒ k = h --------------------------(1) 3 OR 9 1 −9k = −9 + h ⇒ k = 1 − h --------------(2) 2 2 (d)

Solving the simultaneous equations 6 4 h = ,k = 7 7

K1

K1

K1

N1

uuur PQ = −12 x + 9 y % % uuur 2 2 PQ = (12(3) ) + ( 9(5) )

= 57.63 units

MARKS

K1

2

N1

10

8

QUESTION NO.

9 (a) (i)

SOLUTION

K1

p = 0.3, q = 0.7, n = 8 1 − (0.7)8 − 8C1(0.3)(0.7)7

(b) (i)

N1

K1

n(0.3)(0.7) =315

n = 1500

N1

36.5 − 33.5  150  30 − 33.5
5

P

K1

OR (ii)

5

K1

= 0.7447

(ii)

MARKS

P [ −0.7 < Z < 0.6] =

150 n

1 − P[Z > 0.7] − P[Z > 0.6] = 1 − 0.2420 − 0.2743 =

150 n

n = 310.11

150 n

K1

K1 K1

Total number = 310

N1

10

9

QUESTION NO.

10 (a)

SOLUTION

3

Get m = −1

K1

y − 4 = −1( x − 1)

K1 N1

y + x−5 = 0

(b)

( x − 1) + ( y − 4 )

( 4 − 2 ) + (1 − 3) x 2 − 2 x + 1 + y 2 − 8 y + 16 = 4 ( 8 ) 2

2

=2

2

x 2 + y 2 − 2 x − 8 y − 15 = 0

(c)

( x − 5)( x + 3) = 0

K1

2

3

K1

Y / Z = ( 5, 0 ) and Z / Y = ( −3, 0 ) (d)

K1

2

N1

x 2 − 2 x − 15 = 0 x = 5, x = −3 Get both

MARKS

Get T = ( 2, 3 ) ,

K1

x − intercept = −1

N1

N1

2 10

10

QUESTION NO. 11 ( a)

SOLUTION px 2 + x = −2

3

K1 K1

p(2)2 + 2 = −2 p = −1, q = 2

(b) (i)

MARKS

N1

Area of the shaded region 1

∫ (x = ∫ (x =

2

0

1

2

0

− 6 x + 9)dx −

7 1

∫ (2 x + 2)dx

K1

0

− 8 x + 7)dx 1

 x3 8 x 2  =  − + 7x 2 3 0 1 8  =  − + 7 − 0 3 2  1 = 3 unit 2 . 3

(ii)

K1 K1 N1

Volume of revolution 2

= π ∫ y 2 dx 0 2

= π ∫ ( x − 3)4 dx

K1

0

2

5  = π  ( x − 3)   5 0

 (1 − 3)5

= π 

5

K1

 (0 − 3)5   −   5  2 5

= 48 π unit 3 .

N1

10

11

QUESTION NO. 12 ( a)

( b)

SOLUTION

v = 5 ms−1

P1

a = 2t − 6 and

a = 0 or

t=3

( d)

dv =0 dt

K1

2

N1

t3 s= − 3t 2 + 5t 3 | s1 − s0 | + | s5 − s1 | 7 25 7 −0 + − − 3 3 3

OR

3

K1

N1

(t − 1)(t − 5) < 0 1
1

K1

vmin = −4 ms−1

( c)

MARKS

K1

OR

1

∫0

v dt +

4 5

∫1 v dt

K1

K1

13  13 53 − 3(1)2 + 5(1) − 0 + − 3(5)2 + 5(5) −  − 3(1)2 + 5(1)  3 3 3 

13 m

N1

10

12

QUESTION NO.

SOLUTION

K1 5 2 + 8 2 − 12 2 2(5)(8) ∠AMB = 133.43˚ @ 133˚26'

13 (a) (i)

cos ∠AMB =

(ii)

sin ∠ACM sin 46.57° = 5 4 ∠ACM = 65.20˚ @ 65˚24'

MARKS

2 N1

5

K1 K1

∠MAC = 180˚ – 46.57˚ - 65.20˚ = 68.23˚ Area of ∆AMB Area of ∆ACM 1 = (5)(8)sin 133.43˚ 1 = (5)(4)sin 68.23˚ OR 2 2 = 14.52 cm2 = 9.287 cm2 Area of ∆ABC = 14.52 + 9.287 K1 = 23.807 cm2

(b)

Get ∠B 'M 'M = 46.57˚ @ ∠B 'MM ' = 46.57˚ @ ∠M 'B 'M = 86.86˚

K1

N1

3 K1

MM ' 8 K1 = sin 86.86° sin 46.57° MM ' = 10.999 cm @ 11 cm A'M '= 5 + 10.999 = 15.999 cm @ 16 cm

N1

10

13

Answer for question 14

(a)

I.

2 x + 3 y ≤ 48 N1

II.

5 x + 8 y ≥ 48 N1

III.

2y≥ x

N1

Refer to the graph,

(b)

K1

1 or 2 graph(s) correct 3 graphs correct

Correct area

(c) i)

16

N1

N1 N1

6

N1

ii) max point (12, 8)

k = 18x + 20y Maximum Profit = RM 18(12) + RM 20(8)

14

= RM 376

K1

N1

10

12

10

8

6

4

2

R

(12, 8)

14

QUESTION NO. 15 (a) (i)

SOLUTION 140 =

RM 50.40 ×100 Q97

Q97 = RM 36

(ii)

I 00,97 =

125 =

I 00,94 I 97,94

I 00,94

120

I00, 94 = 150

(b) (i)

MARKS

5

K1

N1

×100 K1

×100

K1 N1

125 × 20 + 140 ×10 + 30 x + 110 × 40 = 122 100 30x + 8300 = 12200

K1

5

K1 N1

x = 130

(ii) 122 =

RM 288 ×100 Q1997

Q1997 = RM 236.07

K1

N1

10

Related Documents


More Documents from "Bid Hassan"